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Abstract 

Two speech inversion methods are implemented and 

compared. In the first, multistream Hidden Markov Models 

(HMMs) of phonemes are jointly trained from synchronous 

streams of articulatory data acquired by EMA and speech 

spectral parameters; an acoustic recognition system uses the 

acoustic part of the HMMs to deliver a phoneme chain and the 

states durations; this information is then used by a trajectory 

formation procedure based on the articulatory part of the 

HMMs to resynthesise the articulatory movements. In the 

second, Gaussian Mixture Models (GMMs) are trained on 

these streams to directly associate articulatory frames with 

acoustic frames in context, using Maximum Likelihood 

Estimation. Over a corpus of 17 minutes uttered by a French 

speaker, the RMS error was 1.66 mm with the HMMs and 

2.25 mm with the GMMs. 

Index Terms: Speech inversion, ElectroMagnetic 

Articulography (EMA), Hidden Markov Model (HMM), 

Gaussian Mixture Model (GMM), Maximum Likelihood 

Estimation (MLE). 

1. Introduction 

Speech inversion is a long-standing problem, as testified by 

the famous work by Atal et al. [1] in the seventies. Speech 

inversion was traditionally based on analysis-by-synthesis, as 

implemented by [2], or by [3] who optimised codebooks to 

recover vocal tract shapes from formants. But since a decade, 

more sophisticated data-driven techniques have appeared, 

thanks to the availability of large corpora of articulatory and 

acoustic data provided by devices such as the ElectroMagnetic 

Articulograph (EMA) or motion tracking devices based on 

classical or infrared video. 

Our laboratory is thus involved in the development of an 

inversion system that allows producing augmented speech 

from the sound signal alone, possibly associated with video 

images of the speaker’s face. Augmented speech consists of 

audio speech supplemented with signals such as the display of 

usually hidden articulators such (e.g. tongue or velum) by 

means of a virtual talking head, or with hand gestures as used 

in cued speech by hearing-impaired people. 

2. State-of-the-art 

At least, two classes of statistical models of the speech 

production mechanisms can be found in the recent literature: 

Hidden Markov Models (HMMs) (cf. [4], [5] or [6]), and 

Gaussian Mixture Models (GMMs) (cf. [7]). In addition to the 

structural differences between HMMs and GMMs, an 

important difference is that HMMs explicitly use phonetic 

information and temporal ordering while the GMMs simply 

cluster the multimodal behaviour of similar speech chunks. 

Hiroya & Honda [4] developed a method that determines 

articulatory movements from speech acoustics using a HMM-

based speech production model. After proper labelling of the 

training corpus, each allophone is modelled by a context-

dependent HMM, and the proper inversion is performed by a 

state-dependent linear regression between the observed 

acoustic and the corresponding articulatory parameters. The 

articulatory parameters of the statistical model are then 

determined for a given speech spectrum by maximizing a 

posteriori estimation. In order to assess the importance of 

phonetics, they tested their method under two experimental 

conditions, namely with and without phonemic information. In 

the former, the phone HMMs were assigned according to the 

correct phoneme sequence for each test utterance. In the latter, 

the optimal state sequence was determined among all possible 

state sequences of the phone HMMs and silence model. They 

found that the average RMS errors of the estimated 

articulatory parameters were 1.50 mm from the speech 

acoustics and the phonemic information in the utterance and 

1.73 mm from the speech acoustics only. 

Zhang & Renals [5] developed a similar approach. Their 

system jointly optimises multi-stream phone-sized HMMs on 

synchronous acoustic and articulatory frames. The inversion is 

carried out in two stages : first a representative HMM state 

alignment is derived from the acoustic channel ; a smoothed 

mean trajectory is generated from the HMM state sequence by 

an articulatory trajectory formation model using the same 

HMMs. Depending on the availability of the phone labels for 

the test utterance, the state sequence can be either returned by 

an HMM decoder, or by forced alignment derived from phone 

labels, leading to RMS errors of respectively 1.70 mm and 

1.58 mm. 

Toda and coll. [7] described a statistical approach for both 

articulatory-to-acoustic mapping and acoustic-to-articulatory 

inversion mapping without phonetic information. Such an 

approach interestingly enables language-independent speech 

modification and coding. They modelled the joint probability 

density of articulatory and acoustic frames in context using a 

Gaussian mixture model (GMM) based on a parallel acoustic-

articulatory speech database. They employed two different 

techniques to establish the GMM mappings. Using a minimum 

mean-square error (MMSE) criterion with an 11 frames 

acoustic window and 32 mixture components, they obtained 

RMS inversion errors of 1.61 mm for one female speaker, and 

of 1.53 mm for a male speaker. Using a maximum likelihood 

estimation (MLE) method and 64 mixture components, they 

improved their results to 1.45 mm for the female speaker, and 

1.36 mm for the male speaker. 

The studies described above do not allow concluding 

about the optimal inversion method since data, speakers and 

languages are not comparable. Hiroya & Honda [4] and Zhang 

& Renals [5] have shown that using explicit phonetic 

information to built HMMs gives better results. Toda and coll. 

[7], using GMMs and no phonetic information, get lower 



RMS errors. However, the corpora as well as training and 

testing conditions are not completely comparable. Therefore, 

the aim of the present work is to compare, ceteris paribus, the 

HMM-based method used in [6] with a GMM-based method 

similar to that of [7] using the minimum mean-square error 

(MMSE) criterion and subsequent MLE optimisation for the 

GMM-based mapping method. 

3. Articulatory and acoustic data 

3.1. The corpus  

For this study, a corpus already recorded was used [8]. It 

consists of a set of two repetitions of 224 nonsense vowel-

consonant-vowel (VCV) sequences (uttered in a slow and 

controlled way), where C is one of the 16 French consonants 

and V is one of 14 French oral and nasal vowels; two 

repetitions of 109 pairs of CVC real French words, differing 

only by a single cue (the French version of the Diagnostic 

Rhyme Test); 68 short French sentences, 9 longer phonetically 

balanced French sentences, and 11 long arbitrary sentences. 

The corpus was recorded on a single male French subject, 

which means that no speaker adaptation / normalisation 

problems will be dealt with in this study.  

The phones have initially been labelled for each utterance 

using a forced alignment procedure based on the audio signal 

and the corresponding phonetic transcription based on HMMs. 

Subsequent manual correction of both phoneme labels and 

phoneme boundaries were performed using the Praat software 

[9]. The centres of allophones were automatically chosen as 

the average between beginning and end of the phonemes. 

Altogether the corpus, from which long pauses were excluded, 

contains approximately 100,000 frames, i.e. about 17 minutes 

of speech, corresponding to 5132 allophones. The 36 

phonemes are: [a ɛ e i y u o ø ɔ œ ɑ ̃ɛ ̃œ̃ ɔ ̃p t k f s ʃ b d g v z 

ʒ m n ʁ l w ɥ j ə _ __], where _ and __ are internal short and 
utterance initial and final long pauses respectively. 

3.2. The acoustic and articulatory data 

The articulatory data have been recorded by means of an 

ElectroMagnetic Articulograph (EMA) that tracks motion of 

flesh points of the articulators thanks to small electromagnetic 

receiver coils glued on the organs. Studies have shown that the 

number of degrees of freedom of speech articulators (jaw, lips, 

tongue …) for speech is limited, and that a small but sufficient 

number of carefully selected measurement locations can allow 

retrieving them with a good accuracy [8, 10]. In the present 

study, six coils are used: a jaw coil is attached to the lower 

incisors (jaw), whereas three coils are attached to the tongue 

tip (tip), the tongue middle (mid), and the tongue back (bck) at 

approximately 1.2 cm, 4.2 cm, and 7.3 cm, respectively, from 

the extremity of the tongue; an upper lip coil (upl) and a lower 

lip coil (lwl) are attached to the boundaries between the 

vermilion and the skin in the midsagittal plane. Extra coils 

attached to the upper incisor and to the nose served as 

references to compensate for head movements in the 

midsagittal plane. The audio-speech signal was recorded at a 

sampling frequency of 22,050 Hz, in synchronization with the 

EMA coordinates, which were recorded at a 500 Hz sampling 

frequency, low-pass filtered at 20 Hz in order to reduce noise, 

and down sampled to 100 Hz. 

3.3. Overview of the data 

We verified that the general articulatory characteristics of each 

phoneme were in accordance with our expectation by 

displaying, in the midsagittal plane, the dispersion ellipses of 

the six coils estimated over the sets of all the instances. The 

minimum and maximum number of instances per phoneme 

was 17 (for short pauses) and 348 (for /a/). This illustrates the 

coherence and the validity of the data. Figure 1, which 

displays these ellipses for phoneme /t/, illustrates the very low 

variability of the tongue tip and jaw coils for /t/, as could be 

expected since the tongue is in contact with the hard palate for 

this articulation. It should however be reminded that the 

articulations were sampled at the instant midway between the 

phone boundaries, which does not completely ensure that it 

corresponds to the actual centre of the phone if the trajectories 

are not symmetrical. 
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Figure 1. Dispersion ellipses of the measured 

coordinates of the six EMA coils for phoneme /t/. 

These ellipses are computed from the samples taken at 

the middle of the 231 instances of /t/ in the corpus. 

3.4. Context classes for phonemes  

Due to coarticulatory effects, it is unlikely that a single 

context-independent HMM could optimally represent a given 

allophone. Therefore, context-dependent HMMs were trained. 

Rather than using a priori phonetic knowledge to define such 

classes, confusion trees have been built for both vowels and 

consonants, based on the matrix of Manhattan distances of the 

coils coordinates between the centre frame of each pair of 

phone. Each allophone was represented by its mean over all 

the associated instances. Using hierarchical clustering to 

generate dendrograms we define six coherent classes for 

vocalic contexts ([a ɛ ɛ ̃| ø œ œ̃ | e i | y | u | o ɔ ɑ ̃ɔ]̃), and ten 

coherent classes for consonantal contexts ([p b m | f v | ʁ | ʃ ʒ 

| l | t d s z n | j | ɥ | k g | w]). The schwa, the short and the 

long pauses ([ə _ __]) are ignored in the context classes. Using 
acoustic spectral distances did lead to classes less satisfactory 

from the point of view of phonetic knowledge. 

4. HMM models 

We recall the experiments published previously by Ben 

Youssef et al. [6]. For the training of the HMMs, acoustic 

feature vectors consisted of the 12 Mel-Frequency Cepstral 

Coefficients (MFCC) and of the logarithm of the energy, 

along with the first time derivatives, computed from the signal 

over 25 ms windows at a frame rate of 100 Hz to match the 

EMA sampling frequency. Articulatory feature vectors 

consisted of the x and y coordinates of the six active coils. 



Their first time derivatives are also added. The EMA traces 

were down sampled to match the 100 Hz shift rate of the 

acoustic feature vectors.  

Various contextual schemes were tested: phonemes 

without context (no-ctx), with left (L-ctx) or right context (ctx-

R), and with both left and right contexts (L-ctx-R). 

Left-to-right, 3-state phoneme HMMs with one Gaussian 

per state and a diagonal covariance matrix are used. For 

training and test the HTK3.4 toolkit is used [11]. The training 

is performed using the Expectation Maximization (EM) 

algorithm based on the Maximum Likelihood (ML) criterion. 

The acoustic and articulatory features vectors are 

considered as two streams in the HTK multi-stream training 

procedure. Subsequently, the HMMs obtained are split into 

articulatory HMMs and acoustic HMMs. 

A bigram language model considering sequences of 

phones in context is trained over the complete corpus. No 

prosodic constraints such as a duration model are added. The 

acoustic-to-articulatory inversion is achieved in two stages. 

The first stage performs phoneme recognition, based on the 

acoustic HMMs. The result is the sequence of recognised 

allophones together with the duration of each state in each 

HMM. An inheritance procedure allows to replace a missing 

HMM by the closest one aims to compensate for the too small 

size of the training set [6]. 

The second stage of the inversion aims at reconstructing 

the articulatory trajectories from the chain of phoneme labels 

and state durations delivered by the recognition procedure. As 

described in [12], the synthesis is performed using the 

trajectory formation procedure proposed by [13] with the 

software developed by the HTS group [14-15]. A linear 

sequence of HMM states is built by concatenating the 

corresponding phone HMMs, and a sequence of observation 

parameters is generated using a specific ML-based parameter 

generation algorithm [15].  

4.1. Evaluation of the HMM-based inversion 

Three criteria have been used to assess the inversion results: 

(1) the square root of the mean quadratic error (RMSE) 

between the measured and recovered coordinates, (2) the 

Pearson Product-Moment Correlation Coefficient (PMCC), a 

less conservative criterion that measures only the level of 

amplitude similarity and of synchrony of the trajectories, and 

(3) the recognition rates (percent correct and precision) are 

used to assess specifically the recognition stage.  

A jack-knife training procedure is used: the data are split 

into five partitions approximately homogeneous from the 

point of view of phone distribution; each partition is used in 

turn to assess the performances of the HMM models trained 

with the four remaining partitions. The RMSE and PMCC are 

calculated over the five test partitions – therefore the whole 

corpus –, excluding the long pauses at the beginning and the 

end of each utterance. The recognition rates are also 

aggregated over the five partitions. 

Table 1, which displays the recognition rates, the RMSE 

and correlation coefficients for the HMM-based inversion, 

shows that the use of phones in context increases the 

performances of the inversion. The best results are however 

not obtained for the phones with both right and left contexts, 

but for the phones with the right context. This is likely due to 

the limited size of the corpus (the ratio of the number of 

missing test phone HMMs over the total number of train 

phones is on the average over the five training partitions is 4, 

4, and 12 % for the L-ctx, ctx-R, and L-ctx-R contexts, 

respectively).  

We found that the use of state durations produced by the 

recognition stage results in an improvement of about 10 % for 

RMSE and about 4% for PMCC, compared to the previously 

used z-scoring method. We found also that the missing HMMs 

inheritance mechanism increases the recognition performances 

by 1 to 5 %. The language model increase rates of recognition 

/ accuracy from 72.29 / 34.22 % to 93.66 / 80.90 %. This 

spectacular improvement has however a low influence on the 

performances since, in right context, the RMSE goes from 

1.83 to 1.66 mm and the correlation from 0.90 to 0.92. 

Besides, in order to assess the contribution of the trajectory 

formation to errors of the complete inversion procedure, we 

also synthesized these trajectories using a forced alignment of 

the states based on the original labels, emulating a perfect 

acoustic recognition stage. From Table 1, we can estimate that 

the contribution of the trajectory formation stage to the overall 

RMSE amounts to nearly 90 %. This relatively high level of 

errors can likely be explained by the fact that the trajectory 

formation model tends to oversmooth the predicted 

movements and does not capture properly coarticulation 

patterns. 

Table 1. Recognition rates (Percent Correct, 

Accuracy) aggregated over the whole corpus (1). 

RMSE (mm) and PMCC for the HMM-based 

inversion: full inversion (2), with perfect recognition 

step (3). 

Cor Acc Cor Acc Cor Acc Cor Acc

(1) 88.90 68.99 92.61 78.14 93.66 80.90 87.12 80.83

RMSE PMCC RMSE PMCC RMSE PMCC RMSE PMCC

(2) 2,07 0,87 1,72 0,91 1,66 0,92 1,91 0,89

(3) 1,91 0,90 1,55 0,93 1,55 0,93 1,40 0,94

no-ctx L-ctx ctx-R L-ctx-R

 

5. Multimodal GMM models 

The GMM was trained using the expectation–maximization 

(EM) algorithm with joint acoustic-articulatory vectors as 

feature vectors. The GMM-based mapping is then applied 

using the minimum mean-square error (MMSE) criterion, 

which has been often used for voice conversion [16] or in 

acoustic-to-articulatory inversion [7]. Moreover, to improve 

the mapping performance, the maximum likelihood estimation 

(MLE) was applied to the GMM-based mapping method as in 

[7]. The determination of a target parameter trajectory with 

appropriate static and dynamic properties is obtained by 

combining local estimates of the mean and variance for each 

frame p(t) and its derivative  ∆p(t) with the explicit 

relationship between static and dynamic features (e.g. 

∆p(t) = p(t) – p(t-1)) in the MLE-based mapping. In order to 

take into account coarticulation [7] [17], the acoustic 

information is taken from some time span around the instant 

of interest. Besides, the dynamics of the articulators is taken 

into account by considering the time derivate of the 

articulatory trajectories. Thus, if we denote by YAc(:, 1:nAc) the 

matrix of the 12 measured MFCC + log-energy coefficients 

(nAc = 13) and by YEMA(:, 1:nEMA) the matrix of EMA coil 

coordinates, the feature vector at each time instant indexed by 

j is the concatenation of ‘2n+1’ of vectors of acoustic 

parameters and of EMA coordinates [PCA(YAc(J, 1:nAc)); 

YEMA(j, 1:nEMA); ∆∆∆∆YEMA(j, 1: nEMA)], where ∆∆∆∆ denotes first 



time derivation, and J = j+[-n:+n] denotes the time instant 

indices of the set of input frames used for contextual 

information. The number of input frames was varied from 

phoneme size (n=4, ~90 ms) to diphone size (n=8, ~170 ms), 

but the dimension ‘(2n+1)×nAc’ of the resulting vector was 

reduced to a fixed value of 24 by Principal Component 

Analysis (PCA). The number of mixture components was 

varied from 8 à 64. Each Gaussian is represented by full 

covariance matrix (48×48), a vector of means (48) and an 

associated weighting coefficient. 

Table 2 displays the performances of the GMM-based 

inversion for different parameters, using the jack-knife method 

on the same partitions as for the HMMs. The RMSE decreases 

when the number of mixtures increases and reaches a 

minimum for a context window of 110 ms. The more likely 

explanation is that a diphone size window optimally contains 

the local phonetic features necessary for inversion. The best 

inversion precision is finally obtained for a combination of a 

110 ms window with 64 Gaussians that seems to constitute the 

best representation of the 36 phonemes. Moreover, we have 

found that the extra MLE optimisation stage increases the 

performances by about 5 %. 

Table 2. RMSE (mm) and PMCC for the GMM-based 

inversion as a fonction of nombre of Gaussians 

(# mix) and size of context ctw (ms). 

#mix

ctw RMSE PMCC RMSE PMCC RMSE PMCC RMSE PMCC

90 2,68 0,78 2,61 0,80 2,38 0,83 2,32 0,84

110 2,68 0,78 2,54 0,80 2,37 0,83 2,25 0,85

130 2,66 0,78 2,51 0,81 2,36 0,83 2,27 0,85

150 2,66 0,78 2,50 0,81 2,44 0,82 2,32 0,84

170 2,65 0,78 2,44 0,82 2,41 0,82 2,29 0,84

648 16 32

 

6. Comparisons and discussion 

Figure 2 displays the statistics of the RMSE of each 

phoneme for the HMM-based and GMM-based methods. It 

confirms that the global RMSE obtained with the HMM-based 

inversion is lower than that obtained with the GMM-based 

one (the difference is highly significant, p<10-6). This result is 

surprising if we refer to two of the most elaborate experiments 

available in the literature: Hiroya & Honda [4] found 1.73 mm 

with HMMs (which is close to our results) whereas Toda et al. 

[7] found 1.36 – 1.45 mm with GMMs. Even taking into 

account the fact that these experiments were based on different 

speakers and languages, we did not expect such a difference. 

A possible explanation for this contrastive behaviour lays 

perhaps in the fact that GMM-based techniques are more 

appropriate to deal with unimodal mappings where events in 

source and targets are largely synchronous, whereas HMM-

based techniques are able to deal with context-dependent 

mappings and delays between frames structured by state 

transitions. 

A more detailed analysis can be found in Figure 4 that 

displays the phoneme-specific RMSE computed over the 

centres of all occurrences of each phoneme, sorted in 

ascending order for the HMMs. It can be observed that the 

error is higher for back articulations than for coronal ones. No 

specific trend was observed for the individual RMSE for each 

coil coordinates, except a lower error for the jaw than for other 

articulators (see Figure 5). 

Another interesting way to analyse the characteristics of 

the HMM and GMM inversion methods is to compare the 

measured and resynthesised articulatory spaces of the EMA 

coils, as done in Figure 3. We see that the space resynthesised 

by the HMM-based inversion covers almost completely the 

original space, while the space generated by the GMM-based 

inversion is quite smaller, especially for the back, mid and 

lower lip coils. These centralisation effects could be related to 

the smoothing effects possibly due to the MLE criterion used 

in both the HMMs and the GMMs. 
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Figure 2. Comparing RMSE of HMM and GMM 

reconstruction using anova. 

7. Conclusions and perspectives 

We have implemented and compared two acoustic-to-

articulatory speech inversion techniques, which contrast in the 

way they capture and exploit a priori multimodal coherence.  
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Figure 3. Articulatory spaces of the EMA coils for the phones sampled at centre. Light grey: measured coordinates. Dark 

grey synthesized coordinates (top: HMM, bottom: GMM). 



Both systems could be improved. HMM-based inversion 

can include more sophisticated treatment of articulatory-to-

acoustic asynchrony by introducing delay models that have 

been quite effective in HMM-based multimodal synthesis [18] 

as well as other optimization criteria such as minimization of 

reconstruction error [19]. The GMM-based system could be 

improved by considering other dimensionality reduction 

techniques such as Linear Discriminant Analysis (LDA) that 

are quite effective in HMM-based inversion [17]. Both 

systems could also be improved by incorporating visual 

information as input and including this additional information 

more intimately in the optimization process that will consider 

multimodal coherence between input and output parameters: 

lips are clearly visible and jaw is indirectly available in facial 

movements. 

This work tends to show that the inversion process should 

be “phonetic-aware”. Several reserves can however be made 

on these first experiments. 

The HMM system benefits from the phonotactics of the 

target language. Note however that French has a rich syllabic 

inventory: we can imagine that results obtained with 

languages such as Japanese, Polish or Spanish with various 

syllabic complexities may lead to different results. 

Global objective measurements may not entirely mirror 

phone-specific behaviour that may drastically impact 

subjective rating of generated articulation. The precision of 

the recovery is of course a highly important element for the 

evaluation but other elements such as the precision of the 

recovery of crucial elements such as vocal tract constrictions 

are naturally also very important. 

We have shown elsewhere [20] that viewers have various 

performance for tongue reading and that performance 

increases with training. Note also that the realism of motion 

may compensate for inaccurate detailed shaping: the 

kinematics of the computed trajectories could be more 

important for perception that the accuracy of the trajectories 

themselves. 

Finally, the results of this study will allow us to develop a 

tutoring system for on-line phonetic correction [21], in which 

recovered articulatory movements will be used to drive a 

virtual 3D talking head with all possible articulatory degrees-

of-freedom [22-23]. 
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Figure 4. Individual RMSE for each phoneme. 
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