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Abstract 

Exploiting a tissue-conductive sensor – a stethoscopic microphone – the system developed at 

NAIST which converts Non-Audible Murmur (NAM) to audible speech by GMM-based statistical 

mapping is a very promising technique. The quality of the converted speech is however still 

insufficient for computer-mediated communication, notably because of the poor estimation of F0 

from unvoiced speech and because of impoverished phonetic contrasts. This paper presents our 

investigations to improve the intelligibility and naturalness of the synthesized speech and first 

objective and subjective evaluations of the resulting system. The first improvement concerns 

voicing and F0 estimation. Instead of using a single GMM for both, we estimate a continuous F0 

using a GMM, trained on target voiced segments only. The continuous F0 estimation is filtered by a 

voicing decision computed by a neural network. The objective and subjective improvement is 

significant. The second improvement concerns the input time window and its dimensionality 

reduction: we show that the precision of F0 estimation is also significantly improved by extending 

the input time window from 90 to 450ms and by using a Linear Discriminant Analysis (LDA) 

instead of the original Principal Component Analysis (PCA). Estimation of spectral envelope is also 

slightly improved with LDA but is degraded with larger time windows. A third improvement 

consists in adding visual parameters both as input and output parameters. The positive contribution 



of this information is confirmed by a subjective test. Finally, HMM-based conversion is compared 

with GMM-based conversion. 

Keywords: non-audible murmur, whispered speech, audiovisual voice conversion, silent speech 

interface. 

1. Introduction 

In recent years, advances in wireless communication technology have led to the widespread use of 

cellular phones for speech communication. Because of noisy environmental conditions and 

competing surrounding conversations, users tend to speak loudly. As a consequence, private 

policies and public legislation tend to restrain the use of cellular phones in public places. Silent 

speech which can only be heard by a limited set of listeners close to the speaker is an attractive 

solution to this problem if it can efficiently be used for quiet and private communication. Silent 

speech capture interfaces have already been developed including electromyography (Bett and 

Jorgensen 2005; Jorgensen and Binsted 2005; Jou, Schultz et al. 2006; Walliczek, Kraft et al. 

2006), non-audible murmur microphone (Heracleous, Nakajima et al. 2005; Toda and Shikano 

2005), ultrasound and optical imagery (Hueber, Aversano et al. 2007; Hueber, Chollet et al. 2007; 

Hueber, Chollet et al. 2007; Hueber, Chollet et al. 2008; Hueber, Chollet et al. 2008) together with 

several techniques to convert silent speech signals to audible speech. 

Two possible ways to map silent speech to modal speech have been proposed: (a) Combining 

speech recognition and synthesis techniques as proposed by Hueber et al. in the Ouisper project 

(Hueber, Chollet et al. 2007). By introducing linguistic levels both in the recognition and synthesis, 

such systems can potentially compensate for the impoverished input by including linguistic 

knowledge into the recognition process. The quality of the output speech is either excellent or 

extremely degraded depending on recognition performance. (b) Direct signal-to-signal mapping 

using aligned corpora (Toda and Shikano 2005). By using the NAM microphone to capture non-

audible murmur, Toda et al. proposed a NAM-to-speech conversion system based on a GMM 



model in order to convert "non-audible" speech to audible speech. It was shown that this system 

provides intelligible speech with constant quality but the naturalness of the converted speech is still 

unsatisfactory. This is due to the poor F0 estimation from unvoiced speech. Note that the F0 

estimation problem is a difficulty shared by all the systems described above, either using whispered 

speech, or non-audible murmur. Although whispered speech typically does not involve any vocal 

fold vibration, laryngeal activity may however exist during whispered speech, and this could 

represent useful information for the F0 estimation process. Coleman et al. (2002) have shown, using 

dynamic Magnetic Resonance Imaging, that larynx movements related to intonation changes (rising 

and falling pitch) can be observed in whispered speech. According to the authors this offers an 

explanation for perceived pitch in whispered speech: laryngeal movements modify the shape of the 

oral cavity, thus altering the vocal tract acoustics so that pitch changes can be inferred. Subvocal 

speech, such as the murmur that can sometimes be observed in hallucinating schizophrenic patients, 

has also been shown to be associated with laryngeal activity. Inouye and Shimizu (1970) reported 

increased EMG activity in speech-related muscles including laryngeal muscles (cricothyroid, 

sternohyoid, orbicularis oris, and depressor anguli oris) in 47.6% of the hallucinations of nine 

schizophrenic patients. These works suggest that whispered speech might carry information on 

laryngeal activity. This activity could be useful in the recovery of F0 because it could modify the 

shape of the oral cavity and hence be audible. It has been shown by Higashikawa et al. (1996) that 

when speakers try to whisper high pitch vowels vs low pitch vowels, F1 and F2 are raised and 

listeners are able to identify the pitch correctly. This formant frequency raising could be due to 

laryngeal movement. Other sources of pitch information may exist. Zeroual et al. (2005) and 

Crevier-Buchman et al. (2008) have shown with ultra- high-speed cinematography that whisper is 

associated with an anterior-posterior epilaryngeal compression and an abduction of the ventricular 

bands. These supraglottic changes may also be sources of information on F0 during whisper. 



In this article, we propose two major improvements to the original signal-based GMM mapping 

from whisper to speech proposed by Toda et al. As advocated by Nakagiri et al. (2006), whisper is 

used here instead of NAM because of the difficulty of getting accurate phonetic NAM 

segmentation. The first improvement concerns the input feature space. The second improvement 

consists in incorporating visual information into both the input and output feature spaces. The visual 

parameters are obtained by the face cloning methodology developed at Gipsa-Lab (Revéret, Bailly 

et al. 2000; Badin, Bailly et al. 2002; Bailly, Bérar et al. 2003). 

Section 2 gives a brief description of the NAM microphone. Section 3 describes the original NAM-

to-speech system proposed by Toda et al. Section 4 then describes our improvement for the 

performance of this system, especially for the naturalness of the converted speech while section 5 

focuses on the contribution of visual features. Session 6 is dedicated to the testing of a HMM-based 

conversion system. Finally, a discussion of our results is provided in section 7. 

2. NAM microphone 

The tissue-conductive microphone proposed by Nakajima et al. (2003) comprises an electret 

condenser microphone (ECM) covered with a soft polymer material, such as soft silicone or 

urethane elastomer, which provides better impedance matching with the soft tissue of the neck. This 

microphone can capture acoustic vibrations in the vocal tract from a sensor placed on the skin, 

below the ear (Figure 1). This position allows a high quality recording of various types of body-

transmitted speech utterances, such as normal speech, whisper and non-audible murmur, even in the 

environmental noises. Body tissue and lip radiation act as a low-pass filter and the high frequency 

components are attenuated. However, the non-audible murmur spectral components still provide 

sufficient information to distinguish and recognize sound accurately. The soft silicone NAM 

microphone used in our laboratory can record sound with frequency components up to 3 kHz while 

being little sensitive to external noise. Figure 2 shows an example of a whispered utterance in 

French, captured by this microphone.  



3. Original NAM-to-Speech conversion system 

To characterize whisper, namely unvoiced speech without vocal fold vibration, spectral envelope 

and power information are used, while spectral envelope, power, F0 and aperiodic components are 

used for speech synthesis using STRAIGHT, a versatile speech vocoder developed by Kawahara et 

al. (1999) . 

Before training the models for spectrum and excitation estimation, pairs of whisper and speech 

uttered by a speaker must be aligned, in order to determine corresponding frames. Phonetic 

transcription information were used to get a better alignment compared to automatic Dynamic Time 

Warping (DTW). 

 

Figure 1 : Position of the NAM microphone 

 

Figure 2 : Whispered speech captured by a NAM microphone for the French utterance: “Amstrong 

tombe et s’envole”. 



3.1.  Spectral estimation 

We use the same schema for spectral estimation as the one proposed by Toda et al. (Toda and 

Shikano 2005). As described in Toda et al. (2009), let us use an input static feature 

(1),..., ( )t t t xx x x D and an output static feature vector (1),..., ( )t t t xy y y D at frame t, 

respectively. In order to compensate for the lost characteristics of some phonemes due to body 

transmission, we use a segment feature ,... ,t x t L t t L xX W x x x b extracted over several frames 

(t ± L) as an input speech parameter vector where Wx and bx are determined by PCA in this paper. 

As an output speech parameter vector, we use ,t t tY y y consisting of both static and dynamic 

feature vectors. 

Using parallel training data set consisting of time-aligned input and output parameter 

vectors 1 1,X Y , 2 2,X Y , …, ,T TX Y , the joint probability density of the input and output 

parameter vectors is modelled by a GMM as follows: 
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where N(μ, ∑) denotes Gaussian distribution with a mean vector μ and a covariance matrix ∑. The 

mixture component index is m. The total number of mixture components is M. A parameter set of 

the GMM is , which consists of weights wm, mean vectors ),( YX

m  and full covariance matrices 

),( YX

m  for individual mixture components. 

The probability density of the GV of the output static feature vectors over an utterance is also 

modelled by a Gaussian distribution, 
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A parameter set )(v  consists of a mean vector )(v  and a diagonal covariance matrix )(v . This 

global variance information is used to reduce the over-smoothing, which is inevitable in the 

conventional ML-based parameter estimation (Toda and Tokuda 2005). 

In the conversion procedure, let 1 ,..., ,...,t TX X X X  and 1 ,..., ,...,t TY Y Y Y  be the time 

sequence of the input parameter vectors and that of the output parameter vectors, respectively. The 

converted static feature sequence 1 2,..., ,..., Ty y y y  is determined by maximizing a product of 

the conditional probability density of Y given X and the GV probability density as follows: 

))((),(maxargˆ )(vw

y

yvPXYPy  subject to yWY y  where yW  is a window matrix to extend 

the static feature vector sequence to the parameter vector sequence consisting of static and dynamic 

features. 

3.2. Excitation estimation 

The speech excitation is decomposed into two components: a periodic or quasi-periodic component 

which takes into account the quasi-periodic segments of speech produced by the regular vibrations 

of the vocal folds and an aperiodic component for the noise (frication, aspiration, bursts). In the 

STRAIGHT system (Kawahara, Masuda-Katsuse et al. 1999), the mixed excitation is defined as the 

frequency-dependent weighted sum of these two components. The weight is determined based on an 

aperiodic component in each frequency band which is calculated from the smoothed power 

spectrum by a subtraction of the lower spectral envelope from the upper spectral envelope. The 



upper envelope is calculated by connecting spectral peaks and the lower envelope is calculated by 

connecting spectral valleys. 

Two GMM models for F0 estimation and aperiodic estimation are constructed in the same way as 

the spectral estimation except that the global variance (GV) is not used because GV does not cause 

large differences to the converted speech in the aperiodic conversion. Static and dynamic features Yt 

of F0 and aperiodic components are used while keeping the same feature vector of whisper Xt as that 

used for the spectral estimation. 

4. Improvement of intelligibility and naturalness of the converted speech  

This section is described in more details in Tran et al. (2008). 

4.1. Feature extraction 

The training corpus consists in 200 utterance pairs of whisper and speech uttered by a native male 

speaker of French and captured by a NAM microphone and a head-set microphone. Respective 

speech durations are 4.9 minutes for whisper (9.7 minutes with silences) and 4.8 minutes for speech 

(7.2 minutes with silences). The 0
th

 through 24
th

 mel-cepstral coefficients are used as spectral 

features at each frame. The spectral segment features of whisper are constructed by concatenating 

feature vectors at each current whispered frame ± 8 frames (i.e. representing 90 ms of speech) to 

take into account the context. Then the vector dimension is reduced to 50 using a PCA technique. 

Log-scaled F0 extracted with fixed-point analysis and 5 average dB values of the aperiodic 

components on five frequency bands (0 to 1, 1 to 2, 2 to 4, 4 to 6, 6 to 8 kHz) are used to 

characterize the excitation feature. 

The test corpus consists of 70 utterance pairs not included in the training data. 

4.2. Voicing decision 

In the original system, F0 and voicing are jointly estimated by a unique GMM model: unvoiced 

frames are assigned with F0 = 0 for training and voicing decision is then determined using a simple 



threshold. The main drawback of this approach is to waste Gaussian components to represent zero 

values of F0 for unvoiced segments and its danger is to predict unstable F0 values for unvoiced 

segments incorrectly labelled as voiced. In order to improve this joint representation, we only use 

voiced segments to train the GMM model for F0. For synthesis, a feed-forward neural network is 

used to predict the segments from the whispered speech. This network has 50 input cells (for the 50 

dimension feature vector), 17 hidden cells, and 1 continuous output. The continuous output is 

converted to a binary output by applying a threshold. When the output is larger than .5, the frame is 

labelled as voiced. Otherwise, it is labelled as unvoiced. Only voiced frames are used in the GMM. 

Continuous F0 values are then predicted, from the voiced values. Figure 3 presents the synopsis of 

the system. 

 

Figure 3. Synopsis of the whisper-to-speech conversion method 

Table 1 shows the detection performance of this network in comparison with the error in the 

original system. We have a significant improvement of the voiced/unvoiced detection. 

Table 1 : Voicing error using neural network or GMM. 

Type of error Feed-fwd NN (%) GMM (%) 

Voiced error 2.4 3.3 

Unvoiced error 4.4 5.9 

Total ~ 6.8 ~ 9.2 

 



4.3. F0 estimation 

As stated above, only voiced segments in whispered speech were used to train the GMM model for 

the F0 estimation. We also compared our system with the original one with different number of 

mixtures on both the training and the test data. Full covariance matrices were used for both GMMs. 

The difference was calculated as the normalized difference between synthetic F0 and natural F0 in 

the voiced segments that were well detected by the two systems. This difference is given by the 

following formula: Diff = (synthetic_F0 – natural_F0)/ natural_F0. Figure 4 shows that the 

proposed framework outperforms the original system. In addition, when the number of Gaussian 

mixtures increases, the errors of both systems on the training data decrease, but the errors on test 

data are not sensitive to the number of mixtures. 

 

Figure 4. Parameter evaluation on training (solid line) and test corpus (dashed line). 

Figure 5 shows an example of a natural (target) F0 curve and the synthetic F0 curves generated by 

the two systems. It shows that our proposed system is closer to the natural F0 curve than the original 

system, especially for the final contour. 



 

Figure 5. Natural and synthetic F0 curve for the utterance: “Armstrong tombe et s'envole”. 

4.4. Perceptual Evaluation 

Sixteen French listeners who had never listened to NAM participated in our perceptual tests on 

intelligibility and naturalness of the converted speech from the two systems. We used 20 test 

utterances not included in the training set. 

Each listener heard an utterance pronounced in modal speech and the converted utterances obtained 

from the whispered speech with both systems. For intelligibility testing, all parameters were 

obtained by voice conversion and synthesis was performed using STRAIGHT (Kawahara, Masuda-

Katsuse et al. 1999). For naturalness, the spectral parameters were original and the stimuli were 

obtained by substituting only predicted voicing and F0 values to the original warped target frames. 

This procedure was chosen because the quality of the converted spectrum could also influence the 

perception in the naturalness test. We wanted to make sure that we were testing F0 and voicing 

alone (not other potentially influential parameters). 

 For each utterance, listeners were asked which one was closer to the original one, in terms of 

intelligibility and in terms of naturalness. An ABX test (or matching-to-sample test) was used. It is 

a discrimination procedure involving presentation of two test items and a target item. The listeners 

are asked to tell which test item (A or B) is closest to the target (X). Figure 6.a displays the mean 

intelligibility scores for all the listeners for the converted sentences using the original system and 



our new system. An ANOVA showed that the intelligibility score is higher for the sentences 

obtained with our new system (F = 23.41, p <.001). Figure 6.b shows the mean naturalness. Again 

the proposed system is strongly preferred to the original one, as shown by an ANOVA (F = 74.89, p 

<.001). 

 

(a)                                                          (b) 

Figure 6. ABX results. (a) intelligibility ratings (b) naturalness ratings 

 

 

4.5. Influence of time window and LDA 

4.5.1. F0 estimation 

For this evaluation, the whispered frames are classified into 13 classes: unvoiced frames are 

labelled with „0‟ label and voiced frames fall into 12 other labels, depending on which interval the 

F0 value in this frame belongs to (bark scale between 70Hz and 300 Hz). The class of a whispered 

frame is deduced from the class of the corresponding speech frame using the warp path. The 

number of Gaussian mixtures for F0 estimation varied from 8 to 64 (8, 16, 32, 64). The size of the 

context window was also varied from the phoneme size (90 ms) to the syllable size (450 ms) (by 

picking one frame every 1-5 frames). 

Table 2 shows that using LDA and a large window size improves the precision of pitch estimation 

with respect to PCA with a small window. When using LDA with a window of 5, the F0 error 



decreases by 16% compared to our previous system with PCA and a small window size (10.90%  

9.15%). However, using LDA instead of PCA with the same context window size does not 

significantly improve the precision (9.17%  9.15%). 

Table 2. F0 difference (%) between converted and target speech. 

 

method 

window size 

(frame interval) 

Number of Gaussian mixtures 

 8 16 32 64 

 

 

PCA 

1 10.96 10.90 10.92 10.90 

2 10.77 10.41 10.29 10.44 

3 10.33 9.98 10.08 10.28 

4 9.90 9.58 9.47 9.82 

5 9.44 9.17 9.32 9.31 

 

 

LDA 

1 10.85 10.58 10.56 10.64 

2 10.36 10.23 10.11 10.36 

3 9.98 9.94 9.93 10.29 

4 9.45 9.43 9.62 9.67 

5 9.15 9.22 9.25 9.37 

 

Figure 7 shows an example of a natural (target) F0 curve and the synthetic F0 curves generated by 

the two systems (LDA + large context window vs. PCA + small context window). The predicted F0 

contour is closer to the natural F0 curve than the one generated by the reference system and also 

smoother. 

 

Figure 7. Comparing natural and synthetic F0 curves 



4.5.2. Spectral estimation 

We also evaluated the influence of LDA and long-term spectral variation to the spectral estimation. 

The phonetic segmentation was used here to perform the LDA: each whispered frame was classified 

into one of 34 classes, depending on which phonetic segment it belonged to. 

Table 3 provides the cepstral distortion between the converted and the target speech (the higher the 

distortion, the worse the performance). It shows that LDA is slightly better than PCA. But contrary 

to F0 estimation, the spectral distortion increases when the size of the time window increases. The 

most plausible interpretation is that a phoneme-sized window optimally contains necessary 

contextual cues for spectral conversion. 

Table 3.  Cepstral distortion (dB) between converted and target speech. 

 

method 

window size 

(frame interval) 

Number of Gaussian mixtures 

8 16 

 

PCA 

1 7.23 6.96 

2 7.20 7.01 

3 7.42 7.26 

4 7.25 7.55 

 

LDA 

1 6.96 6.83 

2 6.98 7.01 

3 7.03 7.17 

4 7.19 7.34 

 

5. Audiovisual conversion 

To convey a message, humans produce sounds by controlling the configuration of oral cavities. The 

speech articulators determine the resonance characteristics of the vocal tract during speech 

production. Movements of visible articulators such jaw and lips are known to significantly 

contribute to the intelligibility of speech during face-to-face communication (Summerfield 1979; 

Summerfield, MacLeod et al. 1989). In the field of person-machine communication, the visual 



information can be helpful both as input and output modalities (Bailly, Bérar et al. 2003; 

Potamianos, Neti et al. 2003). 

5.1. Audiovisual corpus 

An audiovisual conversion system was built using audiovisual data pronounced by a native 

Japanese speaker. The system captures, at a sampling rate of 50 Hz, the 3D positions of 142 

coloured beads glued on the speaker's face (see Figure 8) in synchrony with the acoustic signal 

sampled at 16000 Hz. 

 

Figure 8. Characteristic points used for capturing the movements. The mesh used to capture and train 

the texture model is superimposed to the original video-captured images. 

5.2. Visual parameters extraction and shape modelling 

A shape model is built using a so-called guided Principal Component Analysis (PCA) where a 

priori knowledge is introduced during the linear decomposition. We compute and iteratively 

subtract predictors using carefully chosen data subsets (Badin, Bailly et al. 2002). For speech 

movements and for each particular speaker and language, this methodology extracts 5 components 

that are directly related to the rotation of the jaw, to lip rounding, to upper and lower lip vertical 

movements and to movements of the throat that are associated with underlying movements of the 

larynx and hyoid bone. The resulting articulatory model also includes components for head 

movements and facial expressions but only components related to speech articulation are considered 

here. 



5.3. Contribution of visual parameters for the conversion system 

For this evaluation, the database consists of 150 sentences for training and 40 sentences for testing, 

pronounced by a native Japanese speaker. The audiovisual feature vector combines whispered 

spectral and visual feature vectors in an identical way to the AAM (Active Appearance Models) 

introduced by Cootes (Cootes, Edwards et al. 2001) where two distinct dimensionality reductions 

by PCA are performed in shape and appearance and further combined into a third PCA to get a joint 

shape and appearance model. Acoustic and visual features are fused here, using an identical 

process. The 0
th

 through 19
th

 mel-cepstral coefficients are used as spectral features at each frame. 

The input feature vector for computing speech spectrum is constructed by concatenating feature 

vectors at current ±8 frames and further reduced to a 40-dimention vector by a PCA. Similarly to 

the processing of the acoustic signal, each visual frame is interpolated at 200 Hz – so as to be 

synchronous with the audio processing – and characterized by a feature vector obtained by 

concatenating and projecting ±8 frames centred around the current frame on the first n principal 

components. The dimension of the visual vector n is set to 10, 20 or 40. Prior to joint PCA, the 

visual vector is weighted. The weight w was also changed from 0.25 to 2. The conversion system 

uses the first 40 principal components of this joint audiovisual vector. In the evaluation, the number 

of Gaussian is fixed at 16 for the spectral estimation, 16 for the F0 estimation and 16 for the 

aperiodic components estimation. 

Table 4. Influence of visual information on voicing decision. 

 

Type of error 

Feed-fwd NN (%) GMM (%) 

AU AUVI 

w = 1 w = 0.75 w = 0.5 w = 0.25 

Voiced error 3.71 3.58 3.74 3.34 2.75 4.29 

Unvoiced error 4.34 4.19 4.71 4.37 4.87 5.47 

Total 8.05 7.77 8.45 7.71 7.62 9.76 

 

5.3.1. Voicing decision 



In the same way as for the evaluation of voicing decision described in section 4.2, the audiovisual 

vectors of whisper in the training corpus of the conversion system are used to train the network. 

This network has 40 input neurons, 17 hidden neurons and 1 output neuron. Table 4 shows that 

visual information improves the accurateness of voicing decision. With a visual weight empirally 

set at 0.25, the voicing error is decreased by 5.4 % (8.05 %  7.62%) compared to audio-only and 

21.9 % compared with the baseline system (9.76 %  7.62%). 

Table 5. Influence of visual information on the estimation of spectral and excitation features. 

  Visual weight 

Distorsions Visual 

dimension 
Audio-

only 

0.25 0.5 0.75 1 1.25 1.5 1.75 2 Video-

only 

Cepstral 

distortion 

(dB) 

10  

5.99 

7.01 5.97 5.80 5.78 5.88 5.87 5.86 5.84  

9.28 20 7.01 5.97 5.79 5.77 5.86 5.83 5.95 5.89 

40 7.02 5.96 5.79 5.77 5.86 5.82 5.94 5.88 

F0 

estimation 

(%). 

10  

11.56 

14.55 12.44 11.42 10.99 11.71 12.75 14.24 15.77  

12.95 20 14.79 12.38 11.40 10.78 11.66 12.62 14.31 15.43 

40 14.57 12.39 11.04 10.76 11.66 12.62 14.33 15.46 

AP 

distortion 

(dB) 

10  

38.72 

         

51.45 20 41.42 38.25 37.79 37.55 37.33 38 37.90 37.95 

40 41.42 38.21 37.78 37.53 37.33 37.99 37.53 37.93 

 

5.3.2. Spectral and excitation estimations 

The visual information also enhances the performance of the conversion system. As shown in Table 

5, the best results are obtained with weighting equally acoustic and visual parameters (w = 1) and 

with the dimension of the visual vector equal to 40. The spectral distortion between the converted 

speech and the target speech is decreased by 3.7% (5.99 dB  5.77 dB) while the difference 

between the converted speech and that of target speech is decreased by 6.9 % (11.56 %  10.76 %) 

for F0 estimation and 3.6 % for aperiodic components estimation. 

Figure 9 shows an example of F0 curves converted from audio and audiovisual input whisper. With 

visual information as an additional input, we have a better converted F0. 



 

Figure 9. Natural and synthetic F0 curve converted from audio and audiovisual whisper 

5.3.3. Facial animation 

The audiovisual rendering of estimated visual parameters is performed by texturing the mesh 

piloted by the shape model introduced in section 5.2. An appearance model that computes a texture 

at each time frame is built using a technique similar to AAM (Cootes, Edwards et al. 2001) in three 

steps: (1) shape-free (SF) images are obtained by morphing key images to a reference mesh; (2) 

contrary to AAM, these pooled SF images are then directly linked to articulatory parameters via a 

multilinear regression; (3) the resulting appearance model is then used to compute a SF synthetic 

image given the set of articulatory parameter of each frame and used to texture the corresponding 

shape. The main difference with AAM is the direct multilinear regression used instead of a joint 

PCA and the number of configurations used: while AAM typically uses a few dozen images on 

which a generic mesh is adapted by hand or semi-automatically, we use here more than a thousand 

configurations on which the mesh is positioned automatically thanks to marked fleshpoints (Bailly, 

Bégault et al. 2008). The videorealistic audiovisual rendering of computed facial movements is 

illustrated in Figure 10.  



 

Figure 10. Video-realistic rendering of computed movements by statistical shape and appearance 

models driven by the same articulatory parameters. From left to right: original frame; its shape-free 

transform (note the texture distortion in the mouth region because the reference mesh is chosen with 

an open mouth) and three different synthesized frames sampling a bilabial closure (note the nice 

rendering of the inner mouth despite the linear modelling of the nonlinear appearance/disappearance 

of the inner parts, notably the teeth). 

5.3.4. Subjective evaluation 

Eight Japanese listeners participated in our perceptual tests on audiovisual converted speech. The 

stimuli consisted of Japanese VCV (with V chosen amongst five vowels and C amongst twenty-

seven consonants) sequences with four conditions: 

1. Speech generated from whispered audio (named „condition A from A‟) 

2. Speech generated from whispered audio and video („condition A from AV‟) 

3. Speech and facial animation generated from whispered audio („condition AV from A‟) 

4. Speech and facial animation generated from whispered audio and video („condition AV 

from AV‟) 

The five vowels were /a/, /i/, /e/, /o/, /u/. The 27 consonants were the following: /p/, /pj/, /b/, /bj/, 

/m/, /mj/, /d/, /t/, /s/, /ts/, /z/, /j/, /n/, /nj/, /k/, /kj/, /g/, /gj/, /f/, //, /t/, //, /h/, /hj/, /r/, /rj/, /w/. Only 

115 combinations of vowels and consonants were tested. 

Each participant heard and viewed a list of randomized synthetic audio and audiovisual VCV. For 

each VCV, she/he was asked to select what consonant she/he heard among a list of 27 possible 

Japanese consonants. Figure 11 provides the mean recognition scores for all the participants. Visual 

parameters significantly improve consonant recognition: the identification ratios for „AV from A‟ 

(28.37 %), „A from AV‟ (30.56 %) and „AV from AV‟ (36.21 %) are all significantly higher than 

that of the „A from A‟ condition (23.84 %) (F = 1.23, p < 0.303). The figure also shows that 



providing visual information to the speakers is more beneficial when it is synthesized from 

audiovisual data („AV from AV‟) than when it is derived from audio data alone („AV from A‟). 

Furthermore the addition of visual information in the input data („A from AV‟) increases 

identification scores compared with audio data alone („A from A‟), but is not significantly different 

from providing audiovisual information derived from the audio alone („AV from A‟). 

 

Figure 11. Mean Recognition ratio (F = 1.23, p < 0.303). 

Although adding visual information greatly increases the identification scores on all the tested 

VCVs, the scores are still quite low (less than 40%). It should be noted however that nonsense VCV 

recognition is a difficult task, especially in a language with a lot of consonants. It could therefore be 

argued that identification scores on words or sentences could be much higher, with the help of 

lexical, syntactic and contextual information. With this in mind, it could be interesting to check 

whether the addition of visual information provided in fact some cues to place of articulation, even 

if accurate phoneme detection was too difficult. Therefore we also grouped the consonants into 

different place of articulation categories to examine which consonantal groups benefited most from 

the addition of visual information. The 27 consonants were thus grouped into bilabials (/p/, /pj/, /b/, 

/bj/, /m/, /mj/), alveolars (/d/, /t/, /s/, /ts/, /z/, /j/, /n/, /nj/), palatals (/k/, /kj/, /g/, /gj/), non-alveolar 

fricatives (/f/, //, /t/, //) and others (/h/, /hj/, /r/, /rj/, /w/). The first aim was to check whether 



consonants belonging to the bilabial category, which are intrinsically more salient visually, were 

better identified as bilabial (be it /p/, /pj/, /b/, /bj/, /m/ or /mj/), when visual information was taken 

into account in the speech conversion procedure and when audiovisual stimuli were presented. The 

second aim was to examine what kind of perceptual confusions were observed.  

Figure 12 displays the evolution of the identification scores along the four conditions („A from A‟, 

„AV from A‟, „A from AV‟, „AV from AV‟) for the five articulatory groups. This articulatory 

grouping shows that visual information significantly helps the participants to identify bilabials. The  

identification ratio for the bilabial consonants rises from 11.67 % in the „A from A‟ condition to 

39.83 % in the „AV from AV‟ condition (F = 2.62, p < 0.079). The identification ratios for all the 

other groups are quite stable and are not significantly increased by the addition of visual 

information. 

Table 6 provides the confusion matrices with places of articulation chosen among 5   categories 

(bilabial, alveolar, palatal, fricative, or other), rather than among 27 individual consonants. 

Interestingly, the bilabial place of articulation, which is poorly identified in the „A from A‟ and „AV 

from A‟ conditions (less than 20 %), becomes quite well identified in the „AV from AV‟ condition 

(75 %). When the bilabial place of articulation is wrongly identified, it is most often mistaken for 

what we named “non-alveolar fricatives”, a group which contains labiodentals or rounded 

consonants. This suggests that the labial place of articulation remains quite perceptible. Table 6 also 

shows that the alveolar place of articulation is quite well recovered from the audio alone 

(approximately 60 %). Although its recovery does benefit from the addition of visual information, 

the „AV from AV‟ score does not reach as high a score as the one for the bilabial place of 

articulation (70.83 % vs. 75 %). We must recall here that the visual synthesis used in this study does 

not provide information on tongue movements, which could in fact be visible for alveolar 

consonants. This probably explains why the addition of visual information does not provide such a 

drastic improvement on the scores. The palatal place of articulation reaches a good score (above 50 



%) but does not benefit much from visual information, as could be expected. The other two groups 

do not benefit from visual information and are not well identified (less than 50 %). 

 

                  (a) bilabials (F = 2.62 , p < 0.079)                (b) non-alveolar fricatives (F = 0.17, p < 0.912) 

 

                   (c) alveolars (F = 0.16, p < 0.922)                    (d) palatals (F = 0.3 , p < 0.822) 

 

(e) others (F = 0.42, p < 0.744) 



Figure 12. Recognition ratios for different groups of consonants, classified according to their places of 

articulation. 

Table 6. Confusion matrices for the 5 places of articulation in the 4 conditions 

   bilabial alveolar palatal fricative other 

A from A bilabial 18.29 10.86 22.86 34.86 13.14 

 alveolar 2.38 59.52 11.90 8.73 17.46 

 palatal 3.86 15.44 54.83 12.74 13.13 

 fricative 0.95 25.71 21.90 47.62 3.81 

 other 5.00 20.71 25.71 9.29 39.29 

       

AV from A bilabial 15.00 10.50 28.00 36.50 10.00 

 alveolar 3.47 65.97 9.03 9.72 11.81 

 palatal 2.36 16.89 65.20 9.12 6.42 

 fricative 0.83 21.67 27.50 49.17 0.83 

 other 7.50 19.38 27.50 10.63 35.00 

       

A from AV bilabial 32.57 5.14 20.57 30.29 11.43 

 alveolar 0.79 63.49 15.87 6.35 13.49 

 palatal 6.56 13.51 57.14 12.74 10.04 

 fricative 3.81 21.90 24.76 47.62 1.90 

 other 5.00 20.00 21.43 6.43 47.14 

       

AV from AV bilabial 75.00 1.00 9.50 10.50 4.00 

 alveolar 0.69 70.83 11.81 2.78 13.89 

 palatal 1.01 17.91 62.84 10.14 8.11 

 fricative 0.83 23.33 26.67 47.50 1.67 

 other 4.38 16.88 25.00 6.88 46.88 

 



6. HMM-based whisper-to-speech conversion 

6.1. Conversion system overview 

In order to compare the performance of the GMM-based voice conversion technique with the 

approach combining NAM recognition and speech synthesis (Hueber, Chollet et al. 2007; Hueber, 

Chollet et al. 2007), an HMM-based whisper-to-speech conversion system was developed. It 

combines HMM recognition and synthesis: instead of a corpus-based synthesis, we in fact use 

HMM synthesis (Tokuda, Yoshimura et al. 2000). The voice conversion is performed in three steps: 

1. Using aligned training utterances, the joint probability densities of source and target 

parameters are modelled by context-dependent phone-sized HMM. Because of limited 

training data, we only used the right context, where subsequent phonemes are classified 

coarsely into 3 groups for vowels ({/a/},{/i/,/e/},{/u/,/o/} without distinguishing between 

long and short vowels), 2 groups for consonants and 2 groups for utterance-final and -

internal silences. Joint observations of each HMM state are modelled with one Gaussian 

with a diagonal covariance matrix. 

2. HMM recognition is performed using the source stream with the HTK toolkit (Young, 

Kershaw et al. 1999). The linguistic model is limited to phone bi-grams learnt on the 

training corpus. 

3. HMM synthesis of the recognized context-dependent phone sequence and target stream is 

performed using the HTS software (Tokuda, Yoshimura et al. 2000; Zen, Nose et al. 2007). 

6.2. Experiments and results 

The same Japanese data (cf. section 5.1) are used: 150 utterances for training and 40 utterances for 

test. The 0
th

 through 19
th

 mel-cepstral coefficients and their deltas are used as spectral features for 

both aligned speech and whisper. With a recognition rate of 68.17 % for the input whisper, the 

spectral distortion between converted speech and target speech is 6.46 dB, compared with 5.99 dB 



for the GMM-based system. Note that our recognition rate is quite similar to the 60 % obtained by 

Hueber et al. (Hueber, Chollet et al. 2007) using context-independent phones and multimodal input. 

The degradation, compared with the GMM-based system, could be explained by the low 

recognition rate which could be improved by using Gaussian mixtures and more contextual 

information to expand HMM modelling. 

7. Conclusion and perspectives 

This paper proposes several solutions to improve the intelligibility and the naturalness of the speech 

generated by a whisper-to-speech conversion system. The original system proposed by Toda et al. is 

based on a GMM model predicting the three parametric streams of the STRAIGHT speech vocoder 

(F0, harmonic and noise spectrum) from spectral characterization of the non-audible-murmur input. 

The first improvement concerns characteristics of the voiced source. We have shown that the 

estimation of voicing and F0 by separate predictors improves both predictions. We have also shown 

that F0 prediction is improved by the use of a large input context window (>400 ms) compared to 

the original smaller window (90ms). Predictions of all parametric streams are further improved by a 

data reduction technique that makes use of the phonetic structure of the speech stream. 

The second part of the paper compared objective and subjective benefits offered by multimodal 

data. Improvements obtained by adding visual information in the input stream as well as including 

articulatory parameters in the output facial animation are very significant. 

We will explore several other research directions in the near future: we first plan to use two NAM 

microphones and source separation techniques to have better signal-to-noise ratios in the input. 

Source separation can benefit from the joint audiovisual model implicitly captured by the voice 

conversion system. Such a model can in fact provide very efficient a priori information for source 

deconvolution techniques (Sodoyer, Girin et al. 2004). Finally the voice conversion system can also 

benefit from other input sources such as ultrasound imaging, surface EMG or EEG 



(electroglottography) that can provide additional information on the underlying articulatory speech 

movements. 

A short-term perspective is to develop a portable real-time voice conversion system that will allow 

us to conduct usage studies and test several experimental variables that are still unexplored, notably 

the impact of auditory feedback – using the amplified NAM signal or predicted speech - on silent 

speech production as well as that of conversion delay on production and conversation. 
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