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Abstract

This paper introduces a new model-constrained and data-driven system to generate prosody from metalinguistic

information. This system considers the prosodic continuum as the superposition of multiple elementary overlapping

multiparametric contours. These contours encode specific metalinguistic functions associated with various discourse

units. We describe the phonological model underlying the system and the specific implementation made of that model

by the trainable prosodic model described here. The way prosody is analyzed, decomposed and modelled is illustrated

by experimental work. In particular, we describe the original training procedure that enables the system to identify the

elementary contours and to separate out their contributions to the prosodic contours of the training data.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Intonation; Prosodic modelling; Automatic generation of prosody
1. Introduction

It is a commonly accepted view that prosody
crucially shapes the speech signal in order to ease

the listener�s task of decoding linguistic and para-

linguistic information. In the framework of auto-

matic prosody generation, we aim to compute

adequate prosodic parameters carrying that infor-

mation. We thus consider here prosodic models
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that are able to automatically compute prosodic

parameters from linguistic (more precisely from

syntactic, phonological and phonotactic) specifica-
tions in the context of speech synthesis. While a

few systems dispense with a phonetic description

of prosody by incorporating the linguistic specifi-

cations directly into the selection process (Taylor

and Black, 1999), most speech synthesis systems

use specific prosodic models that compute funda-

mental frequency (f0), phoneme durations or

energy profiles that are used to alter prosody of
selected original speech units and also to select

them (Fujisawa and Campbell, 1998).
ed.
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1 Note that the domain of action of the prototypical prosodic

contour—and thus of the function it implements—is not

restrained to the focus of action but comprises its domain of

influence. Anchor points further specify key points such as the

focus and span.
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These prosodic models are generally built using

machine learning with annotated corpora. Syntac-

tic, phonological, phonotactic and phonetic

descriptors are collected for each unit (generally

the phoneme or the syllable). Model-based (e.g.,
regression trees, HMMs, neural networks) or sam-

ple-based (e.g., vector quantization, contour selec-

tion) mapping tools are then used to achieve the

best phonetic prediction according to a distance

metric, generally root mean square (RMS) error.

Prediction is generally performed with separate

trainable models for f0 (Ljolje and Fallside, 1986;

Scordilis and Gowdy, 1989; Sagisaka, 1990;
Traber, 1992), for phoneme durations (Klatt,

1979; O�Shaughnessy, 1981; Bartkova and Sorin,

1987; Riley, 1992; van Santen, 1992) and, more

recently, for intensity profiles (Trouvain

et al., 1998). With the development of corpus-

based synthesis techniques and powerful mapping

tools (Campbell, 1992; van Santen, 2002), multi-

parametric prosodic models (Mixdorff and Jok-
isch, 2001; Tesser et al., 2004) now tend to use

general-purpose and theory-neutral tools. Most

trainable prosodic models consider syntactic, pho-

nological, phonotactic and phonetic descriptors to

simply be possible factors influencing the prosodic

realization of a certain phoneme given the speaker

and the communication situation (which is often

reading). The mapping tools are therefore respon-
sible for evaluating the contributions of these fac-

tors and their interactions. Models of interaction

range from additive, multiplicative, sum-of-prod-

ucts (van Santen, 1992) models to more complex

non-linear models such as neural networks.

When processing an utterance sequentially, some

models also sometimes incorporate intermediate

predictions made for earlier units (e.g. through
recurrent connections as in Traber, 1992). These

models are in a sense theory-neutral since the

interaction is solved implicitly at a quantitative

level by intensive training of the mapping tools

and not by high-level comprehensive models of

intonation (Bailly, 1997) that specify which fac-

tors influence the prosodic realization of each

phoneme and what is effectively the scope of their
action.

We present here a trainable prosodic model, the

SFC (superposition of functional contours) model
(Holm and Bailly, 2002; Bailly and Holm, 2002),

which implements a theoretical model of intona-

tion. This model, initiated by Aubergé (1992,

1993), promotes an intimate link between phonetic

forms and linguistic functions: metalinguistic func-
tions acting on different discourse units (thus at

different scopes) are directly implemented as global

multiparametric contours. These metalinguistic

functions refer to the general ability of intonation

to demarcate phonological units and convey infor-

mation about the propositional and interactional

functions of these units within the discourse. Our

strong hypotheses are that (1) these functions are
directly implemented as prototypical prosodic con-

tours that are coextensive with the unit(s) to which

they apply,1 (2) the prosody of the message is

obtained by superposing and adding all the con-

tributing contours.

The SFC is presented in the following sections.

Section 2 describes the phonological model that

specifies which metalinguistic functions are to be
realized by prosody and on which phonological

units they apply. This deep phonological model

provides symbolic inputs. Section 3 presents the

phonetic model used to describe observable pro-

sodic continuums. The phonetic model provides

a constant number of parametric targets for each

syllable of the analyzed utterances. Section 4 de-

scribes the model that maps symbolic inputs deliv-
ered by the phonological model to parametric

outputs delivered by the phonetic model via a

superposition of prototypical parametric contours.

The mapping model essentially consists of training

several contour generators (one per metalinguistic

function) using an original analysis-by-synthesis

loop. A block diagram showing the different steps

of the training process and the generation proce-
dure is presented in Fig. 1. Section 4.3 summarizes

the experimental results obtained with different

linguistic material.
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Fig. 1. Training the SFC consists in decomposing prosodic

skeletons (stylized prosodic contours) of a set of training

utterances into overlapping multiparametric elementary con-

tours associated with the metalinguistic functions they recruit.

One contour generator is responsible for generating multipara-

metric elementary contours associated with one metalinguistic

function given its scope (the phonological units the function is

applied to). The prosodic flesh obtained by subtracting the

prosodic skeleton to the original prosody is stored into the

characteristics of the acoustic segments used by the concatena-

tive speech synthesizer. The generation process consists simply

in the selection of the appropriate contour generators imple-

menting the various metalinguistic functions recruited by the

discourse and overlap-and-add them with the prosodic flesh of

the segments used. Note that the generation process is also used

during the training phase for decomposing prosodic skeletons

into multiparametric elementary contours (see Fig. 6 and

Section 4.2).
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2. The phonological model

As stated by Cutler and Norris, ‘‘prosody is as
much involved as any other aspect of linguistic

structure in speakers� efforts to do their part in

achieving this goal [maximizing the successful

transmission of the message]. . . both salience and

segmentation figure in prosodic contributions to

realization of the speaker-listener contract’’ (Cut-

ler and Norris, 1991, p. 267). Other contributions

of prosody to the ease of discourse interpretation
include, of course, communicative values associ-

ated with each salient or segmented unit such as

contrastive emphasis on phonemes or syllables,

lexical stress, emphasis on words,2 sentence modal-

ity or speaker�s attitude. Prosody is also a means of
2 The most salient feature of these last three different focus is

a pitch accent on the stressed syllable. Brichet and Aubergé

(2004) have shown however that pitch contours around this

landmark are quite different according to the focus type.
voluntarily or involuntarily signaling our cognitive

activity, our psychological and emotional states

as well as idiosyncratic and sociolinguistic

information.

But, as stated by Hirst (2003), most current
accounts of prosody function within prosodic

annotation systems deal with prominence and

boundaries (Wightman et al., 2000) aggregating

often under identical symbols very different func-

tions. Within the framework of non-linear phonol-

ogy, prominence and boundaries apply and delimit

embedded constituents such as rhythmic, tonal

and intonation units. This strict layer hypothesis
(Selkirk, 1984; Nespor and Vogel, 1986) is how-

ever questioned by a number of studies that

claim the necessity of adding scopes/domains to

the labeling of prominences and boundaries in order

to account for the embedded (Marsi et al., 1997) and

possibly recursive phonological hierarchy (Hirst

et al., 2000; Schreuder and Gilbers, 2004).

Instead of considering a posteriori the mapping
between linguistic units and constructs of prosodic

phonology (both being determined separately), we

consider on the contrary that the general ability of

prosody to highlight and segment speech units is

used mainly to encode discourse structure. The do-

main of action of prosody within the SFC model is

the linguistic domain and the linguistic structure

provides prosody with the specification of its tasks
as triplets (metalinguistic function, units, impor-

tance). We consider in the following that all meta-

linguistic functions involved in the discourse have

the same importance but will comment on the pos-

sible use of the third member of the triplet as a

term of gradience in Section 6.

Note finally that SFC does not make any use

of an intermediate representation of prosody.
Prosody is assumed to directly encode deep pho-

nological structure by phonetic events—here over-

lapping multiparametric contours—without any

intermediate surface representation (see Hirst,

2003, for a further consideration of these levels

of prosodic analysis).

2.1. Metalinguistic functions

As discussed above, metalinguistic functions,

including segmentation, hierarchisation, emphasis
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and attitude—apply to units of variable sizes (dis-

course, sentence, clause, group, word, syllable,

phoneme). The set of these metalinguistic func-

tions (see intonation and its uses in Bolinger,

1989) is quite open: the examples given in the fol-
lowing give possible candidates for such functions

and provides the reader with concrete examples

from the current implementation of the model.

The functions we have considered so far are: pro-

sodic attitudes applied to sentences (Morlec et al.,

2001), dependency relations applied to syntactic

constituents of read text (Morlec et al., 1998) or

operands/operators of spoken math (Holm et al.,
1999), cliticization typically applied to determiners

and auxiliaries (Bailly and Holm, 2002), narrow

focus applied to words (Brichet and Aubergé,

2004) and, more recently, tones applied to syllables

in Mandarin Chinese (Chen et al., 2004).

In our work, metalinguistic functions responsi-

ble for giving cues to the syntactic structure of sen-

tences in the discourse signal dependency relations
between chunks (Bailly, 1989; see also Bachenko

and Fitzpatrick, 1990; Pynte and Prieur, 1996,

for dependency structure analysis and prosodic

correlates of attachment/branching of syntactic

constituents). We consider four kinds of depen-

dency relations that may link constituents (words,

groups, phrases, clauses): left dependency (DG,

dépendence à gauche) linking the head of a sub-tree
(the ‘‘governor’’ or ‘‘mother’’) with its immediately

preceding dependent unit (‘‘sister’’), right depen-

dency (DD, dépendence à droite) linking the gover-

nor with its immediately following dependent unit,

interdependency (IT) linking two adjacent units

headed by the same governor and independency

(ID) when none of the preceding simple relations

can be identified. The syntactic parse we use is thus
very simplified and can be accomplished using

a chink and chunk technique (Balfourier et al.,

2002; see also Di Cristo et al., 2000, for the use

for syntax/prosody mapping). For instance, the

sentence labelled in Fig. 2 is parsed as in (1.a), is

rewritten as in (1.b) and is finally processed (once

the first two right dependencies linking clitics to

chunks have been erased) as in (1.c).

(1.a) [S[CP Dès[CP que [VP [NP le tambour] bat]],]

[VP [NP les gens] accourent]]
(1.b) [[[[Dès]DD[[que]DD[[le tambour]DG[bat]]]]IT
[[les gens]DG[accourent]]

(1.c) [[Dès que le tambour]DG[bat]]IT[[les gens]DG

[accourent]]

Translation: �As soon as the drum starts, the
people rush.�

The suggested list of metalinguistic functions is

not extensive and the SFC is not tied to a partic-

ular linguistic theory of discourse: the SFC is

tied to a phonological model that supposes that

the selected metalinguistic functions are directly

implemented as global multiparametric contours.
These functions may apply to a single unit (e.g.,

modality operates at the level of the sentence, nar-

row focus can operate at the level of the word)

but they are usually applied to two units (e.g.

dependency relations between syntactic constitu-

ents, determiner and determined for cliticization,

operator and operand for spoken math). For

now, the number of units is limited to two, with
the restriction that the units should be adjacent.

This reduces to three the number of anchor points

of the functional contour that will be applied to

the units: beginning of unit 1, boundary between

unit 1 and unit 2 and end of unit 2 (see Section

4.1 and Fig. 4 for more information on how these

landmarks are used as inputs for contour genera-

tors). There is, however, no technical reason for
these restrictions, and the number of units could

be increased by adding additional anchor

points.

2.2. Annotating corpora

SFC is a trainable prosodic model. The phono-

logical model specifies qualitatively which metalin-
guistic functions are considered and on which

discourse units they act. Training of SFC consists

of quantitatively determining how these specifica-

tions are implemented by prosodic contours. Cor-

pora should be designed and recorded in such a

way that sufficient material is available to gather

enough tokens of each metalinguistic function

applied to discourse units of various sizes. The
corpora are often situation-specific and always

speaker-specific. Note however that prototypical

functional contours provided as a by-product of



Fig. 2. A speech sample (�As soon as the drum starts, the people rush.�) for the SFC, labelled using Praat. The [:FF] tag delimits the

beginning and end of units. Other tags are used to label the metalinguistic functions [:DC] for declarative sentence, [:IT] between

clauses, [:DG] between nominal and verbal groups.

3 Note that this prosodic skeleton can be enriched within the

SFC framework by other multiparametric contours as long as

they characterize each syllable by a constant number of

parameters. Candidate parameters are loudness and spectral

tilt. We also currently working on the prediction of head

movements sampled at syllable onsets.
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SFC training (see Section 4) may constitute a valu-

able tool (see Section 6) for cross-speaker and

cross-language studies.

Building corpora. We constructed several

corpora, some of which were constructed by sen-
tence-generators to exclusively study the imple-

mentation of specific metalinguistic functions (as

in Morlec et al., 2001; Holm et al., 1999), and

others of which were constructed by greedy algo-

rithms (Chen et al., 2004) to ensure optimal cov-

erage of the samples. The number of free

parameters of the selection problem is small: typ-

ically a few metalinguistic functions applied to
units from one to several syllables in length.

The generalization abilities of the SFC model

are quite good (see Fig. 5) and a few dozen sen-

tences are generally sufficient to have comparable

prediction errors between training and test sets:

100 sentences in Chen et al.�s experiment (2004),

104 spoken maths in Raidt et al.�s comparative

study (2004).
Technical issues. Praat (Boersma and Weenink,

1996) is used to edit phonological scores (functions

and units) and phonetic content (see Fig. 2). Label

files are first generated using automatic segmenta-

tion, syllabification and syntactic parsing using a

dependency grammar (Bailly, 1989) and then, if

required, corrected by hand.
3. The phonetic model

We analyze and generate multiparametric pro-

sodic contours, i.e. we model the melody and

rhythmic organization of the utterance. These
contours capture the prosodic characteristics of

the syllables of each utterance. Each syllable is

characterized by a melodic movement (stylized

by three F0 values on the vocalic nucleus as

initially proposed by Tournemire, 1997) and a

lengthening factor (that will stretch or compress

all phonemic segments of that syllable using

z-scoring, see below). These four values gathered
for all syllables of the utterance build melodic

and rhythmical contours, which constitute a sort

of prosodic skeleton of the utterance.3 Pursuing

this metaphor of the body, this prosodic skeleton

is articulated, i.e. built by elementary prosodic

segments that are superposed. The phonetic model

is responsible for giving flesh to this prosodic



4 In fact the raw f0 contour of each vocalic nucleus is first

smoothed by a parabolic approximation that is then sampled.
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skeleton, i.e. computing final prosodic parame-

ters (f0 contour, phone durations) from the

skeleton.

The generation process is thus a two-step proce-

dure that first shapes the prosodic skeleton by
computing the prosodic characteristics of each syl-

lable and then computes the prosodic parameters

according to parameter-specific phonetic models.

Conversely, the analysis process first computes

the prosodic skeleton from observable prosodic

contours. This operation is straightforward. The

analysis process then further decomposes the

prosodic skeleton into contributing elementary
prosodic segments. This operation is not straight-

forward and is described and illustrated in Section

4.2.

3.1. Rhythm

Skeleton. Barbosa and Bailly (1994) propose a

multilevel timing generation process similar to
that in Campbell (1992) but use a different Rhyth-

mical Unit (RU). Instead of considering onsets of

the phonological syllable as delimiting the RU, we

consider that speech is paced by beats at the per-

ceptual center (Marcus, 1981) of each syllable.

This distinction, which concerns only the defini-

tion of a landmark for each syllable, is not impor-

tant here, and the SFC can operate with any
definition of RU. Each RU is characterized by a

lengthening/shortening factor equal to the quo-

tient between the duration of the RU and the

expected RU duration. This expected duration

DRU = (1 � a)
P

dSi + aD0 is a weighted sum of

(a) the sum of the mean durations dSi of its con-

stituent segments Si and (b) an average RU dura-

tion D0 reflecting a tendency to isochrony. This
weighting scheme is compatible with the so-called

quantal effects introduced by Fant and Krucken-

berg (1996) that exhibit a quasi-linear relationship

between the average syllable duration and the

number of phones, with the slope and intersect

being language- and speaker-specific. The para-

meters a and D0 can be optimized using an

extensive search procedure minimizing the recon-
struction error of the entire training database

by the SFC. Typical values are a = 0.6 and

D0 = 190 ms.
Flesh. A z-score procedure is then applied in

order to distribute the duration of each RU among

its constituent segments. Pause insertion is

obtained by saturating the lengthening factor of

the RU. The pause duration is computed as the
duration loss due to this saturation (for further

details please refer to Barbosa and Bailly, 1997).

Pause is here an emergent phenomenon that results

from large lengthening factors; it does not influ-

ence a priori the determination of the constituents

of the phonological structure.
3.2. Melody

Skeleton. A first decomposition of the f0 curve

is performed using a stylization procedure similar

to MOMEL (Hirst et al., 1991) that factors a

smooth macromelodic component and a micro-

prosodic component consisting of residual devia-

tions due to the segmental substrate. Contrary to

MOMEL stylization, the procedure incorporates
an a priori synchronization with the segment

string: we stylize the macromelodic component

by sampling the logarithm of f0 at 10%, 50% and

90% of the duration of the vocalic nucleus of each

syllable.4 The mapping model is charged with the

prediction of this crude approximation of the

melodic component, i.e. the melodic skeleton of

the utterance.
Flesh. Concatenative synthesis provides a way

of giving flesh to this skeleton. The same styliza-

tion process is in fact performed for the utterances

from which the segments of the dictionary are ex-

tracted and the residual component (stylization

errors + microprosodic component) is stored, re-

trieved and added at synthesis time (see initial

proposal in Monaghan, 1992). Note that this
generation process is entirely compatible with a

superpositional model. Fig. 3 shows how differ-

ences between the original f0 curve and the styliza-

tion are memorized by the segment dictionary,

warped and added at synthesis time to the melodic

skeleton. All phonetic details such as jitter or



Fig. 3. Illustration of giving flesh to the melodic skeleton of a French utterance (Voilà, des bougies! �Look—candles!�). Top: original f0
curve with stylization superposed. Middle: melodic skeleton predicted by the SFC model trained using 235 such utterances (first

training loop). Bottom: final predicted f0 curve with melodic skeleton also superposed. Microprosodic details such as bursts in plosives

(/d/ and /b/ here) or f0 dips in the initial /v/ are reproduced by adding deviations between original f0 curve and stylization to the

predicted melodic skeleton (displayed in the top panel).
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microprosodic f0 movements due to consonantal

perturbations (e.g., bursts, f0 dips due to drops

in supraglottal pressure in case of constrictions)

are restored by this simple additive scheme. A sim-
ilar proposal was also introduced for synthesis-by-

rule by adding a microprosodic component to the

Fujisaki model (Bailly, 1989).
4. The mapping model

Considering prosodic contours as the superpo-
sition of elementary contours is a many-to-one

ill-posed problem that requires regularization

schemes. The Fujisaki model (Fujisaki and Sudo,

1971), for example, imposes constraints on the

shape of these elementary contours (exponential

responses of second-order filters to impulses and

square waves). The SFC model does not impose

such low-level constraints, but relies only on the
consistency between different instantiations of the

same discourse function within the corpus. These

instantiations are supposed to be performed by

so-called contour generators.
4.1. Contour generators

Each metalinguistic function is encoded by a

specific prototypical contour anchored to the
scope of that function (i.e. the extent of the units

to which the function applies) by a few land-

marks, i.e. the beginning and end of the unit(s)

concerned with this function. As the metalinguis-

tic function can be applied to different scopes, it

is characterized by a family of contours, a set of

prosodic clichés (Fónagy et al., 1984). General-

purpose contour generators have been developed
in order to be able to generate a coherent family

of contours indexed only by their scopes. These

contour generators are for instance implemented

as simple feedforward neural networks (a) receiv-

ing as input linear ramps giving the absolute and

relative distance of the current syllable from

the closest landmarks of the scope and

(b) delivering as output prosodic characteristics
for the current syllable (see Fig. 4). Each

network has very few parameters (typically

four input, 15 hidden and four output units =

4 * (15 + 1) + 15 * (4 + 1) = 139 parameters) to



Output parameters : 

Neural network (Contour generator) : 

Input parameters : 

Syllables : 

M

f 
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6 5 4 3 2 1 3 2 1
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Fig. 4. Example of the implementation of a function M by a contour generator on two units of respectively six and three syllables. The

generator computes four output parameters per syllable (three f0 values and a lengthening factor; see Section 3). Each syllable is

characterized by four input parameters that specify the relative and absolute position of that syllable within the scope. The input

parameters are thus series of linear ramps varying between the extreme values 1 and 10. From bottom to top: relative distance to the

end of the scope; relative and absolute distance to the beginning/end of the unit to which it belongs.
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be compared with the thousands of parameters

generally necessary to learn the complex mapping

between richer and more heterogeneous phono-
logical and phonotactic inputs and prosodic

parameters such as those in (Traber, 1992; Mix-

dorff and Jokisch, 2001). Our contour genera-

tors implement a so-called Prosodic Movement

Expansion Model (PMEM) that describes how

prototypical contours develop according to the

scope (see for example PMEMs of different meta-

linguistic functions in Fig. 5): the PMEM defines
how a prosodic cliché develops on a unit accord-

ing to the size of the unit. We update here the

concept of dynamic lexicons as proposed by Au-

bergé (1992). Note that the choice of the neural

network implementation of the PMEM is not

the only choice, but it offers an efficient learning

paradigm (see next section). The final multipara-

metric prosody is thus obtained by superposing
and adding the many functional contours pro-

duced by a few independent contour generators

(typically three or four). Those inputs are param-

eterized according the variable scopes of the

metalinguistic functions involved in the utter-

ance.

4.2. Training contour generators

The problem is now to feed our contour gener-

ators with samples of elementary multiparametric
contours extracted from raw training data. In the

case of a superpositional model, the problem is

often ill-posed since each observation is in general
the sum of several contributions, i.e. here the out-

puts of contributing contour generators. We thus

need extra constraints to regularize the inversion

problem, eventually complemented by restrictions

on the number and positioning of contours using

a priori linguistic information. For example, inver-

sion of the Fujisaki model (Narusawa et al., 2002)

is facilitated by the very different characteristics
of the phrase and accent command filters. In our

phonetic model, the shapes of the contributing

contours are unconstrained a priori, an important

characteristic since we have shown that contours

may potentially have complex shapes (e.g. those

encoding attitudes at the sentence level as in Fig.

5 or tones as in Fig. 11). Note, however, that noth-

ing in the following framework forbids us from
adding more constraints (such as imposing expo-

nential shapes as in the Fujisaki model) on those

contours. Imposing also the shape of some con-

tours can also ease the emergence of other

contours. Here the shapes of the contributing con-

tours simply emerge as a by-product of an inver-

sion procedure. This inversion procedure tunes

contour generators so that the prosodic contours
predicted by overlapping and adding their contri-

butions in the discourse best predicts observed

realizations. The main analysis-by-synthesis loop



Fig. 5. Expansion of f0 movement for different metalinguistic functions applied to units with increasing size. These expansions are

synthesized by trained contour generators. Contours with dotted lines are extrapolated, i.e. no exemplars are present in the training

corpus. Top: modalities and prosodic attitudes in French: (a) assertion, (b) question, (c) incredulous question, (d) statement of an

obvious fact. Please note that contour generators learn the laws governing the variation of the global slope of the contours and final

movements of that contours thanks to the absolute and relative linear ramps (see Fig. 4): the relationship between global slope and

amplitude of the final melodic movement versus sentence length may be non-linear. Bottom: linking two constituents (abscissa/

ordinate: size of first/second unit): (e) between a governor and its left dependent when considering a dependency tree (see Section 2.1)

and (f) between a clitic word and the following content word (e.g. f0 dip on the determiner preceding a noun).
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is described in Fig. 6a. SFC generators are trained

iteratively. At iteration n,

1. Generators predict functional contours for all

units of the corpus using the parameterization

learnt at the previous iteration n � 1. Genera-

tors at first iteration predict null contours, i.e.

output zero values.
2. For each utterance, synthetic prosodic contours

are then computed by superposing the func-
tional contours associated to all units of the

utterance.

3. For each utterance, these predicted contours are

compared to the observed contours. The predic-

tion error is computed and distributed among

the contributing functional contours. In the



Fig. 6. (a) Analysis-by-synthesis loop. SFC generators are trained using patterns built by adding to what they already predict a

proportion of what they together still do not predict, i.e. the difference between observed and predicted contours at the iteration

considered (see Section 4.2 for detailed comments on the training loop). The learning loop stops when this difference no longer

diminishes significantly. (b) Typical evolution of the reconstruction error (top) and training time on a standard Pentium III computer

(bottom) for a sample corpus (1000 utterances; six contour generators) as a function of the number of iterations. Convergence is

obtained within a few dozen iterations.
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Fig. 7. Optimal decomposition predicted for the f0 skeleton for one utterance (�His/her pretty wolves will know how to devour your

nice urchins.�) at iterations 1 and 6. For each caption: top: predicted f0 skeleton superposed with original one; bottom: elementary

contours predicted for each discourse function used to encode the linguistic structure of the utterance; the prediction is obtained by

superposing and adding these elementary contours. Horizontal axis represents the syllable count and all f0 values are those sampled at

10%, 50% and 90% of the vocalic nucleus. These values are connected with plain lines for sake of readability. Although decomposition

structure is almost determined at iteration 1, successive iterations refine amplitudes of elementary contours, e.g. the contours at the

bottom encoding the discourse function X or second elementary contour encoding a DG discourse function. Optimal decomposition

after 1 iteration (a) and 15 iterations (b).

G. Bailly, B. Holm / Speech Communication 46 (2005) 348–364 357
most simple SFC implementation, this difference

is simply distributed syllable-by-syllable among
functional contours that are effectively super-

posed at the considered syllable. As functional
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contours have different scopes, this difference is

not equally distributed. This distributed predic-

tion error is then added to each predicted func-

tional contour to form new target functional

contours for the training of generators.
4. Target functional contours are collected for all

utterances of the training corpus and sorted

according to the discourse function they imple-

ment. These target functional contours are then

considered as new target patterns for generator

training. Here a classical neural network train-

ing procedure, error back-propagation, is used.

Once trained, the generators, are further recon-
sidered starting back at step 1.

The learning loop stops when the prediction

error no longer diminishes significantly. Holm

(2003) demonstrates that convergence is guaran-

teed: in practice, asymptotic behavior is always ob-

tained within a few dozen iterations. Fig. 6b shows

the typical evolution of the reconstruction error
and training time for a large training corpus. Fig.

7 shows that the first iteration already converges

towards a correct placement of the main prosodic

events which further iterations contribute to opti-

mally shape. For further details on this original

analysis-by-synthesis loop, see Holm and Bailly

(2000, 2002).
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Fig. 8. Analyzing and predicting the prosodic skeleton of a spoken ma

skeleton is figured on the left hand side using the same conventions as f

using also the same conventions except that the lengthening factor is d

functions are here recruited (M, DG and DD) and applied to differen

between the different terms of the formula. The SFC has been trained

ton (b).
4.3. Examining prediction results: A case study

Figs. 8–10 summarize the different representa-

tions we have in hands for evaluating the quality

of the training procedure and the generation pro-
cess. We picked up one utterance of a corpus of

spoken formulas studied by Holm et al. (1999).

Spoken formulas were chosen because their recur-

sive and highly embedded syntactic structure and

because prosody must be recruited to encode this

structure. The reader can convince himself by

examining Fig. 9 that compares the original and

predicted performance structures of the spoken
formula. The computed performance structures

(Gee and Grosjean, 1983) uses here the lengthen-

ing factor of the last syllable of each word as a

cue for word grouping instead of the duration of

its rime as proposed initially by Gee and Grosjean.

Fig. 9 shows that SFC is able to predict accurately

highly structured performance trees by simply

superposing contours acting on different scopes.
Fig. 8 shows in more details how the f0 and

rhythmic skeletons are decomposed into elemen-

tary f0 and rhythmic contours acting on different

scopes and encoding a few metalinguistic func-

tions. Only four functions are used here: one func-

tion for encoding the function ‘‘statement of an

equation’’ and three for encoding the dependency
–1
0.5

0
0.5

1

M 

DG DD

DG DD

DG DD

DG DGDD DD

utterance n˚100

R (2x 6) F (9x + 2) + 2 = 0–

thematical formula (‘‘solve: (2x � 6)x(9x + 2) + 2 = 0’’). The f0

or Fig. 7. The rhythmic skeleton is figured on the right hand side

isplayed per syllable instead of three f0 values. Three discourse

t scopes in order to encode the hierarchical syntactic relations

on 132 such spoken maths. f0 skeleton (a) and rhythmic skele-



Fig. 9. Performance structures (Gee and Grosjean, 1983) of the original (plain) and predicted (dotted) prosody for the same formula as

Fig. 8. We use here lengthening factors of the last syllable of each word as a cue for word grouping. We provide here a more structural

view of the data already displayed in Fig. 8b. One can see that the SFC renders properly the hierarchy except the balance between the

first two operands of the formula.
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Fig. 10. Comparing original and predicted F0 contours for the same formula as Fig. 8. Top: original and stylized f0 curve. Bottom:

stylized f0 curve predicted by the SFC.
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relations between operands and operators. Some
operators only require a ‘‘right dependency’’ with

their following operand such as ‘‘square root of’’

or ‘‘absolute value of’’, most require both ‘‘left

dependency’’ and ‘‘right dependency’’ with their

preceding and following operands such as ‘‘plus’’,

‘‘minus’’ or ‘‘multiplied/divided by’’, few require

more complex organization of following operands
such as ‘‘integral from. . .to. . .of. . .’’ where an
‘‘interdependency’’ metalinguistic function is used

to link subsequent operands. Despite this very

few number of metalinguistic functions—and thus

of trained contour generators—the SFC is able to

predict complex and bumpy prosodic contours by

overlapping and superposing simple and smooth

elementary prosodic contours.
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The multiparametric prosodic skeleton is then

used to drive a concatenative speech synthesizer.

Fig. 10 shows the predicted prosodic contour.

Once the rhythmical skeleton has been computed

and the z-scoring procedure has determined the
phonemic durations of each segment, the f0 skele-

ton is injected at the 10%, 50% and 90% duration

of the nucleus of each predicted syllable. Fig. 10

shows that this crude approximation can already

be used to synthesize speech.

As described in Section 3.2, this f0 contour can

be further enriched by the melodic flesh stored in

the segment dictionary.
5. Performance

In Table 1, we summarize results obtained in

some of the various languages and linguistic mate-

rial the SFC has been confronted with. For each

corpus we present the average result of four simu-
lations in which half of the stimuli were randomly

selected for training and half were randomly

selected for testing. Mean RMS error for predicted

f0 targets, lengthening factors for syllables and

predicted phoneme durations are 1.8 semi-tones,

20% and 20 ms, respectively. Note that half of

the average RMS error for phoneme durations

may be due to the z-score procedure (see Section
3.1): the z-score procedure that distributes the syl-
Table 1

SFC performance on various training and test materials

Language French

Speaker Mal. A Mal. B Mal. A Mal. C

Nb of Utt 1000 235 157 6 · 400

Nb of SFC 6 6 4 5

Type Text Text Math Attitud

f0 Training 1.51/0.84 1.44/0.72 2.23/0.88 1.47/0.9

f0 Test 1.54/0.83 1.60/0.65 2.19/0.89 1.71/0.9

LF Training 0.15/0.68 0.26/0.42 0.23/0.95 0.14/0.8

LF Test 0.15/0.68 0.27/0.34 0.25/0.93 0.17/0.7

ms Training 16.1/0.75 27.9/0.50 24.3/0.72 19.6/0.8

ms Test 16.3/0.75 29.2/0.50 23.8/0.72 21.6/0.7

Prediction errors on f0 targets (semi-tones), lengthening factor (LF) a

correlation factor between predicted patterns and ground-truth. The n

used is also given. Results are presented according to language and spe

well as type of linguistic material and style (read texts, spoken math, p

speakers tested for Chinese have shown similar performance (see Che
lable duration among segments generates a mean

modelling error of 11 ms.

Results are difficult to compare with those of

other trainable models. We are clearly missing

benchmarking procedures for assessing proposals
(please refer to Raidt et al., 2004, for a tentative

comparative evaluation of two trainable models).

Our results for f0 could however be compared

to the 34.7 Hz obtained by Ross and Ostendorf

(1999) (2.33 semi-tones if we consider a baseline

f0 of 240 Hz for their female speaker) for 48 min

of training material (8841 words) and 11 min of

testing material. Similar results were obtained by
Mixdorff and Jokisch (2001): 18 Hz (2.41 semi-

tones if we consider a baseline f0 of 120 Hz for their

male speaker) for 5000 training and test syllables.

Note, however, that these models, as with most

of the models proposed in the literature, treat only

the mapping between the surface phonological

structure and the prosodic continuum: prosodic

labels, such as ToBI (Tones and Break indices, see
Silverman et al., 1992) labels in Ross and Ostendorf

(1999) or those in (Black and Hunt, 1996), are con-

sidered as inputs. Despite inter-labeller disagree-

ments with respect to accent and edge tone type

(Syrdal and McGory, 2000), these hand-labelled

data bias the evaluation of a fully automatic map-

ping. Secondly, a further mapping between the lin-

guistic structure and the prosodic labels (see for
example the prediction of accent locations in
German Chinese

Mal. D Fem. A Mal. E Fem. B

235 235 489 100

6 6 4 7

e Text Cued Sp. Math Text

4 1.26/0.86 0.88/0.83 1.54/0.77 1.75/0.92

3 1.58/0.76 0.97/0.80 1.58/0.76 1.78/0.84

2 0.20/0.52 0.25/0.77 0.20/0.89 0.18/0.83

2 0.22/0.39 0.30/0.65 0.20/0.88 0.19/0.82

1 27.9/0.63 45.0/0.56 33.1/0.77 22.7/0.86

6 30.0/0.53 45.4/0.52 34.5/0.76 23.3/0.84

nd phoneme durations (ms) are characterized by RMS and the

umber of metalinguistic functions (and thus contour generators)

akers (Mal. for male speakers and Fem. for female speakers) as

rosodic attitudes or texts uttered with cued speech). Three other

n et al., 2004).
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Dusterhoff et al., 1999) constitutes an additional

source of errors that may have a drastic impact

on the performance of the trainable models con-

sidered above. Systems that do not use an interme-

diate symbolic representation are rare (Strom,
2002; Buhmann et al., 2000) and their results are

less encouraging than the ones discussed above.
6. Comments

Analyzing prosody. The analysis-by-synthesis

procedure presented here gives access to the hidden
structure of intonation (Holm and Bailly, 2002):

the prosodic implementation of metalinguistic

functions emerges from the automatic parameteri-

zation of contour generators. This procedure is

data-driven but also model-constrained and thus

converges towards optimal prototypical contours

that satisfy both bottom–up (close-copy synthesis)

and top–down (coherent phonological description)
constraints. The SFC is thus not only a trainable

model for generating prosody but also a valuable

tool for analyzing prosody, i.e. testing different

ways (e.g.,metalinguistic functions recruited, scopes

considered) of decomposing prosody into func-

tional contours.
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Fig. 11. Decomposing the melodic (left) and rhythmic (right) conto

conventions as for Fig. 7. In each sub-figure, from top to bottom: s

prosodic skeleton; sentence-specific contours; word-specific contours

two rows for sake of clarity since they overlap. The scope of each ton

following one (except for the last syllable of each sentence, where onl

specific contours have been yet introduced.
Gradience. Contrary to most other trainable

models of intonation, the training phase of the

model presented here essentially learns the shapes

of the contours associated with pre-defined meta-

linguistic functions. It does not learn, for example,
how these metalinguistic functions are transmitted

in parallel with the prosodic continuum; this is im-

posed by the superposition hypothesis. One can,

however, imagine more sophisticated interaction

models in which not only shapes but also param-

eter-specific weighting factors are computed in

order to give more priority to given metalinguistic

functions for specific prosodic parameters at cer-
tain positions of their scope. We refer here to the

concept of gradience (Gussenhoven, 1999). For

example, f0 contours of non-modal attitudes

(Morlec et al., 2001) are influenced neither by the

size nor by the structure of the discourse units,

while the organization of lengthening factors still

reflects (though in a reduced way) the organization

observed for the same sentences uttered in a
declarative modality. Two interpretations are pos-

sible here: (a) in interactive speech, some parts of

the discourse structure or content can be predicted

from discourse history and so are already known

for the listener. The non-modal attitudes stud-

ied here (statement of evident facts, incredulity,
–1
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0
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DC DC DC DC DC

WB WB WB WB WBWB WB WB WBWB WB WB WB WB WB

C4 C4 C4 C4 C4 C4 C4 C4C3 C3 C3C2 C2 C2 C2C1 C1 C1
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utterance n˚10

daole muqinjie tui chuge te shufu wuweimuqinmenpaiyoujie nante sheqingmuqinjie pobi duihuanchudaoye dui ti

urs of a recording consisting of five Chinese sentences. Same

uperposition of original (light gray) and predicted (dark gray)

and tone-specific contours. The tone contours are displayed in

e contour is two syllables: the syllable carrying the tone and the

y the tone-bearing syllable is considered). No group- or clause-
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suspicious irony) can be used by a speaker to mod-

erate or cast doubt on an affirmation just uttered

by his or her interlocutor. Internal structure of

the discourse (wording, syntax, etc.) is thus given

and does not need to be given back. (b) f0 func-
tional contours encoding non-modal attitudes are

complex and their salience should not be spurred

by superposing other functional contours. Less

important functional contours are thus modulated

by the salience of the more important functional

contours. These interpretations may be imple-

mented and tested using an additional mechanism

responsible for weighting functional contours
either using higher-level pragmatic information—

scaling contours by an additional factor impor-

tance associated with the specification of each

metalinguistic function—or breaking the strict

independence between functional contours.
7. Conclusion

We have described and illustrated here the core

principles and the basic properties of the trainable

model SFC. The SFC has been applied to various

discourse types and to different languages. We

demonstrated that this model-based generation

scheme is compatible with a certain technological

efficiency. The comparative evaluation between
the SFC and other trainable models performed

by Raidt et al. (2004) should be promoted and

would benefit the development of alternative

approaches to the modelling of prosody.

We look forward to confronting the SFC with

an increasing variety of challenges. Tone languages

are of most interest because prosodic structure,

especially intonation, is expected to be hidden by
syllabic melodic contours used as phonetic fea-

tures. We have been working on Cantonese with

Gaopeng Chen of University of Science and Tech-

nology of China (USTC). Preliminary results

(Chen et al., 2004) of a simple three-level decompo-

sition distinguishing tone (using five contour gener-

ators: one for each of the four tones + neutral

tone), word-domain (one contour generator for
word segmentation) and sentence-domain (one

contour generator for declarative sentences) contri-

butions are illustrated in Fig. 11. Despite massive
and coherent contributions of the tonal sequences,

smooth and coherent functional contours are

predicted for encoding Cantonese declarative sen-

tences. Adding more linguistic structuring, notably

syntactic bracketing, will of course improve an
already low prediction error (see Table 1).

There is, of course, still room for improvement.

The most important point is surely the two-stage

phonetic model that separate microprosodic, seg-

ment-dependent prosodic events from prosodic

phenomena encoding the discourse structure, ref-

erenced to above as flesh and skeleton. Despite sat-

isfactory results, the interaction models (additive)
and the deconvolution framework (removing

microprosody first) are certainly too simple and

can be improved. For example, the simple z-score

procedure used here neglects complex interactions

between the different timing constraints. We look

forward to setting up a training framework that

will also cope with microprosody in a more

homogenous way.
Finally, the SFC analysis-by-synthesis scheme

may be used for other trainable models: the result-

ing trained model is almost never used to look

back to input/output training data. These data

are nevertheless often noisy: input phonological

characterization of the training stimuli is often

done automatically and analysis of output param-

eters characterizing prosody is often not guided by
linguistic constraints (see for example Hirst et al.,

1991). A feedback loop that automatically or

semi-automatically adjusts constraints with obser-

vations in light of the prediction errors made by

the trained model may be of interest (see for exam-

ple for recent work of Agüero et al., 2004).
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