
Can tongue be recovered from face?  

The answer of data-driven statistical models 

Atef Ben Youssef, Pierre Badin, Gérard Bailly
 

GIPSA-lab (Département Parole & Cognition / ICP), UMR 5216 CNRS – Grenoble University, 

961 rue de la Houille Blanche, D.U. - BP 46, F-38402 Saint Martin d'Hères cedex, France 
{Atef.BenYoussef, Pierre.Badin, Gerard.Bailly}f@gipsa-lab.grenoble-inp.fr 

Abstract 

This study revisits the face-to-tongue articulatory inversion 

problem in speech. We compare the Multi Linear Regression 

method (MLR) with two more sophisticated methods based on 

Hidden Markov Models (HMMs) and Gaussian Mixture 

Models (GMMs), using the same French corpus of articulatory 

data acquired by ElectroMagnetoGraphy. GMMs give overall 

results better than HMMs, but MLR does poorly. GMMs and 

HMMs maintain the original phonetic class distribution, 

though with some centralisation effects, effects still much 

stronger with MLR. A detailed analysis shows that, if the jaw / 

lips / tongue tip synergy helps recovering front high vowels 

and coronal consonants, the velars are not recovered at all. It is 

therefore not possible to recover reliably tongue from face. 

Index Terms: EMA, MLR, HMM, articulatory trajectory 

formation, GMM, HTK, HTS. 

1. Introduction 

Since more than a decade, the question whether tongue shape 

can be predicted from lips and face shape is still debated ([1], 

[2], [3], [4], [5]). So far, these studies were all based on linear 

modelling. The present study revisits this problem with more 

sophisticated learning techniques made possible by the 

availability of large corpora of articulatory data: Hidden 

Markov Models (HMMs, cf. [6]), Gaussian Mixture Models 

(GMM, cf. [7]), and compares the results with those obtained 

with linear models. The following sections present the state-

of-the-art in Face-to-Tongue inversion, the articulatory data 

used in the study, the three approaches explored, the 

evaluation of the results, and conclusions. 

2. State-of-the-art 

All the studies found in the literature used similar articulatory 

data: one point on the jaw and three points on the tongue 

recorded by ElectroMagnetoGraphy (EMA), simultaneously 

with face and lips movements captured by a marker tracking 

devices (12 or 18 Optotrak points in [1], 17 Qualisys points in 

[2], 25 Qualisys points in [4] and [5]). By exception, [3] use 

midsagittal contours traced from X-ray pictures: the tongue is 

represented by the parameters of a midsagittal articulatory 

model that fits its shape, while the face and lips are 

represented by those of another associated 2D model. A 

tongue model is also used in [4]. Note that tongue and face / 

lips data in [1] were not acquired simultaneously and had to be 

time aligned by Dynamic Time Warping (DTW). 

The size and nature of the corpus vary a lot: a few 

sentences repeated 5 times by one AE speaker (total ~400 

syllables) and 4 times by one Japanese speaker (total ~400 

syllables) in [1]; 69 CV syllables with /a, i, u/ and 23 

consonants, and 3 sentences repeated 4 times (total ~520 

syllables) by four AE speakers  in [2]; 45 frames selected at 

the centre of VCV syllables produced by one French speaker 

in [3]; 63 VCV with /a i u/ context uttered once by one 

Swedish speaker in [4]; 138 symmetric VC1{C2C3}VCV, 41 

CVC and 270 short sentences (total ~2500 syllables) uttered 

by one Swedish speaker in [5]. 

All studies use Multi Linear Regression (MLR) to predict 

tongue data from face data. The inversion is assessed by 

computing the Pearson product-moment correlation 

coefficient (PMCC) between measured and predicted data. In a 

jack-knife training procedure, the data are split into n parts of 

which (n -1) are used to determine the MLR coefficients, and 

to predict the n-th remaining part. The PMCC coefficient is the 

average over the n values of the correlation coefficients 

between obtained by the jack-knife procedure. The factor n is 

set to 4 or 5 in [1] and [2], to 1 in [3], and to 10 in [4] and [5]. 

Results are summarised in Table 1. The first line refers to 

tongue coils receptors: (Tx, Ty), (Mx, My) and (Bx, By) 

correspond to the horizontal and vertical midsagittal 

coordinates of the coils attached respectively to the tongue tip, 

the tongue middle, and the tongue back; moreover, G refers to 

the PMCC computed over the six coordinates. For [3] and [4], 

TB, TD, TT and TA (light blue in Table 1) refer respectively to 

the tongue Body, Dorsum, Tip and Advance control parameters 

of the articulatory tongue model. From their results, [1] claim 

that the tongue can be recovered reasonably well from facial 

motion; however, if we exclude jaw and lips coils from their 

predicted data, we find only medium correlations (0.65 – 

0.79). Medium to high correlations are found in [2], whereas 

lower correlations are obtained by [4], and also by [3] and [4] 

when using an articulatory model to track speech movements. 

On a larger corpus, [5] gets a still lower global correlation. 

Interestingly, tongue tip (either Ty or TT) appears to be the 

tongue region best recovered in all studies: [3] suggests that 

this may be ascribed to the fact that the jaw is an articulator 

with a strong influence on both labial and lingual shapes. 

Phonetic context has a clear influence on the results: [2] 

and [3] note that results are better for C/a/ syllables than for 

C/i/ and C/u/ syllables, while [4] describes a more complex 

pattern. Bailly & Badin [3] remark that articulations 

Table 1. Correlation coefficients for each EMA 

coordinate (bold for maximum and italics for 

minimum values) for the various studies. 

Tx Mx Bx Ty My By G
0,66 0,66 0,71 0,68 0,57 0,60 0,65
0,81 0,83 0,83 0,76 0,80 0,72 0,79
0,72 0,69 0,71 0,74
0,80 0,85 0,85 0,83

[5] 0,52
0,83 0,72 0,68 0,83 0,35 0,80 0,66
TA TB TD TT

0,26 0,54 0,40 0,75 0,49
[3] 0,37 0,71 0,64 0,74 0,62

MLR 0,58 0,61 0,58 0,78 0,55 0,39 0,59

HMM 0.71 0.70 0.72 0.79 0.68 0.55 0,70

GMM 0,83 0,82 0,80 0,87 0,81 0,63 0,80

[1]

[2]

[4]

 



associating a jaw/tongue/lips synergy along the axis 

closed/front (e.g. [i]) vs. open/back (e.g. [a]) are more 

accurately recovered than those requiring constrictions 

deviating from this synergy. In complement, [4] note that face  

information is insufficient to accurately predict a non alveolar 

vocal tract constriction, which is in line with [3]. 

The fact that the lowest mean correlation is obtained in the 

study with the largest corpus ([5]), in complement to the fact 

that correlations are higher for CVs in context than for 

sentences ([2]) suggests that linear methods may be efficient 

for restricted ranges of articulations, but less able to cope with 

the full range of speech movements. 

3. Articulatory data 

The three methods for Face-to-Tongue inversion that we have 

explored are based on the articulatory data already presented 

and used by [8] for acoustic-to-articulatory inversion, and by 

[9] for tongue reading experiments. This section gives a brief 

overview. 

The corpus uttered by a French male speaker consists of a 

set of VCV nonsense sequences, CVC real words, and 

sentences. At first, the audio signal was used to label the 

allophones in each utterance, using the corresponding phonetic 

transcription string, by a forced alignment procedure based on 

HMMs. The allophones centres were automatically chosen as 

the average between beginning and end of the phonemes. The 

36 phonemes were: [a ɛ e i y u o ø ɔ œ 
g v z ʒ m n ʁ l w ɥ j ə _ __], where _ and __ are internal short 

and utterance initial and final long pauses respectively. The 

corpus, from which long pauses were excluded, contained 

finally about 100,000 frames (~17 mn), corresponding to 5132 

phones and about 2500 syllables. 

The articulatory data have been recorded by means of an 

ElectroMagnetic Articulograph (EMA) that allows tracking 

flesh points of the articulators thanks to small electromagnetic 

receiver coils. Studies have shown that the number of degrees 

of freedom of articulators (jaw, lips, tongue, …) for speech is 

limited, and that a small number of carefully selected 

measurement locations can allow retrieving them with a good 

accuracy ([9]). In the present study, six coils were used: a jaw 

coil attached to the lower incisors (midsagittal coordinates: Jx, 

Jy); an upper lip coil  (ULx, ULy) and a lower lip coil (LLx, 

LLy ) attached to the boundaries between the vermilion and the 

skin; three coils attached to the tongue tip (Tx, Ty), middle 

(Mx, My), and back (Bx, By).Note that the EMA coordinates 

were low passed at 20 Hz, and down sampled at 100 Hz. 

4. Three inversion methods 

In this study, we considered that the face data consisted of the 

lip coils coordinates, complemented by the jaw coil 

coordinates, as Revéret et al. [10] have shown that jaw height 

can be predicted from face points. The tongue data consisted 

of the three tongue coils coordinates. 

4.1. Multi Linear Regression modelling 

Following the previous studies described above, we have first 

modelled the relations between face and tongue coordinates by 

a. Multi Linear Regression (MLR) model.  MLR allows 

finding the matrix A that ensures the optimal fit, i.e. the 

minimal Root Mean Square Error (RMSE) between measured 

and modelled parameters, as: 

 tFtT YAŶ  (1), 

where YtF(1:Nt, 1:nF) is the matrix of the nF = 6 measured face 

coils coordinates [Jx, Jy, ULx, ULy, LLx, LLy] for the Nt time 

instants of the testing set, and ŶtT(1:Nt, 1:nT) is the matrix of 

the nT = 6 tongue coils coordinates [Tx, Ty, Mx, My, Bx, By] 

estimated for the testing set. The linear model matrix A(1:nF, 

1:nT) is classically computed over the training set as: 

 
TT

TF

1

FF YY)Y(Y A  (2), 

where YT(1:N, 1:nT) and YF(1:N, 1:nT) are the measured 

tongue and face coordinates for the N time instants of the 

training set. The errors between ŶtT and YtT are presented in 

section 5. 

4.2. HMMs 

The present HMM modelling of speech production is similar 

to that performed by [8]. For the HMMs training, we 

considered the face and tongue features vectors (coils 

coordinates and first time derivatives) as two streams in the 

HTK multi-stream training procedure. Subsequently, the 

HMMs obtained were split into face HMMs and tongue 

HMMs. Following [8], various contextual schemes were 

tested: phonemes without context (‘no’), with left (‘L’) or right 

(‘R’) context, and with both left and right contexts (‘L-R’). 

Left-to-right, 3-state phoneme HMMs with one Gaussian 

per state and a diagonal covariance matrix were used. For 

training and test the HTK3.4 toolkit is used [11]. The training 

was performed using the Expectation Maximization (EM) 

algorithm based on the Maximum Likelihood (ML) criterion. 

A bigram language model considering sequences of 

phones in context was trained over the whole corpus. 

The face-to-tongue inversion is performed in two steps. 

The first step performs phoneme recognition, based on the 

face HMMs. The result is a sequence of recognised allophones 

together with the durations of each state of each allophone.  

The second step of the inversion aims at reconstructing the 

tongue articulatory trajectories from the chain of phoneme 

labels and boundaries delivered by the recognition procedure. 

As described in [12], the synthesis is performed in two phases: 

a linear sequence of HMM states is built by concatenating the 

corresponding phone HMMs, and then a sequence of 

observation parameters is generated using a specific ML-based 

parameter generation algorithm, using the software developed 

by the HTS group ([13]). Note that the state durations were not 

estimated by z-scoring as in [8], but by the recognition stage. 

Due to the limited size of the training sets, some phonemes 

in context were missing. In order to overcome this problem, an 

inheritance mechanism is used: each missing L-R model is 

replaced by the corresponding R model if it exists and by the 

context-independent model if this latter model does not exist 

either. 

4.3. GMMs 

The GMM was trained using the expectation–maximization 

(EM) algorithm using the joint face-tongue vectors as training 

set. The GMM-based mapping is then applied using the 

minimum mean-square error (MMSE) criterion, which has 

been often used for voice conversion [14] or in acoustic-to-

articulatory inversion ([7]). Moreover, to improve the mapping 

performance, the maximum likelihood estimation (MLE) was 

applied to the GMM-based mapping method. The 

determination of a target parameter trajectory with appropriate 

static and dynamic properties is obtained by combining local 

estimates of the mean and variance for each frame p(t) and its 

derivative p(t) with the explicit relationship between static 

and dynamic features (e.g. p(t) = p(t) – p(t-1)) in the MLE-



based mapping. At each time instant indexed by j, the feature 

vector is the concatenation of a variable number ‘2n+1’ of 

vectors of EMA coils coordinates [PCA(YF(J, 1:nF)); YT(j, 

1:nT); YT(j, 1: nT)], where  denotes first time derivation, and 

J = j+[-n:+n] denotes the time instant indices of the set of 

input frames used for contextual information. The number of 

input frames was varied from phoneme size (n=4, ~90 ms) to 

diphone size (n=8, ~170 ms), but the dimension ‘(2n+1) nF’ 

of the resulting vector was reduced to a fixed value of 24 by 

Principal Component Analysis (PCA). The number of mixture 

components was varied from 16 to 128.  

5. Evaluation 

Two criteria have been used to assess the inversion results: the 

RMSE between the measured and recovered coordinates, and 

PMCC, a less conservative criterion that measures only the 

level of amplitude similarity and of synchrony of the 

trajectories. Unless otherwise specified, a jack-knife training 

procedure was used, splitting the data into five parts of which 

four were used for training and the remaining one used for 

testing. The RMSE and PMCC were calculated over the five 

testing partitions – therefore the whole corpus –, excluding the 

long pauses at the beginning and the end of each utterance. In 

addition phoneme recognition rates were also used to assess 

the phoneme recognition step. 

5.1. Evaluation of the HMM-based inversion 

Table 2 that displays the RMSE and the PMCC for the HMM-

based inversion shows that the best results are obtained for 

phones with both right and left contexts. We also found that 

the use of state durations produced by the recognition stage 

permitted an improvement of about 4 % for both RMSE and 

PMCC, compared to the previously used z-scoring method. 

Besides, in order to assess the contribution of the trajectory 

formation to errors for the complete inversion procedure, we 

also synthesised these trajectories directly from the original 

labels, simulating a perfect face recognition step: from Table 

2, we can estimate that the contribution of the trajectory 

formation step to the overall RMSE amounts to about 60 % on 

average; note that it was nearly 90 % for acoustics to vocal 

tract articulation inversion experiments with the same methods 

on the same corpus in a way similar to  [8]. This shows that 

recognition from face is much less efficient than recognition 

from acoustics. This is confirmed by the results given in Table 

3 which shows that – as expected – the performance of face 

recognition is much lower than that of acoustic recognition, by 

30 % on average. 

Table 2. RMSE (mm) and PMCC for the HMM 

inversion with different types of contexts. 

Ctxt no L R L-R no L R L-R

RMSE 4,22 3,68 3,67 3,64 2,74 2,23 2,17 1,71

PMCC 0,55 0,68 0,68 0,70 0,85 0,89 0,9 0,94

Original phonesPhones from face

 

Table 3. Recognition rates (Percent Correct, 

Accuracy) for phoneme recognition from Face and 

phoneme recognition from Acoustics. 

Ctxt

Cor Acc Cor Acc Cor Acc Cor Acc

Face 58.91 47.86 71.28 46.93 71.03 44.41 69.46 53.71

Acoust. 88.90 68.99 92.61 78.14 93.66 80.90 87.12 80.83

no L R L-R

 

5.2. Evaluation of the GMM-based inversion 

Table 4 shows the RMSE and PMCC for experiments using 

different numbers of mixtures and context window sizes. The 

RMSE decreases when the number of mixtures increases. For 

128 mixtures, the optimal context window size is 110 ms. The 

most plausible interpretation is that a phoneme-sized window 

optimally contains necessary local phonetic cues for inversion. 

Using the extra MLE optimisation stage was found to improve 

the results by 5 %. 

Table 4. RMSE (mm) and PMCC for the GMM 

inversion (MLE) with different numbers of mixtures (# 

mix) and context window sizes (ctw). 

#mix

ctw RMSE PMCC RMSE PMCC RMSE PMCC RMSE PMCC

90 3.49 0.70 3.20 0.75 3.06 0.78 2.93 0.80

110 3.44 0.71 3.19 0.75 3.02 0.78 2.90 0.80

130 3.47 0.70 3.19 0.75 3.04 0.78 2.94 0.80

150 3.46 0.70 3.18 0.75 3.03 0.78 2.95 0.79

170 3.49 0.69 3.18 0.75 2.98 0.79 3.27 0.75

16 32 64 128

 

5.3. Evaluation of the MLR-based inversion 

The inversion based on the MLR model led to an RMSE of 

3.88 mm and a PMCC of 0.59, using the jack-knife evaluation 

procedure. In order to compare our results to those of the other 

studies, we made complementary experiments on reduced 

speech material: using one repetition of the symmetrical VCV, 

where C is one of the 16 French consonants and V = /i a u/ for 

training and the other repetition for testing, the RMSE was 

3.29 mm and the PMCC 0.84, which is comparable to the 

other studies. Interestingly, when adding the /y/ vowel – which 

is known to be a labial double of /u/ in French – to the /a i u/ 

set, the RMSE rises to 3.67 mm and PMCC decreases to 0.77, 

which confirms the difficulty to predict the tongue shape from 

the face shape for a number of articulations. 

6. Discussion 

This study has shown that the inversion methods based on 

HMM, GMM and MLR models give RMSE levels of 3.64, 

2.90 and 3.88 mm respectively, and correlations of 0.70, 0.80 

and 0.59. In order to set a reference for these results, we have 

also computed (using the jack-knife method) the RMSE 

restricted to the three tongue coils for the acoustic-to-

articulatory inversion using a similar approach (cf. [8] for the 

HMMs): the results were much better with the HMMs (RMSE: 

2.22 mm, PMCC: 0.89), which was expected, but a bit worse 

with the GMMs (2.55 mm / 0.86), which is surprising and 

unexplained. Table 5 shows that vowels /i a/ are rather well 

reconstructed with all three methods, while /y u/ are not. Note 

however the surprisingly good result for /u/ with HMMs, 

likely due to context effects. Note also that, if the coronal 

consonant /t/ is well recovered, the velar one /k/ is not. This 

illustrates the general tendency that coronals are relatively 

well estimated, while velars are much less, in line with [4]. 

Visual comparisons of the spaces covered by the coils 

recovered with those covered by the measured ones have 

 

Table 5. RMSE for individual phonemes (mm). 

i a u y p t k

GMM 2.21 2.44 2.98 3.95 2.77 1.76 4.81

HMM 2.85 2.85 4.03 4.46 3.59 2.54 5.25

MLR 3.42 2.88 3.91 5.77 3.72 2.81 5.50

 

 



revealed a very strong tendency for MLR to centralise the 

articulations. HMMs maintain spaces very close to the 

originals ones, while GMMs induce a small retraction of these 

spaces; this is a bit surprising, as the RMSE and PMCC 

estimations rank the GMMs before the HMMs. Figure 1 

illustrates this general centralisation tendency for the phones 

having a recovery error larger than 10 mm for at least one of 

the six tongue coils coordinates (138, 221 and 71 phones for 

MLR, HMM and GMM respectively). The light grey 

background corresponds to the space covered by the original 

5132 phones; the ellipses that represent the recovered phones 

with high errors (thin lines) are much closer to the centres of 

the corresponding originals spaces (light grey) than the 

ellipses that represent the corresponding original phones (thick 

lines). This illustrates the difficulty to predict important 

characteristics of tongue shape from face shape. 

In another attempt to analyse and interpret the results, we 

have constructed dendrograms, considering only the central 

frame of each phone, separating vowels and consonants. This 

was done based on the Mahalanobis distance between each 

phone class, using Matlab  functions based on one-way 

multivariate analysis of variance. Three classes were imposed 

for the vowels and nine for the consonants. The observation of 

the dendrograms has shown that: (1) for MLR, the classes for 

the predicted tongues are identical to those for the measured 

faces, which points to an erroneous recovery; (2) for HMM 

and GMM, the classes for the predicted tongues are identical 

to those for the measured tongues (with one exception for the 

vowels with the GMM), but with much lower distances (a 

dendrogram distance of 3 would have collapsed the 

consonants in 2 or 3 classes for the predicted tongues, leaving 

intact the 9 classes for the measured one), which also points to 

a low reliability of the inversion.  

7. Conclusions 

We have revisited the Face-to-Tongue inversion problem in 

speech. Using a much larger corpus than previously in the 

literature (except for [5]), we have assessed methods of 

different complexity and found that GMMs gave overall 

results better than HMMs, and that MLR did poorly. GMMs 

and HMMs can maintain the original phonetic class 

distribution, though with some centralisation effects that are 

still much stronger with MLR. Previous studies gave fairly 

good overall results, presumably because MRL cope well with 

limited material: we have shown that for larger corpuses, MLR 

gives poor results. As suggested by [2], more sophisticated 

context-sensitive techniques have improved the results fairly 

much. However, a detailed analysis has shown that, if the jaw / 

lips / tongue tip synergy helps recovering front high vowels 

and coronal consonants, the velars are not recovered at all. In 

conclusion, it is not possible to recover reliably tongue from 

face. 
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Figure 1: Dispersion ellipses of coils for phones with errors larger than 10 mm for at least one coil coordinate: original 

data (thick lines), estimated data (thin lines), superposed on original data points for all phones (light grey dots). Note the 

general back of the estimates. 

 


