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Abstract 
This paper reviews some theoretical and practical aspects 
of different statistical mapping techniques used to model 
the relationships between the articulatory gestures and the 
resulting speech sound. These techniques are based on the 
joint modeling of articulatory and acoustic data using 
Gaussian Mixture Model (GMM) and Hidden Markov 
Model (HMM). These methods are implemented in two 
systems: (1) the silent speech interface developed at 
SIGMA and LTCI laboratories which converts tongue and 
lip motions, captured during silent articulation by 
ultrasound and video imaging, into audible speech, and (2) 
the visual articulatory feedback system, developed at 
GIPSA-lab, which automatically animates, from the speech 
sound, a 3D orofacial clone displaying all articulators 
(including the tongue). These mapping techniques are also 
discussed in terms of real-time implementation.   

Keywords: statistical mapping, silent speech, ultrasound, 
visual articulatory feedback, talking head, HMM, GMM 

1. Introduction 
Speech can be defined as a set of gestures made audible 
and visible. Speech sounds result from the coordinated 
movements of all the vocal organs, i.e the larynx and the 
supra-glottal articulators (tongue, lips, jaw, velum). 
Various approaches have been proposed in the literature to 
model the relationship between articulatory gestures and 
acoustic characteristics of speech. Some of them address 
the problem of articulatory-to-acoustic mapping, i.e the 
generation of speech sounds from a set of varying vocal 
tract configurations. Others address the inverse problem, 
commonly called acoustic-to-articulatory inversion, which 
consists in recovering the articulatory trajectories from the 
speech audio signal.   

A first approach to the articulatory-acoustic mapping 
problem consists in modeling the vocal tract geometry and 
its corresponding acoustic transfer function. Different 

types of articulatory models have been proposed to control 
the vocal tract geometry:  

- in geometrical models such as [1] and [2], the 
positions and shapes of the articulators (and 
therefore the vocal tract geometry) are controlled 
by a set of vocal tract parameters that are defined a 
priori.  

- in statistical models such as [3] and [4], the 
positions and shapes of the articulators are defined 
as a combination of standard vocal tract 
configurations. These standard configurations are 
derived from statistical analyses of large 
articulatory datasets, acquired using MRI, 
electromagnetic articulography (EMA), or X-Ray.  

- in biomechanical models such as [5] and [6], the 
motion of the articulators is predicted from their 
physiological structure and their neuromuscular 
control. 

Different methods have been proposed to characterize the 
acoustic properties of the vocal tract from its estimated 
geometry. Some of them address the problem in the 
frequency domain [7], in the time domain [8], or in both 
[9] (using an hybrid approach). Such a geometric and 
acoustic modeling of the vocal tract can also be used for 
acoustic-to-articulatory inversion, by using an analysis-by-
synthesis paradigm, as in [10] and [11].  

The articulatory-acoustic mapping problem can also be 
addressed using a corpus-based approach by exploiting in 
vivo databases containing “parallel” articulatory-acoustic 
data (speech sounds recorded simultaneously with 
articulatory movements). Two types of corpus-based 
approaches can be found in the literature: codebook-based 
and statistical model-based approaches.  

In the first one, a subset of articulatory-acoustic pairs is 
extracted from the database using vector quantization 
techniques. This subset is called the codebook. For a given 
source vector, for example a vector of acoustic parameters, 
the mapping consists (in its simplest implementation) in 



finding the closest acoustic vector in the codebook and in 
retrieving the corresponding articulatory vector. 
Codebook-based approaches have been used for both 
acoustic-to-articulatory inversion [12] [13] and 
articulatory-to-acoustic mapping [14].   

Statistical model-based approaches aim at estimating 
the articulatory-acoustic mapping function using 
supervised machine learning techniques. Two types of 
statistical models can be envisioned:  

- a discriminative model that describes directly the 
posterior probability p(y | x)  of the target vector y  
for a given source vector x. Such a model can be 
obtained using artificial neural networks (ANN) as 
in [15], [16] (for acoustic-to-articulatory inversion) 
and [17] (for articulatory-to-acoustic mapping), or a 
support vector machine (SVM), as in [18] (for 
acoustic-to-articulatory inversion). 

- a generative model that describes the joint 
probability p(x,y)  and uses Bayes theorem to 
recover the posterior probability p(y | x) . Toda 
[19] and Hiroya [20] propose to use respectively a 
Gaussian Mixture Model (GMM), and a Hidden 
Markov Model (HMM), two classical types of 
generative models, for both acoustic-to-articulatory 
and acoustic-to-articulatory mapping.  

In this paper, we illustrate the use of statistical model-
based approaches, especially GMM-based and HMM-
based ones, for two research domains: silent speech 
interface which requires the conversion of articulatory data 
into acoustic data, and visual articulatory feedback which 
is based, in our approach, on acoustic-to-articulatory 
inversion.  

This article is organized as follows. Theoretical and 
practical aspects of GMM-based and HMM-based 
mapping techniques are presented in section 2. Their 
implementation in the context of silent speech interface 
and visual articulatory feedback are presented in section 3 
and 4, respectively. The feasibility of a real-time 
implementation of these mapping techniques is discussed 
in section 5. Conclusions and perspectives are presented in 
the last section. 

2. GMM and HMM-based Mapping 

2.1 GMM-based mapping 
In the GMM framework, the probability density function 
of a continuous random variable O  is defined as a sum of 
normal distributions as:  

p(o | Θ) = αmN o,µm ,Σm( )
m=1

M

∑
with Σm=1

M αm = 1 and ∀m ∈ 1..M[ ],αm ≥ 0

  (1) 

where o  is a realization of O  (a feature vector), d  is the 
dimension of o , Θ  is the parameter set of the model, 
N .,µ,Σ( )  is a normal (Gaussian) distribution with mean 
µ  and covariance matrix Σ , M is the number of mixture 
components, αm is the weight associated with the mth 
mixture component and T is the transpose operator. Given 
a training dataset of feature vectors, the parameters of a 
GMM (weights, mean vectors and covariance matrices for 
each component) can be efficiently estimated using the 
expectation-maximisation (EM) algorithm. This algorithm 
finds the parameters set which maximizes the likelihood of 
the model given the training data.   

In this work, we adopt the approach proposed by Kain 
for voice conversion [21]. This approach is based on the 
modeling of the joint probability density of source and 
target vectors p(Z ) = p(X,Y )  with:  
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where X  and Y  are respectively the sequence of N source 
and target vectors (dx and dy are respectively the  
dimensions of the source and target vectors).  

The mapping function that predicts the target vector ŷt  
from the given source vector xt, observed at time t, is 
formulated as a weighted sum of linear models such as:  

ŷt = F(xt ) = (Wmxt + bm ) ⋅ P(cm | xt )
m=1

M

∑    (3) 

with Wm and µm the transformation matrix and bias vector 
associated with the mth component of the model, defined 
as:   
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and P(cm|xt), the probability that the source vector 
“belongs” to the mth component, defined as1: 

P(cm | xt ) =
αmN (xt ,µm

X ,∑m

XX )

α pN (xt ,µ p

X ,∑ p

XX )
p=1

M

∑
   (5) 

In our implementation, the GMM model is initialized using 
the k-means algorithm.   

                                                             
1 The notations “P” and “p” are used for discrete and continuous 

probability distributions, respectively.  



2.2 HMM-based mapping 
In the proposed HMM-based mapping approach2, the 
sequence of target vectors ŷ , predicted from the given 
sequence of source vectors x, is defined as:  

ŷ = argmax
y

p(y | x){ }     (6) 

with  

p(y | x) = p(y | q,λ) ⋅ P(q | x,λ)    (7) 
where λ is the parameter set of the HMM and q the HMM 
state sequence. As shown in Equation 7, an HMM-based 
mapping can be achieved with a recognition followed by 
synthesis approach which means: 1) finding the optimal 
state sequence for a given source vector, and 2) inferring 
the target vector from the decoded state sequence.  

The HMM can be defined and trained in different ways. 
In this paper, we describe a method based on the use of 
phonetic information.  In the training stage, a multistream 
HMM (MSHMM) is trained on articulatory-acoustic data 
for each phonetic class. In a MSHMM, each stream has, 
for each state, its own Gaussian mixture and thus its own 
emission probability density function.  

The initialization of the HMMs requires temporal 
segmentation of the training data at phonetic level. As 
articulatory and acoustic data are recorded synchronously, 
this segmentation can be obtained by annotating the 
acoustic data, either manually, or by using an initial set of 
“audio-only HMMs” and a forced-alignment procedure. 
After initialization, HMMs are then trained using a 
standard procedure (similar to that described in [22]): 
HMMs are trained first separately, using the standard 
Baum-Welch re-estimation algorithm and then processed 
simultaneously, using an embedded training strategy. 
Since articulatory and acoustic features are naturally 
sensitive to context effects such as co-articulation and 
anticipation, context-dependency is then introduced in the 
modeling. Triphone models are created by adding 
information about left and right contexts to the phone 
models. A tree-based state-tying strategy is adopted to 
address the problem of data sparsity (triphones having only 
a few occurrences in the training dataset). Finally, tied-
state models are refined by increasing incrementally the 
number of Gaussian mixture components.   

The prediction of the target (feature-)vector sequence y, 
for a given test sequence of source feature vectors x, is 
achieved in two stages. First, phonetic decoding is 
performed using the Viterbi algorithm (only the parameters 
of the MSHMM related to the source stream are used for 
the decoding stage). Second, given the predicted sequence 
of phones and the decoded HMM state sequence, target 

                                                             
2 All the procedures involving HMM manipulations, described in 

this paper, are done using the HTK and HTS toolkits.   

vector sequence is inferred using the speech parameter 
generation algorithm proposed by Tokuda for HMM-based 
speech synthesis [23]. This algorithm determines the 
vector sequence that maximizes the likelihood of the 
model with respect to a continuity constraint on the 
predicted feature trajectories. The key steps of this 
algorithm are described below.  

In this approach, an observation vector o t  is 
hypothesized to be composed of static features y t (the 
target features), and dynamic features, the first and second 
derivatives of static features, so that ot = [yt ,Δ

(1)yt ,Δ
( 2 )yt ] . 

By using derivative discretization techniques, the 
relationship between a sequence of observation vectors 
o = [o1 ,o2 , ...,oN ]  and the sequence of static feature 
vectors y = [y1 , y2 , ..., yN ] can be written in a matrix form 
such as:  
o = Wy   with  W = [W1

T , ...,WN

T ]T
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  (8)  

with N, the number of vector in the sequence, d the 
dimension of the target features, I and 0 respectively the 
identity and zero matrices. Given the decoded HMM state 
sequence q = {q1,…,qN}, Tokuda shows that the target 
vector sequence ŷ  can be obtained by solving: 

 

ŷ = W TΣq

−1W( )−1
W TΣq

−1Mq

with Mq = µq1
,…,µqN

⎡⎣ ⎤⎦,  Σq

−1 = diag Σ−1

q1
,…,Σ−1

qN
⎡⎣ ⎤⎦

 (9)  

where µk  and Σk are respectively the mean and diagonal 
covariance matrix of the Gaussian emission probability 
density associated with state k (in this approach, only 
single-Gaussian densities can be used to model the 
distribution of target data). 

3. Ultrasound-based Silent Speech Interface 
A “silent speech interface” (SSI) is a device that allows 
speech communication without the necessity of vocalizing. 
SSI could be used in situations where silence is required 
(as a silent cell phone), or for communication in very noisy 
environments. Further applications are possible in the 
medical field. For example, SSI could be used by 
laryngectomized patients as an alternative to electrolarynx 
which provides a very robotic voice; to oesophageal 
speech, which is difficult to master; or to tracheo-
oesoephageal speech, which requires additional surgery.  



The design of a SSI has recently received considerable 
attention from the speech research community [24].  
Different approaches have been proposed in the literature. 
A speaker may for example produce small airflow in his 
vocal tract and capture the resulting “murmur” with a 
stethoscopic (or NAM) microphone as in [25] and [26]. 
Other approaches, based on completely non-acoustic 
features have also been proposed, as for example in [27] 
where electromyographic electrodes placed on the 
speaker’s face (or on his neck in [28]) record muscular 
activity. In our approach, articulatory movements are 
captured by a non-invasive multimodal imaging system 
composed of an ultrasound transducer placed beneath the 
chin and a video camera in front of the lips [24]. The 
articulatory-to-acoustic mapping problem, i.e the synthesis 
of an intelligible speech signal from visual articulatory 
data (only), is addressed using the statistical-model based 
approaches described in section 2.    

3.1 Data acquisition 
The experimental setup used to record parallel articulatory-
acoustic data is presented in figure 1. The hardware 
component of the system is based on the portable Terason 
T3000 ultrasound system, a 140° microconvex transducer, 
an industrial USB Bayer color camera and a standard 
sound system. In order to automate the two imaging 
devices (ultrasound system and video camera) and to 
record the different streams, we developed a dedicated 
software, named Ultraspeech3 [31], which processes the 
ultrasound, video and audio streams in parallel using 
multithreading programming techniques and prevent data 
loss using a FIFO-based buffer management approach. 
This system was used to record simultaneously, and 
synchronously: the ultrasound stream at 60 fps (320x240 
pixels); the video stream at 60 fps (640x480 pixels); and 
the acoustic signal (16 bits, 16 kHz). 

 
Figure 1. Experimental setup (hardware component).   

The recorded dataset used in this work consists of the 
1132 sentences of CMU ARCTIC corpus [10], uttered by a 
female native English speaker. To prevent speaker fatigue, 
the acquisition was split into 10 sessions, spaced in time. 
An inter-session re-calibration mechanism (detailed in 
                                                             
3 http://www.ultraspeech.com 

[31]), was used to maintain the positioning accuracy of the 
sensors across all sessions (and thus the data consistency). 
A typical pair of ultrasound and video images is shown in 
figure 2.  

 
Figure 2. Example of an ultrasound vocal tract image (in the 

midsagittal plane) with lip frontal view 

3.2 Visual feature extraction 
Regions of interest (ROI) selected in ultrasound and 

video images were first resized to 64x64 pixels. The 
EigenTongues [32] decomposition technique was used to 
encode each ultrasound frame. In this method, the vocal 
tract configuration is interpreted as a linear combination of 
standard configurations, the EigenTongues, obtained by 
performing a Principal Component Analysis (PCA) on a 
phonetically balanced subset of frames. A similar 
technique was used to encode lip images (EigenLips). The 
numbers of projections onto the set of 
EigenTongues/EigenLips used for coding were determined 
by keeping the eigenvectors carrying at least 80% of the 
variance of the training set; typical values used on this 
database were 30 coefficients for each of the two streams. 
In order to be compatible with the speech analysis rate, the 
EigenTongues/EigenLips coefficient sequences were 
oversampled from 60 Hz to 100 Hz. Finally, they were 
concatenated with their first and second derivative in one 
and same visual feature vector.  

3.3 GMM-based visuo-acoustic mapping 
In the GMM-based mapping experiment, the spectral 
content of the audio speech signal was parameterized by 
25 mel-cepstrum coefficients (Blackman window, 25 
frame length, 10 ms frame shift).  

The first 1110 sentences of the recorded database were 
divided into 37 lists of 30 sentences. In order to increase 
the statistical relevance of the mapping performance, a 
jackknife (leave-one-out) technique was employed: each 
list was used once as the test set while the other 34 lists 
composed the training set. Two test lists were excluded 
from this jackknife procedure to be used as a validation set 
for the determination of the optimal number of Gaussians 
(parameter M in equation 1), which was found to be 32. 
Silence frames were removed from the training set using 
an automatic (threshold-based) silence detection method.  

The quality of the mapping between visual and spectral 
features was evaluated by calculating the Mel-cepstral 



distortion between the target and the predicted mel-
ceptrum coefficients, defined as: 

Mel − CD[dB] =
10

ln10
2 (m̂d − md )

2

d = 0

24

∑    (10)  

The Mel-cepstral distortion was found to be 7.8 dB if the 
the 0th cepstral dimension, i.e the component known to 
correspond to overall signal power, was taken into account. 
It was 6.2 dB if this term was ignored.  

In this experiment, the audio speech signal was 
synthesized using a MLSA digital filter [33] derived from 
the predicted mel-cepstrum coefficients. The generation of 
the excitation signal requires the prediction of the 
voiced/unvoiced parameters as well as the pitch for voiced 
frames. A feed-forward neural network was used to 
perform the mapping between the visual features and the 
voiced/unvoiced parameter. The network was trained using 
a standard gradient descent algorithm; the log-sigmoid 
function was used as the activation function for the hidden 
neurons and the output layer. The optimal number of 
hidden neurons, determined by cross-validation, was found 
to be 10. The accuracy of the classifier, its sensibility and 
its specificity were respectively 0.82, 0.80 and 0.84. This 
means that about 80% of the frames were correctly 
classified. However, this relative good performance should 
be interpreted carefully. Since there is no direct 
relationship between voicing and articulatory 
configuration, the performance may be partially explained 
by indirect relationships; for instance, stable vocal tract 
configurations are likely to correspond to vowels and thus 
to voiced frames. 

GMM-based mapping between visual features and pitch 
(for voiced frames) has also been investigated. The 
performance was measured by evaluating the root mean 
squared error (RMSE) between the estimated f0 and the 
target f0. Because the error was greater to 50 Hz, it was not 
possible to generate an acceptable excitation signal with 
this approach; a constant pitch value was finally used for 
synthesis.   

 A preliminary subjective evaluation revealed that it was 
not possible to synthesize intelligible speech consistently 
with this GMM-based mapping approach. However, the 
lack of intelligibility seems to be related to the quality of 
the vocoder, rather than to the accuracy of the articulatory-
to-acoustic mapping. We intend to use more robust 
synthesis techniques (such as the Harmonic plus Noise 
Model used in the HMM-based mapping experiment 
described in the next section).  

3.4 HMM-based visuo-acoustic mapping 
In the HMM-based mapping experiment, a Harmonic plus 
Noise Model (HNM) decomposition techniques was used 
to parametrize the speech signal [34]. In our 

implementation, harmonic and noise components were 
represented by an auto-regressive model, described 
respectively by 12 and 16 LSF coefficients (Line Spectral 
Frequencies). For each of the 40 phonetic classes, the 
sequences of visual and acoustic features were modeled by 
a left-to-right, 5-state (3 emitting states), continuous 
multistream HMMs (with diagonal covariance matrices). 
For the visual part, the optimal number of Gaussian per 
state was found to be 4. For the audio part, harmonic 
component and pitch (defined only for voiced frame) were 
modeled using the Multi-Space probability Distribution 
approach (MSD) described in [35].  

In the proposed HMM-based mapping approach, 
linguistic constraints can be introduced to help the 
phonetic decoding. With that in mind, we implemented 
two decoding scenarios. In the first, considered 
“unconstrained”, the structure of the decoding network was 
a simple loop in which all phones loop back to each other. 
In the second, or “constrained” scenario, the phonetic 
decoder was forced to recognize words contained in the 
CMU Arctic sentences. In that case, the decoding network 
allows all possible word combinations which can be built 
from a 3k word dictionary. No statistical language model 
was used in the present study.  

The performance of the phonetic decoding stage was 
measured by evaluating the recognition accuracy defined 
as:  

P = 100 ⋅
N − D − S − I

N
   (11) 

where N is the total number of phones in the test set, S the 
number of substitution errors, D deletion errors, and I 
insertion errors. The recognition accuracy was found to be 
70.8% for the unconstrained scenario and 83.3% for the 
constrained scenario. Quite naturally, most of the 
substitution errors were made on phones with similar 
tongue and lip movements, such as {p,b,m}, {t,d,n}, {f,v}, 
{k,g,ɳ}, {ʃ,ʒ]}. However, some of these mismatches in the 
phonetic decoding would not necessarily lead to 
unintelligible synthesis; context effects could be used to 
advantage in a real communicative situation.  

In order to evaluate the intelligibility of the synthesized 
speech, 15 test sentences were chosen randomly from the 
sentences of the database for which the performance of the 
phonetic decoder was similar to that on the entire dataset 
(P=80%). Seven native speakers of American English were 
asked to transcribe the 15 synthesized sentences. The 
quality of the transcription was evaluated with a word-
based accuracy criterion, which is traditionally used in 
speech recognition, and is similar to the criterion defined 
in equation 11 (with N now the number of words). Even if 
the global quality of the synthesis was found to be much 
more acceptable with this approach compared to the 
GMM-based approach, only 50% of the words were 



correctly transcribed. This relative poor intelligibility may 
be partially explained by the non-realistic prosody often 
obtained with this approach. When evaluated at the 
phonetic level, the quality of transcription was relatively 
good though. Sentences that are relatively short (one 
prosodic group) and contain “common words”, were often 
perfectly transcribed. This shows that, even consistently 
intelligible synthesis is as yet not possible, the system is, in 
some cases, able to generate an intelligible speech 
waveform from visual articulatory data only.  

4. Visual Articulatory Feedback 
Systems of visual articulatory feedback (VAF) aim at 
providing the speaker visual information about his/her own 
articulation. Several studies show that this kind of system 
can be useful for both speech therapy and Computer Aided 
Pronunciation Training (CAPT). The use of different types 
of sensors has been proposed in the literature. In [36], 
Wrench et al. used electro-palatography (EPG) to capture 
tongue-palate contact points. Patients can then observe 
derived visual patterns to place their tongue correctly in 
velar and alveolar regions. In [37], Bernhardt et al. 
proposed the use of ultrasound imaging. This way, speech 
therapists can freeze the image stream to show the patient 
the articulatory target to reach. In [38], Engvall proposed 
to use a talking-head for pronunciation training. The 
talking head was used in an augmented speech scenario, 
i.e. it displayed all speech articulators including the tongue 
and the velum. In this study, a wizard-of-Oz setup was 
used: a human listener chose the adequate pre-generated 
feedback, based on the user's pronunciation.  

The visual articulatory feedback system developed at 
GIPSA-lab is also based on a 3D talking head used in an 
augmented speech scenario [39]. However, in our system, 
the talking head is animated automatically from the audio 
speech signal, using acoustic-to-articulatory inversion.  

4.1 Talking head 
The talking head used in the study consists of 3D models 
of the speech organs of a same speaker, built from MRI, 
X-ray and video data. The jaw/lips/face model is 
controlled by five parameters (jaw height, jaw advance, lip 
protrusion, lower/upper lip heights). The jaw/tongue 
model is also controlled by five parameters (jaw height, 
tongue body and tongue dorsum which control respectively 
the front-back and flattening-arching movements of the 
tongue, tongue tip vertical/horizontal which control the 
shape of the tongue tip). Figure 3 gives an example of 
different types of display of this talking head. As shown in 
[39], this 3D clone can be efficiently animated from a 2D 
EMA data stream (from the same speaker): the information 
provided by the location of the EMA coils is sufficient to 
inverse the articulatory models of the talking head, i.e. to 
estimate the control parameters that provide the best fit 

between the modeled 3D surfaces and the measured 
coordinates of the coils.  

   
Figure 3. Talking head for different types of displays.   

Left: “augmented 2D view”, center: “augmented 3D view”, 
right: “complete face in 3D with skin texture” 

4.2 Acoustic-to-articulatory inversion 
In order to animate the talking head, trajectories of the 
EMA coils were recovered from the audio speech signal, 
using acoustic-to-articulatory inversion. Our previous work 
on acoustic-to-articulatory inversion is described in [40].  

The recorded database consists of two repetitions of 224 
VCVs  (where C is one of the 16 French consonants and V 
is one of 14 French oral and nasal vowels), two repetitions 
of 109 pairs of CVC real French words, and 88 sentences, 
uttered by a male native French speaker. Articulatory 
movements were recorded synchronously with the audio 
signal using the Carstens 2D EMA system (AG200). Six 
coils were glued on the tongue tip, blade, and dorsum, as 
well as on the upper lip, the lower lip and the jaw. The 
database consisted of approximately 17 minutes of speech, 
long pauses being excluded.  

The audio speech signal was parameterized by 25 mel-
cepstrum coefficients (Blackman window, 25 frame length, 
10 ms frame shift). For the GMM-based mapping, dynamic 
features were extracted by concatenating 2N+1 adjacent 
acoustic frames xt, such as: 

 xt = x t − N …x t …x t + N[ ]    (12) 
The resulting vector xt  is called here a contextual feature 
vector. This approach was found to be more efficient than 
the one described at section 3.2, based on the computation 
of the first and second derivatives4. As proposed in [19], 
principal component analysis was used to reduce the 
dimensionality of the contextual vectors. The numbers of 
principal components used for coding were determined by 
keeping the eigenvectors that account for 80% of the 
variance of the training set; typical value used on this 
database was 25 coefficients. The optimal value of N (see 
equation 12) was found to be 5, which corresponds to a 
110 ms length window. For the HMM-based mapping, 
acoustic feature vector were simply completed with their 
first and second derivatives. EMA data were downsampled 
                                                             
4 This approach has also been tested for the articulatory-to-

acoustic mapping experiments described in section 3. However, 
it did not bring any improvement.  



from 200 Hz to 100 Hz (in order to be compatible with the 
speech analysis rate) and low-pass filtered at 20 Hz.  

The dataset was divided into 5 partitions. A jackknife 
technique was employed in order to increase the statistical 
relevance of our results. The accuracy of the inversion was 
measured by calculating, for each partition, the root mean 
square (RMS) error between the measured and the 
estimated EMA parameters, such as: 

RMSp =
1

D

1

Tp
ŷd , t − yd , t( )2

t =1

Tp

∑
d =1

D

∑   (13)  

 
where Tp is the number of frames in partition p, D is the 
number of EMA parameters (12 in this study), ŷd , t and  

yd , t  are respectively the estimated and the measured 
position of the dth EMA parameters at time t. A different 
formulation of the RMS error, in which the RMS is 
averaged over all the features, can be found in the 
literature. This RMS is called here µRMS and is defined as: 

 µRMSp =
1

D

1

Tp

ŷd , t − yd , t( )2
t =1

Tp

∑
d =1

D

∑    (14) 

For the GMM-based experiment, the optimal number of 
components in the mixture was found to be 64. The 
estimated articulatory data were smoothed by low-pass 
filtering (20 Hz cutoff frequency). The averaged RMS and 
µRMS (over the 5 partitions) were respectively 1.9 mm and 
1.7 mm.  

For the HMM-based mapping, articulatory-acoustic 
features were modeled, for each of the 34 phonetic classes, 
by a left-to-right, 5-state (3 emitting states), continuous 
multistream HMMs (with diagonal covariance matrices). 
For the HMM part related to acoustic stream, the optimal 
number of Gaussians per state was found to be 32. The 
performance of the mapping was evaluated using the 
jackknife procedure described above. With a mean 
recognition accuracy of 90%, the averaged RMS and µRMS 
were 1.7 mm and 1.5 mm, respectively.  

Figure 4 gives an example of articulatory trajectories 
estimated from the audio signal with GMM and HMM-
based mapping techniques. It also illustrated the animation 
of the talking head, derived from the estimated parameters 
(with the HMM-based mapping technique). 

 
Figure 4. Top: Example of articulatory trajectories estimated 
from the audio speech signal for the VCV [ɛkɛ] (only tongue 

EMA parameters are displayed).  
Bottom: Corresponding animation of the talking head  

(only one frame per phoneme is displayed). 

5. Toward a Real-time Implementation 
In order to be used in a realistic communicative situation, 
the different systems described in this paper have to run in 
real-time. Real-time implementation of the GMM and 
HMM-based mapping techniques is discussed in the 
following paragraphs. 

The GMM-based mapping approach is a frame-by-
frame process: as shown in equation 3, the estimated target 
features at time t (yt) depends only on the source features 
observed at the same time (xt). In a GMM-based mapping 
approach, the overall latency of the processing chain 
would mainly come from the feature extraction (and not 
from the conversion itself). We note 1/l the feature 
extraction rate; typical values for l are 16.6ms for the SSI 
(since the frame rate of the ultrasound and video streams is 
60 fps) and 10ms for the VAF system (since the frame-
shift parameter for the analysis of the audio signal is 
10ms). The extraction of dynamic features introduces an 
additional delay in the processing chain. The computation 
of the second derivatives of the features extracted at time t 
(as described in section 3.2 for the SSI), requires an 
additional delay of l milliseconds, since it is based on the 
features extracted at time t-l but also at time t+l. The 
building of contextual feature vectors (as described in 
section 4.2) introduces an additional delay of N.l, 
milliseconds, where 2N+1 is the number of adjacent 
frames taken into account. Using the GMM-based mapping 



approach, the minimum latency would be l+l=33.2ms for 
the SSI and l+5l=60ms, for the VAF system.   

A real-time implementation of the HMM-based 
mapping approach is not as straightforward as for the 
GMM-based approach. As shown in equation 10, the 
HMM-based mapping is not a frame by frame process. The 
estimation of the target features requires first the decoding 
of the most likely HMM state sequence (for the given 
sequence of source vectors). This task is achieved by the 
Viterbi algorithm. However, this algorithm is based on a 
backtracking procedure, which requires both the first and 
the last observation to be available. Thus, this algorithm is 
not well adapted to a real-time implementation. Different 
approaches have been proposed in the literature to decode 
HMM online. In [42], the Viterbi algorithm is applied on a 
sliding window of consecutive observations. The 
advantage of this method is that the additional delay it adds 
to the processing chain is constant (and equal to the length 
of the sliding window). However, this method does not 
guarantee that the sequence of successive “local” paths is 
identical to the optimal path, i.e the path that would have 
been obtained if all the observations were taken into 
account. In [43], Bloit and Rodet proposed the short-time 
Viterbi algorithm, in which the Viterbi algorithm is applied 
on a sliding window of variable length. Under certain 
constraints on the HMM topology, the proposed algorithm 
guarantees that the successive decoded paths are identical 
to the optimal path. In this method, a constant maximum 
latency can also be obtained by forcing a suboptimal 
decoding when the window length exceeds a predefined 
threshold. We intend to implement the short-time Viterbi 
algorithm in the SSI and in the VAF system.  

6. Conclusions and Perspectives 
The paper presents two statistical mapping techniques, 
used to model the relationships between articulatory 
movements and the resulting speech sound. These 
techniques are based on the joint modeling of articulatory-
acoustic data using respectively Gaussian Mixture Model 
(GMM) and Hidden Markov Model (HMM). These 
methods were implemented (1) in an ultrasound-based 
silent speech interface for the conversion of tongue and lip 
images into speech and (2) in a visual articulatory 
feedback system that automatically animates a 3D talking-
head from the speech sound.  

For both systems, the best performance was obtained 
with the HMM-based method. In this method, external 
linguistic information (such as phonological or 
morphological information) can be introduced to constrain 
the mapping. We intend to implement a real-time version 
of the HMM-based mapping method, based on the short 
time Viterbi algorithm [43]. Future work will also 
investigate different mapping techniques recently 
described in the literature, such as (1) the low-delay 

implementation of the GMM-based mapping approach 
proposed by Toda et al. [44], which is based on the 
maximum likelihood estimation of the feature trajectories, 
and (2) the approach based on trajectory HMM proposed 
by Zen et al. in [45].   
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