How to Reject Unknown Disturbances Using Adaptive Feedback Control Application to Active Vibration Control

I.D. Landau, A. Constantinescu Laboratoire d'Automatique de Grenoble(INPG/CNRS), France

Outline

- Rejection of unknown stationary disturbances
- Indirect adaptive control
- Direct adaptive control
- Rejection of unknown narrow band disturbances in active vibration control. Real-time results
- Conclusions

Unknown disturbance rejection

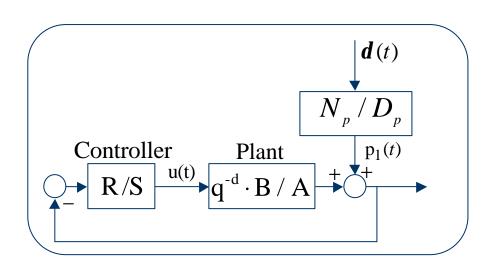
- **Problem:** Attenuation of unknown and/or variable stationary disturbances
- **Solution:** Adaptive feedback control
- **Methodology:** Based on the *Internal Model Principle*
 - Indirect adaptive control algorithm
 - Direct adaptive control algorithm
- **Objective:** Computation of a controller with an adaptive internal model of the disturbance

Rem:

Stationary disturbances models have poles on the unit circle

Hypothesis: Plant model parameters are constant and known

Closed loop system. Notations



$$p_{1}(t) = \frac{N_{p}(q^{-1})}{D_{p}(q^{-1})} \cdot \boldsymbol{d}(t) : \text{deterministic disturbance}$$

 $D_p \rightarrow \text{poles on the unit circle}; d(t) = \text{Dirac}$

Controller:

$$R(q^{-1}) = R'(q^{-1}) \cdot H_R(q^{-1});$$

$$S(q^{-1}) = S'(q^{-1}) \cdot H_s(q^{-1}).$$

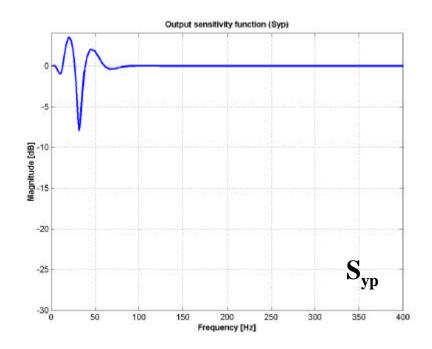
Internal model principle: $H_S(z^{-1})=D_p(z^{-1})$

Output:
$$y(t) = \frac{A(q^{-1})S(q^{-1})}{P(q^{-1})} \cdot p_1(t) = S_{yp}(q^{-1}) \cdot p_1(t)$$

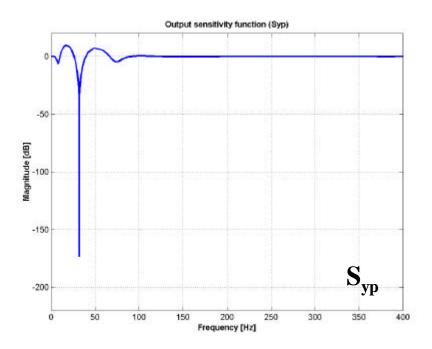
$$y(t) = \frac{A(q^{-1})S'(q^{-1})S'(q^{-1})N_p(q^{-1})}{P(q^{-1})} \cdot \frac{1}{D_p(q^{-1})} \cdot d(t)$$
CL poles: $P(q^{-1}) = A(q^{-1})S(q^{-1}) + z^{-d}B(q^{-1})R(q^{-1})$

Internal Model Principle: $H_S(z^{-1})=D_p(z^{-1})$

Controller without internal model $H_S=1$



Controller with internal model at 32 Hz H_S : (f=32 Hz, ζ =0)



Indirect adaptive control

Two-step methodology:

- 1. Identification of the disturbance model, $D_p(q^{-1})$
- 2. Computation of the controller, considering $H_s(q^{-1}) = \hat{D}_p(q^{-1})$

Indirect adaptive control

Example: Sinusoidal (narrow band) disturbance

Step I : Estimation of D_P

Sinusoid
$$\to$$
 ARMA with $n_{D_p} = 2$: $D_p(q^{-1}) = 1 + d_{p_1}q^{-1} + d_{p_2}q^{-2}$; $N_p(q^{-1}) = 1 + n_{p_1}q^{-1}$.

Output: $y(t+1) = -d_{p_1} y(t) - d_{p_2} y(t-1) + n_{p_1} e(t) + e(t+1),$ where e(t) = gaussian white noise.

A priori predictor:
$$\hat{y}^0(t+1) = \hat{\boldsymbol{q}}^T(t) \cdot \boldsymbol{f}(t)$$
; A posteriori predictor: $\hat{y}(t+1) = \hat{\boldsymbol{q}}^T(t+1) \cdot \boldsymbol{f}(t)$, where $\hat{\boldsymbol{q}}^T(t) = [\hat{d}_{p_1}(t) \quad \hat{d}_{p_2}(t) \quad \hat{n}_{p_1}(t)]$; $\boldsymbol{f}^T(t) = [-y(t) \quad -y(t-1) \quad \boldsymbol{e}(t)]$.

A priori error: $e^{0}(t+1) = y(t+1) - \hat{y}^{0}(t+1)$; *A posteriori* error: $e(t+1) = y(t+1) - \hat{y}(t+1)$

Parametric adaptation algorithm
$$\Rightarrow \begin{cases} \hat{q}(t+1) = \hat{q}(t) + F(t+1)f(t)e^{0}(t+1); \\ F(t+1) = \text{adaptation gain.} \end{cases}$$

Indirect adaptive control

Step II: Computation of the controller Solving Bezout equation (for S' and R)

$$H_{S} = \hat{D}_{p}$$
 $A\hat{D}_{p}S'+q^{-d}BR = P$
 $S = D_{p}S'$

Direct adaptative control (Q-parameterization)

Nominal contr: $[R_0(q^{-1}), S_0(q^{-1})]$.

Bezout: $P(q^{-1})=A(q^{-1})S_0(q^{-1})+q^{-d}B(q^{-1})R_0(q^{-1})$

Control: $S_0(q^{-1}) u(t) = -R_0(q^{-1}) y(t)$

Q-parameterization:

 $R(z^1)=R_0(q^{-1})+A(q^{-1})Q(q^{-1});$

 $S(q^{-1})=S_0(z^{-1})-q^{-d}B(q^{-1})Q(q^{-1}).$

 $Q(q^{-1})$ computed such as $[R(q^{-1}),S(q^{-1})]$

contain the internal model of the disturb.

$$S_0 - q^{-d}BQ = MD_p$$

Control: $S_{0}(q^{-1}) \ u(t) = -R_{0} \ (q^{-1}) \ y(t) - Q \ (q^{-1}) \ w(t),$ where $w(t) = A \ (q^{-1}) \ y(t) - q^{-d} B \ (q^{-1}) \ u(t).$ N_{p} / D_{p}

Direct Adaptive Control (unknown D_p)

(Based on an ideea of Y. Z. Tsypkin)

Hypothesis: Identified (known) plant model (A,B,d).

Goal: minimize y(t).

Consider $p_1(t) = \frac{N_p(q^{-1})}{D_p(q^{-1})} \cdot \boldsymbol{d}(t)$: deterministic disturbance.

$$y(t) = \frac{A(q^{-1})[S_{0}(q^{-1}) - q^{-d}B(q^{-1})Q(q^{-1})]}{P(q^{-1})} \cdot \frac{N_{p}(q^{-1})}{D_{p}(q^{-1})} \cdot \boldsymbol{d}(t)$$

$$\mathbf{e}(t) = \frac{S_0(q^{-1})}{P(q^{-1})} \cdot w(t) - \frac{q^{-d}B(q^{-1})}{P(q^{-1})} Q(q^{-1}) \cdot w(t).$$

Let $\hat{Q}(t,q^{-1})$ be an estimated value of $Q(q^{-1})$

We can show that

$$e(t+1) = [Q(q^{-1}) - \hat{Q}(t+1, q^{-1})] \cdot \frac{q^{-d} B^*(q^{-1})}{P(q^{-1})} \cdot w(t) + v(t+1)$$

$$(v(t+1) = \text{disturbanc e term} \to 0)$$

The Algorithm

A priori adaptation error:
$$\mathbf{e}^{0}(t+1) = w_{1}(t+1) - \hat{\mathbf{q}}^{T}(t)\mathbf{f}(t);$$

A posterioriadaptation error: $\boldsymbol{e}(t+1) = w_1(t+1) - \hat{\boldsymbol{q}}^T(t+1)\boldsymbol{f}(t),$

where

$$\hat{q}^{T}(t) = [\hat{q}_{0}(t) \quad \hat{q}_{1}(t)]; \quad f^{T}(t) = [w_{2}(t) \quad w_{2}(t-1)], \quad \text{(for } n_{Q} = 1)$$

and

$$w_1(t+1) = \frac{S_0(q^{-1})}{P(q^{-1})} \cdot w(t+1);$$

$$w_2(t) = \frac{q^{-d} B^*(q^{-1})}{P(q^{-1})} \cdot w(t);$$

$$w(t+1) = A(q^{-1}) \cdot y(t+1) - q^{-d}B^*(q^{-1}) \cdot u(t);$$

$$B(q^{-1}) \cdot u(t+1) = B^*(q^{-1}) \cdot u(t).$$

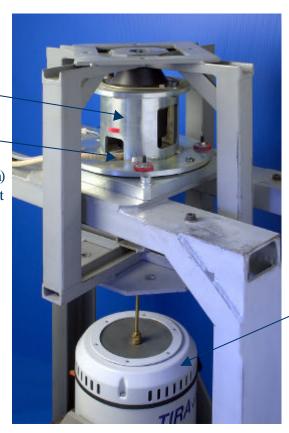
Parameter adaptation algorithm:

$$\begin{cases} \hat{\boldsymbol{q}}(t+1) = \hat{\boldsymbol{q}}(t) + F(t+1)\boldsymbol{f}(t)\boldsymbol{e}^{0}(t+1); \\ F^{-1}(t+1) = \boldsymbol{l}_{1}(t)F^{-1}(t) + \boldsymbol{l}_{2}(t)\boldsymbol{f}(t)\boldsymbol{f}^{T}(t). \end{cases}$$

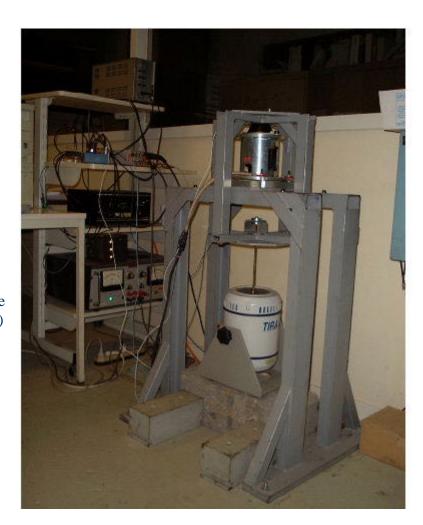
The Active Suspension

Active suspension

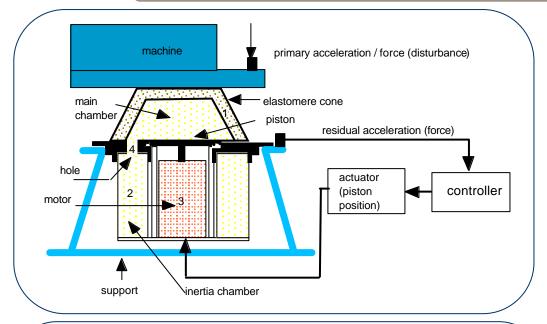
Residual — force (acceleration) measurement



Primary force (acceleration)
(the shaker)

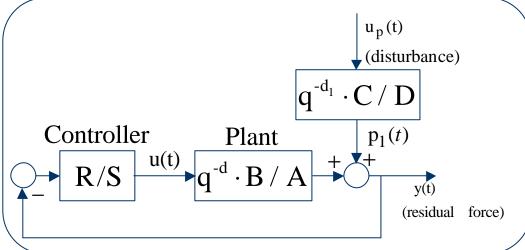


The Active Suspension System



Two paths:

- Primary
- •Secondary (double differentiator)



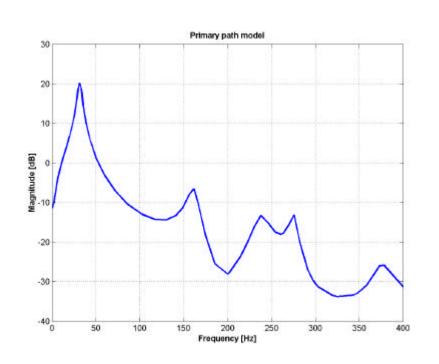
$$T_s = 0.00125 \, s$$

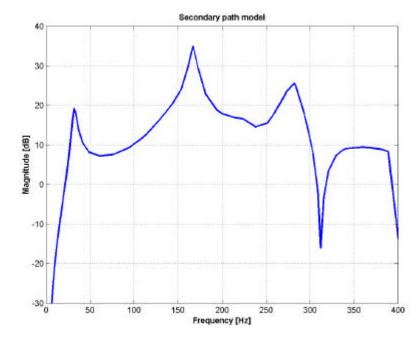
Active Suspension

Frequency Characteristics of the Identified Models

Primary path

Secondary path





$$n_A = 14$$
; $n_B = 16$; $d = 0$

V. Real-time results

Narrow band disturbances = variable frequency sinusoid \mathbf{P} $n_Q = 1$ Frequency range: 25 , 47 Hz

Evaluation of the two algorithms in real-time

Nominal controller $[R_0(q^{-1}), S_0(q^{-1})]: n_{R_0}=14, n_{S_0}=16$

Implementation protocol 1: Self-tuning

- The algorithm stops when it converges and the controller is applied.
- It restarts when the variance of the residual force is bigger than a given threshold.
- As long as the variance is not bigger than the threshold, the controller is constant.

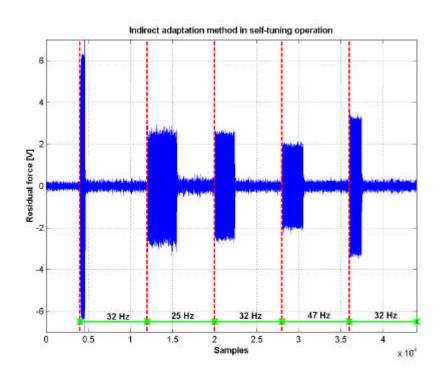
Implementation protocol 2: Adaptive

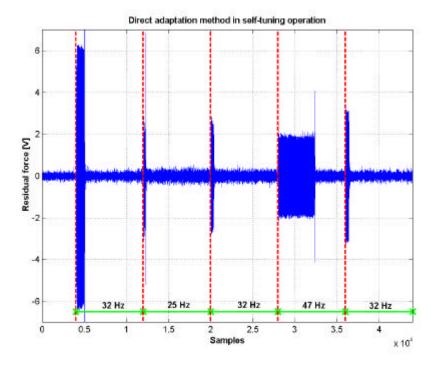
- The adaptation algorithm is continuously operating
- The controller is updated at each sample

Time Domain Results Self-tuning Operation

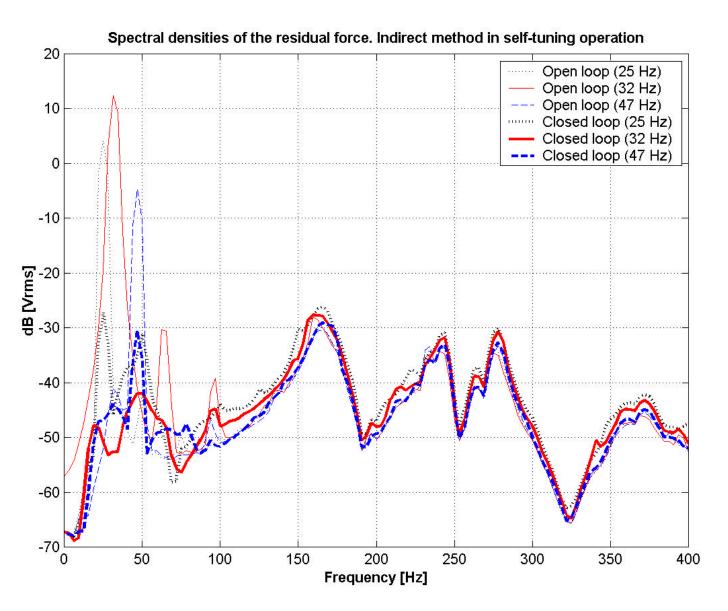
Indirect adaptive method

Direct adaptive method



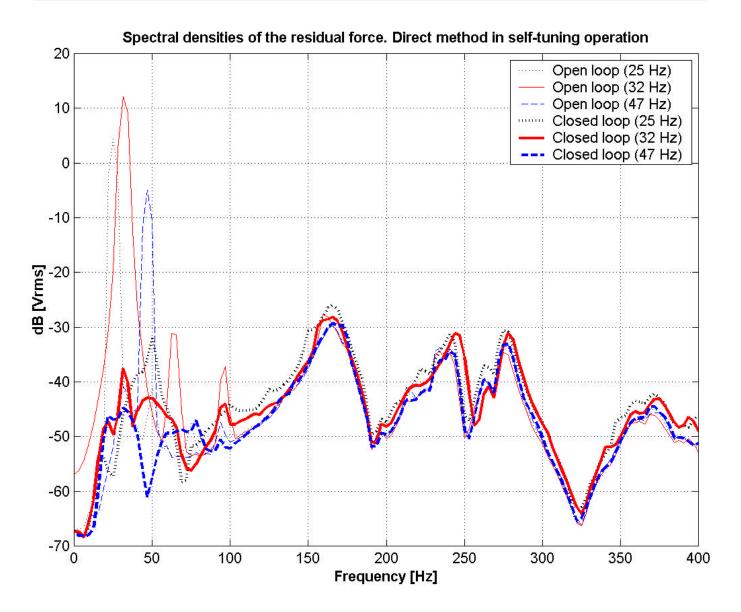


Frequency domain results – indirect adaptive method



17

Frequency domain results – direct adaptive method



I.D. Landau, A.Constantinescu: Adaptive rejection of unknown disturbances

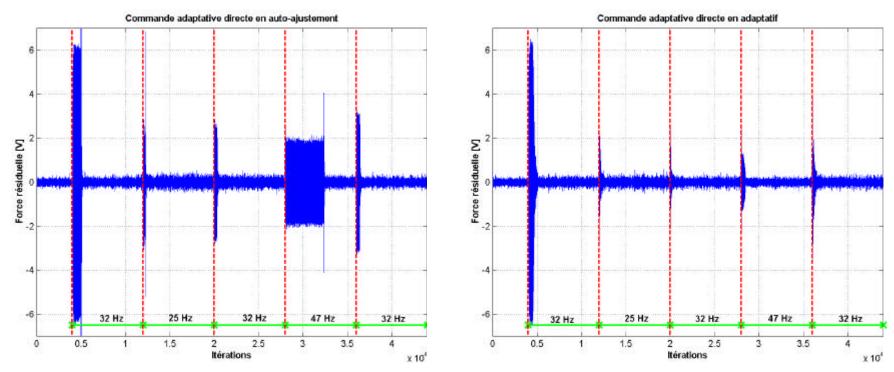
Real-time performances – indirect and direct methods

Method	Indirect			Direct		
Frequency [Hz]	25	32	47	25	32	47
Attenuation [dB]	31.32	64.23	25.72	61.65	49.64	55.79

Direct Adaptive Control

Self-tuning Mode

Adaptative Mode



- •Direct adaptive control in adaptive mode operation gives better results than direct adaptive control in self-tuning mode
- •Direct adaptive control leads to a much simpler implementation than indirect adaptive control

Conclusions

- -Using internal model principle, adaptive control solutions can be provided for the tejection of unknown disturbances
- -Both direct and indirect solutions can be provided
- -Two modes of operation can be used : self-tuning and adaptive
- -Direct adaptive control is the simplest to implement
- -Direct adaptive control offers better performance
- -The methodology has been extensively tested on an active suspension system