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ABSTRACT

The paper presents the application of the trainable SFC
superpositional prosodic model to Chinese. Within the
SFC model, prosodic parameters (FO, syllabic lengthening)
are interpreted as the superposition of overlapping multi-
parametric contours. These contours are associated with
high-level prosodic features operating at different scopes,
such as tones, stress, prosodic boundary, part of speech of
words, etc. Each feature label corresponds to a
metalinguistic function (morphological, lexical, syntactic,
attitudinal...) which is represented by a neural network.
The observed contour is the sum of the outputs of the
corresponding neural networks. An analysis-by-synthesis
scheme is implemented for automatically learning. This
model works well in the concatenation of neighbored units.
The RMSE of FO prediction is 2.34st (referenced to
200Hz), correlation is 0.86. Perceptual experiments show
that the predicted prosody is quite appropriate and fluent.

1 INTRODUCTION

The fundamental problem for intonation analysis and
synthesis is that the variation of FO as a function of time is
the acoustic correlate of a number of linguistic prosodic
features. Two major classes of intonation models have
evolved in the past two decades.

Superpositional models interpret FO as complex patterns
resulting from the superposition of several components.
Fujisaki model [5] is the typical model in this class, which
decomposes FO into phrase component and accent
component. The parameters are associated with the
mechanism of pronouncing, which is quite relevant to the
macro-prosodic features. It has been tried on many
languages including Chinese [4, 9]. Due to the different
characteristics between tone language and non-tone
language, it is difficult to simulate tone events by accent
components. Besides, to automatically extract the phrase
commands and accent commands from observed FO is not
solved well. Even if the commands are labeled manually,
we are not sure to make them consistent in different
annotators. Other proposals [1, 6, 11] face also the
problem of the ill-posed problem of analysis, i.e.
decomposing an observed contours into elementary
contributions. The SFC [2, 7] implements a prosodic

model initially proposed for French [1] which introduces a
new model-constrained, data-driven method to generate
prosody contours with very few prototypical movements.
The SFC introduces an original training paradigm using an
analysis-by-synthesis framework  that iteratively
decomposes prosodic contours and builds the prosodic
model in the same time (see §2).

On the other hand, there are models that claim that FO
contours are generated from a sequence of phonologically
distinctive tones or categorically different pitch accents,
which are determined locally. The typical ones are the Tilt
model [10] in English, PENTA [12, 13] in Chinese. These
models focus on local events, but they ignore the trait of
prosody on a big unit, such as on phrase or clause.

Chinese is a tone language with high-level, low-rising,
low-falling, high-falling and neutral tones. The tone events
are very important to the prosody of an utterance. Each
syllable that is the carrier of a tone and a basic meaningful
phonetic unit normally is an individual target of prediction.
However, sentence declination and phrasing are important
as well. In this paper a superposed model is proposed to
model Chinese prosodic contours, and the sequences of
tones and phrases are both considered.

2  DESCRIPTION OF THE MODEL

SFC considers that the prosodic contour is the contribution
of the prosodic features on different scope. We suppose
that each feature effect on the prosody respectively and
independently. And the contribution of a given feature is a
function of scope or domain. The predicted/target contour
is the superposition of corresponding functions using an
appropriate scale (logarithmic for FO and syllabic
lengthening).

First of all, we collect the most important prosodic layers
and assign the feature labels for each layer. SFC devotes a
group of neural networks to represent a layer. Each neural
network represents each feature label respectively within
the local layer. The output of a layer is the output of the
neural network of the corresponding feature occurring in
the sentence. The predicted contour is the sum of each
layer’s contributions. The synthesis and analysis
flowcharts are showed in Figure 1: they are combined in
order to train contour generators. Each neural network



produces characteristic prosodic cues for each syllable as a
function of the scope the function it implements, i.e. the
input of a neural network is the scope of the units labeled
by the prosodic feature (see Figure 2). The output of a
neural network is a series of three-point FO vectors and a
lengthening factor for the current syllable. Each vector is
the local neural network’s contribution to the observed FO
on beginning, middle and end of the syllabic nucleus
together with the z-scored syllabic duration. The reference
syllabic duration is computed as a weighted sum of a
constant duration (tendency to isochronous syllables) and
the sum of the mean durations of its phonemic constituents
(long/short segments result in longer/shorter syllables).
SFC uses SNNS [14] to implement these neural networks.
So one neural network will output one stable pattern that
just varies with different time domains [see an analog
approach in 8]. The number of neural networks
determinates the diversification of the predicted contours.
If we just apply the few most important features in this
model, few materials are enough to get the functions of the
features. It is the advantage of this model to need less data.
All the prosodic features have the same influence on the
predicted contours in the same context environment. So all
the sentences are decomposed and put into training
together. By back-propagation, the global solutions are
worked out within the training set.
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Figure 1: Analysis-by-synthesis loop. Each contour
generator implement a given metalinguistic function
parameterized by its scope. SFC generators are trained
using patterns built by adding to what they already
predict a proportion of what they all together do not still
predict, i.e. the difference between observed and predicted

contours at the iteration considered. The learning loop
stops when this difference do not diminish significantly.
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Figure 2: M is a contour generator(neural network) that
converts linear ramps anchored on the boundaries of unit
A and B into prosodic trajectories(F1..3 C).

3 SPEECH MATERIALS

Since this model doesn’t need much data for training. We
design 100 Chinese sentences spoke neutrally by a female.
The texts are selected by greedy algorithm to cover the
most phonetic and prosodic events. The first 20 sentences
are around 50 syllables long, whereas the next 80
sentences are only 10 syllables long. The pitch contours
are automatically calculated by Praat [3]. Some serious
errors are corrected by hands. Segmentation is first
determined by an HMM system, then corrected manually.
Characteristics of the metalinguistic functions (tone types,
phrasing... together with their scopes) are labeled by the
professional annotators. 40 of the sentences were picked
out stochastically for training, and the rest are for testing.

4 IMPLEMENTATION AND
EVALUATION

In the implementation, we design four prosodic layers, a
tone layer (or accent layer for English), a word layer, a
phrase layer and a clause layer. Figure 3 is an example of
the synthesis of prosodic contours.

Chinese has four basic tones and one neutral tone. So there
are 4 individual tone markers (C1, C2, C3, C4,) and 16
coarticulated tone markers (C11, C12,..., C44) in the tone
layer. To make the superposition more clear, we distribute
the tone elements in two layers (Tonel and Tone2 layers
in Figure 3. In Figure 4 the first column shows the single
tones’ patterns. The others are the coarticulated tones’
patterns. We can see that one tone followed by different
tones has different patterns. These patterns are
automatically generated by 20 small neural networks. In
each pattern, the first half is the model of preceding tone
influenced by different following tones. It retains the shape
of original individual tone pattern but changes a little. The
last half is the effect of preceding tone on the following



tone. It is waves up and down about zero. The
superposition of two overlapped tone layers is the
contribution of tone events to pitch contours. As for the
neutral tone, it is too flexible to model it as a fixed pattern.
Usually people don’t care about it on perception. It can be
interpolated by the preceding tone and following tone with
a spline function or syllables carrying it just considered as
part of the scopes of the adjacent non-neutral tones.
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Figure 3: Prediction of a melodic contour as the
superposition of the contributions of four layers. The
dashed line is the observed F0. The solid line is the
synthesized F0.

In word layer, word boundaries are marked. We have
considered marking the part of speech of each word and
the syntactic relation of neighbored words. But it just
improves the prediction a little and makes the layer much
more complicated. A single word boundary is enough in a
small database. In the same way, there are phrase
boundaries for the phrase layer, and declarative clauses
constitute the clause layer. If there are some other
utterances with different modes in the future, we can think

about adding some more modal markers in the clause layer.

The melodic patterns of Word Boundary, Phrase
Boundary and Declarative Clause are illustrated in Figure
5. All of them are declining curves. It is consistent with the
fact that the pitch contour declines within a phrase and
clause for a statement.
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Figure 4: The individual and concatenative tones’
patterns. They are the functions of Neural Networks in the
Tone layers.

Figure 5: The melodic patterns for Word Boundary,
Phrase Boundary and Declarative Clause in time domain.

In tone layer, there are 20 tone functions including 4
individual tones and 16 concatenative tones. There is one
function respectively in word layer, phrase layer and
clause layer. Each function is a neural network that is a
TD-NN with a hidden layer realized by SNNS [14]. So
there are 23 networks. They are learning together to get a
global minimum error. For the 40 sentences of training set,
the RMSE is 2.09st, correlation is 0.90. For the 60
sentences of test set, the RMSE is 2.34st, correlation is



0.86. We use these generated prosody contours to
resynthesize sound files by PSOLA. They sound fluent and
acceptable, but a little regular since no syntactic cues are
implemented for the moment (see Figure 6): if the melodic
contours are nicely predicted, rhythmic contours are
expected to be more influenced by word/phrase chunks
and syntactic hierarchy.
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Figure 6: Prediction of a rhythmic contour as the
superposition of the contributions of four layers. The light
line is the observed F0. The solid line is the synthesized
rhythm.

CONLUSIONS

This model can implement the training and prediction
automatically. The global optimal solution is obtained
within the training set. The experiments showed that the
difference of the prediction between training set and test
set is very small. The patterns of each prosodic feature
give the contribution to the target contour in different
scope. These patterns are consistent with our prior
knowledge. In a big unit, the FO contour declines from the
beginning to the end in time domain. Since the patterns
only depend on the length of scope, the synthesized
contours from this model vary in the corresponding scope.
They are very stable and fade. The prosody sounds flat
and neutral. Because it is not a parameterized model, we
can’t product new prosodic events as the Fujisaki model
by adjusting parameters. If we want to make the output
contour more flexible, we must add more layers and more
prosodic markers. Signaling syntactic structure is the first
work in mind. We also may add some modal markers
(Question, Imperative, Exclamatory) in the clause layer to
distinguish different moods. We can compare the
difference of neutral and emotional utterance and try to
add an emotion layer. These are the further research that
we will do next.
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