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ABSTRACT

Encouraged by the good performance of the DCT in audio-
visual speech recognition [1], we investigate how the selec-
tion of the DCT features influences the recognition scores in
a hybrid ANN/HMM audio-visual speech recognition sys-
tem on a continuous word recognition task with a vocab-
ulary of 30 numbers. Three sets of features, based on the
mean energy, the variance and the variance relative to the
mean value, were chosen. The performance of these fea-
tures is evaluated in a video only and an audio-visual recog-
nition scenario with varying Signal to Noise Ratios (SNR).
The audio-visual tests are performed with 5 types of addi-
tional noise at 12 SNR values each. Furthermore the results
of the DCT based recognition are compared to those ob-
tained via chroma-keyed geometric lip features [2]. In order
to achieve this comparison, a second audio-visual database
without chroma-key has been recorded. This database has
similar content but a different speaker.

1. INTRODUCTION

The importance of the lips movement in human speech
perception, especially in noisy conditions, is well known.
Therefore many researchers also take advantage of the vi-
sual information in Automatic Speech Recognition (ASR)
systems. This article focuses on the extraction of the visual
information for the recognition process and its compatibility
with a HMM/ANN recognition system. The presented vi-
sual feature extraction is based on a Discrete Cosine Trans-
form (DCT). We evaluate different strategies to chose those
DCT coefficients which are best suited for the recognition
process. We analyze their efficiency in a video only and in
different audio-visual recognition scenarios. Furthermore
we try to draw a comparison between these DCT features
and geometric lip features with different noise types at dif-
ferent SNR levels. This extends the study in [1] performed
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on video alone for a set of pixel based vs. geometric meth-
ods. Our comparison is based on two similar datasets. For
the first dataset we use the DCT to extract the relevant vi-
sual features and in the second the lips of the speaker are
colored with blue ink which allows to precisely extract the
geometric lip parameters.

2. RECOGNITION SYSTEM

The recognition tests aiming to assess the performance of
the DCT features for audio-visual speech recognition are
carried out with an ANN/HMM hybrid model for continu-
ous number recognition. Identification of the phonemes is
performed independently for the audio and the video path
(compare Fig. 1) and thus follows a SI or multi-stream ap-
proach [3]. The ANNs are trained to produce estimates of

RASTA-

PLP

Audio

ANN

Video

ANN

AV

Fusion
HMM

SNR

DCT

Fig. 1. Separate Identification (SI) audio-visual speech
recognition system
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Fusion of the estimated audio and video a-posteriori
probabilities follows a Geometric Weighting [4]:
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The weighting parameters 3 and 4 both depend on a third
parameter 5 according to:
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The parameter 5 controls the weighting of audio and video
data. When 5����
	 only the video signal contributes to
the recognition, whereas for 5���	 the recognition relies
completely on the audio signal. � �	3"!�4�� is a normalization
parameter independent on the actual phoneme. Implemen-
tation of the system was carried out with the tool STRUT
from TCTS lab Mons, Belgium [5].

To train the ANNs and to perform the recognition tests
we used a single-speaker audio-visual database recorded at
the Institut de la Communication Parl ée (ICP) in Grenoble,
France. As in our previous study, this database is a repeti-
tion of the same set of utterances selected from Numbers95
[6]. These utterances were spoken by a native English-
speaking female subject. Only half of this database, corre-
sponding to 708 utterances, is currently formatted. Each of
these 708 utterance consists of several continuously uttered
numbers yielding to a total of 2508 words. The database
was divided in a set of 516 utterances for training and a set
of 192 utterances for testing. To facilitate the tracking of
the mouth region the movements of the speakers head were
restricted during the recordings via a helmet and a marker
was positioned in the speakers face in a location not affected
by the articulatory movements (see also Fig. 2a). A lamp
positioned in front of the speaker ensured constant lightning
conditions and high contrast images.

a) b)

Fig. 2. The blue markers on the glasses visible in the full
size image a) were used to track the mouth region shown in
b)

The recordings were made on BETACAM video with� � half-frames of size ����� �"!#�#� pixels per second. Instead
of combining two half-frames to a full-frame we preferred
to do without the additional spatial resolution and keep a
higher temporal resolution. Full-frames were generated via
an interpolation of the missing lines in each half-frame. Af-
ter localization of the mouth region based on the markers
positioned in the speakers face, the corresponding region
was extracted and the images were down-sampled by a fac-

tor $ . This yields images of �%�&�'�%$ pixels at
� � frames

per second of the Region Of Interest (ROI) (compare Fig.
2b). Tracking of the ROI was performed via a correlation.
The localization error in the final image is approximately 1
pixel.

3. VIDEO FEATURE EXTRACTION

3.1. The DCT

The extraction of the video features is performed with the
Discrete Cosine Transform (DCT) [7]. The reasons for the
widespread use of the DCT as well in image compression
[8] as feature extraction [1] are the high compaction of the
energy of the input signal onto a few DCT coefficients and
the availability of a fast implementation of the transform,
similar to the Fast Fourier Transform (FFT) [7]. Since the
DCT is not shift invariant the performance depends on a
precise tracking of the ROI.

3.2. Feature Types

As features for our recognition experiments we selected
DCT coefficients following three different strategies:

energy features: the ( features with the highest energy

variance features: the ( features with the highest variance

relative variance features: the ( features with the highest
variance after normalization to their mean value

The number of features ( extracted from each image frame
was varied between ! � and 	 ��� . The necessary mean values
and variances were calculated over the complete training
set. Synchronization between the audio and video stream
was obtained via an interpolation of the DCT coefficients to
the audio feature rate.

4. RECOGNITION RESULTS

We performed two different types of recognition tests. In
the first test we used only the video information and com-
pared the recognition results of the different feature types
with varying feature size. For the second test we combined
the audio and video information and performed tests with
varying SNR in the audio stream.

4.1. Video Only Tests

In Tab. 1 the WERs obtained by the different feature types
with varying feature size are displayed. All tests were per-
formed with a hidden layer of

� ���#� neurons which gave also
for the larger feature sizes the best results. A time window
of 13 frames set up by the current frame and the 6 preced-
ing and succeeding frames was presented to the ANN. Ad-
ditionally to the pure DCT coefficients also their delta and



delta-delta values were used. As can be seen from Tab. 1 the

20 30 40 60 100 average
Energy 32% 28% 32% 33% 32% 31.6%
Variance 35% 31% 32% 35% 30% 32.6%
Relative Var. 44% 40% 42% 40% 40% 41.2%

Table 1. Video recognition rates in percent WER with dif-
ferent feature types using between ! � and 	 ��� features per
frame. In the last column the average WER for a chosen
feature type is given

results show only small variations with the feature size. No
increase in performance with an augmentation of the num-
ber of features is visible. Taking the good results obtained
with 30 features and the increase of computation time with
an increase of the feature size into account, the choice of
30 features seems to be preferable and is used for subse-
quent tests. When looking at the different feature types the
performance of the features based on the relative variance
is clearly inferior to the other two feature types. The av-
erage WER over all tested feature sizes indicates a slightly
better performance of the energy features. This better per-
formance is also visible at the chosen size of 30 features.
Overall this test clearly shows that the DCT coefficients are
well suited for use in an ANN/HMM recognition system.

4.2. Audio-Visual Tests

In order to investigate the potential of the DCT based video
features to take advantage of the complementarity of the au-
dio and video data and to test their compliance with the
Geometric Fusion presented in Sec. 2 we also performed
audio-visual tests. For these tests 5 different noise types at	 ! SNR values each were added to the audio signal and the
fusion parameter 5 was adapted to each noise scenario as to
give minimal WER. As noise types noise recorded in a car,
white noise and babble, factory 1 and 2 noise taken from the
NOISEX database [9] were added.

The results of these audio-visual tests when noise
recorded in a car was added can be seen in Fig. 3. The
performance of the features based on the energy and on the
variance of the coefficients is very similar. Again selecting
the features with the highest relative variance seems to work
considerably worse. The results obtained with the other
noise types are very similar and also indicate comparable
performance of the energy and variance features and infe-
rior performance of the features based on the relative vari-
ance. They all show that the audio-visual complementar-
ity is well exploited by all feature types and that the audio-
visual scores are the better, the better the scores on the video
alone is.
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Fig. 3. Comparison of the different DCT feature types. The
video only score are also given for orientation

5. DISCUSSION

Throughout this article we investigated different strategies
to select DCT coefficients in order to get best recognition
scores. During the recording of the database the lightning
conditions were kept constant and no normalization of the
images was performed. Under these conditions the features
based on the energy of the DCT coefficients performed best.
The question remains how their performance changes rela-
tive to the features based on the variance of the coefficients
if the lightning conditions between the training and the test
conditions change.

Another interesting question is the difference of perfor-
mance between the DCT based recognition and one based
on geometric lip features as mouth opening or lip shape.
One attempt to answer this question is the comparison with
a similar database. We previously recorded a single-speaker
audio-visual database with a male speaker named John [2]
and we therefore want to refer to it as AVNB-John. The
current database was recorded with a female speaker named
Laurie and hence we want to refer to it as AVNB-Laurie.
The lexical content of AVNB-Laurie is a subset of AVNB-
John. Feature extraction from the audio stream is almost
identical for both databases except for the fact that due to a
higher sampling rate at AVNB-Laurie an additive PLP co-
efficient was used and hence the performance in noise is
slightly better. However, as a result of the smaller size of
AV-Laurie the performance on clean data is inferior.

The main difference between the two databases is the
extraction of the lip features. For AVNB-Laurie the fea-
tures are extracted via the DCT as detailed before. During
the recording of AVNB-John the speakers lips were colored
with blue ink and hence the relevant lip parameters could
be extracted very easily via a chroma key process. As lips
parameters, outer lip width, inner lip width, outer lip height,
inner lip height, lip surface and mouth surface surrounded



by lips were chosen [10]. By means of these two databases
we want to contrast the concepts of pixel based and geomet-
ric lip features. In Fig. 4 we plotted the audio-visual recog-
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Fig. 4. Confrontation of recognition scores with DCT fea-
tures (AVNB-Laurie) a) and geometric lip features (AVNB-
John) b) on a comparable dataset

nition scores for the two databases in an identical task. In
both cases we used the same phoneme models and dictio-
nary. As can be seen from the plots the two curves repre-
senting the audio-visual recognition scores are very similar
in shape and coincide at some points. Using the DCT coef-
ficients on AVNB-Laurie we have !%� � 	 �

WER compared to!#! � 	 �
when using the geometric features on AVNB-John.

The feature extraction process from the colored lips comes
close to the best achievable precision for geometric features.
With natural, uncolored lips the extraction of geometric fea-
tures is quite delicate. Small variations in the lightning con-
ditions as induced by the articulatory movements can result
in severe false localizations of the lips boundaries. There-
fore the performance of the geometric lip features in a real
life scenario is expected to fall behind those in Fig. 4.b.
The video stream in AVNB-Laurie also suffers from the
small training set compared to AVNB-John and hence an
improvement of the performance of the DCT features can
be expected when more training data is available. Due to

its simplicity and stability the DCT features can therefore
be judged as clearly superior to geometric features. This
might also be attributed to the fact that pixel based features
are also able to take cues as the visibility of the teeth or
tongue and the shape of the muscles around the mouth into
account. It has to be said though that in our database the
lightning conditions did only change slightly and the posi-
tion of the lip region could be tracked with a precision of 1
pixel. Both these side conditions favor the DCT. Our results
are in accordance with those obtained in [1] where the DCT
was compared to geometric features in a continuous density
HMM system on video alone.
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