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Abstract. Given two Digital Straight Segments (DSS for short) of known
minimal characteristics, we investigate the union of these DSSs: is it still
a DSS ? If yes, what are its minimal characteristics ? We show that the
problem is actually easy and can be solved in, at worst, logarithmic time
using a state-of-the-art algorithm. We moreover propose a new algorithm
of logarithmic worst-case complexity based on arithmetical properties.
But when the two DSSs are connected, the time complexity of this algo-
rithm is lowered to O(1) and experiments show that it outperforms the
state-of-the art one in any case.
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1 Introduction

Digital Straight Lines (DSL) and Digital Straight Segments (DSS) have been
used for many years in many pattern recognition applications involving digital
curves. Whether it be for polygonal approximation or to design efficient and pre-
cise geometric estimators, a basic task is the so-called DSS recognition problem:
given a set of pixels, decide whether this set is a DSS and compute its character-
istics. Many linear-in-time algorithms have been proposed to solve this problem
through the years. Furthermore, Constructive Solid Geometry-like operations
have been considered for these objects: the intersection of two DSL has been
studied in [15, 16, 8, 5], algorithms for the fast computation of subsegments were
described in [9, 17]. Surprisingly enough, the union of DSSs has not yet been
studied. The problem was raised in [2] in the context of parallel recognition of
DSSs along digital contours. The recognition step was followed by a merging
step where the problem of DSSs union appeared. In this work, we show how to
solve this problem, both using state-of-the-art algorithm, and proposing a new
and faster algorithm.
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(Grant agreement ANR-11-BS02-009)



2 General considerations

2.1 Preliminary definitions

A Digital Straight Line (DSL for short) of integer characteristics (a, b, µ) is the
infinite set of digital points (x, y) ∈ Z2 such that 0 ≤ ax− by+µ < max(|a|, |b|)
[4]. These DSL are 8-connected and often called naive. The fraction a

b is the
slope of the DSL, and µ

b is the shift at the origin. In the following, without loss of
generality, we assume that 0 ≤ a ≤ b. The remainder of a DSL of characteristics
(a, b, µ) for a given digital point (x, y) is the value ax − by + µ. The upper
(resp. lower) leaning line of a DSL is the straight line ax − by + µ = 0 (resp.
ax − by + µ = b − 1). Upper (resp. lower) leaning points are the digital points
of the DSL lying on the upper (resp. lower) leaning lines. A Digital Straight
Segment (DSS) is a finite 8-connected part of a DSL.

If we consider the digitisation process related to this DSL definition, the
points of the DSL L of parameters (a, b, µ) are simply the grid points (x, y) lying
below or on the straight line l : ax−by+µ = 0 (Object Boundary Quantization),
and such that the points (x, y+1) lie above l. Otherwise said, line l separates the
points X of the DSL from the points X+(0, 1) [14], and is called separating line.
More generally, for an arbitrary set of digital points X, the separating lines are
the lines that separate the points X from the points X + (0, 1). In other words,
the separating lines separate the upper convex hull of X from the lower convex
hull of X + (0, 1). Computing the set of separating lines of two polygons is a
very classical problem of computational geometry. It is well known that specific
lines called critical support lines can be defined: there are the separating lines
passing through a point of each polygon boundary. Critical support points are
the points of the polygons belonging to critical support lines [12].

All the separating lines of a DSL have the same slope, but this is not true
for arbitrary sets of digital points. The minimal characteristics of a set of digital
points X are the characteristics of the separating line of minimal b and minimal
µ. The set of separating lines of a DSS is well known, and the critical support
points are exactly defined by the DSS leaning points: they define the minimal
characteristics of the DSS.

The set of separating lines of a set of points X can also conveniently be
defined in a dual space, also called parameter space. In this space a straight
line l : αx − y + β = 0 is represented by the 2D point (α, β). Given a set of
digital points X, a line l : αx − y + β = 0 is a separating line if and only if for
all (x, y) ∈ X, 0 ≤ αx − y + β < 1. This definition is strictly equivalent to the
one given previously. The preimage of X is the representation of its separating
lines in the dual space and is defined as P(X) = {(α, β), 0 ≤ α ≤ 1, 0 ≤ β ≤
1| ∀(x, y) ∈ X, 0 ≤ αx− y+ β < 1}. The set of separating lines of a set of pixels
is an open set in the digital space, but it is a convex polygon in the dual space.
In this work, this dual space will not be used explicitly in the algorithms, but
we will see that this representation is convenient in some proofs. Moreover, the
arrangement of all the constraints for any pixel (x, y) with y ≤ x ≤ n is called
Farey Fan [10] of order n: each cell of this arrangement is the preimage of a DSS



of length n. Figure 1 is an illustration of the separating lines of a DSS, both in
the digital space and in the dual space: they separate the points X of the DSS in
black, from the points X + (0, 1) in white. Note that the edges of the preimage
of a DSS are exactly supported by the dual representation of its leaning points,
or equivalently its critical support points.
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Fig. 1. (a) DSS of minimal characteristics (1, 3, 1) with its leaning points Uf , Ul, Lf , Ll.
(b) Each vertex of the preimage maps to a straight line in the digital space. The vertex
B( 1

3
, 1
3
) maps to the upper leaning line, the characteristics of which are the minimal

characteristics of the DSS.

2.2 Setting the problem and useful properties

Consider now the following problem :

Problem 1. Given two DSSs S1 = [P1Q1] and S2 = [P2Q2] of known minimal
characteristics, decide if there exists a DSL containing both S1 and S2. If yes,
compute the minimal characteristics of S1 ∪ S2.

If S1 and S2 do not belong to the same octant, then it is easy to conclude
that there is no DSL containing both S1 and S2. Thus, in the following S1 and
S2 belong to the first octant, i.e. we have S1(a1, b1, µ1) and S2(a2, b2, µ2) with
0 ≤ a1 ≤ b1 and 0 ≤ a2 ≤ b2. We denote by ri(x, y) = aix− biy + µi, i ∈ {1, 2}
the remainder function of each DSS.

In what follows, we moreover suppose that the leaning points of S1 and S2

are known as input data. This is not a strong requirement since the most efficient
recognition algorithms actually compute this data on the fly.

By convention, we also suppose that the abscissa of Q2 is greater than the
abscissa of Q1. Note that we make no assumption on the connectivity of S1

and S2: the abscissa of P2 can be lower than, equal to or greater than the
abscissa of Q1. If the abscissa of P2 is lower than the abscissa of P1, then the



problem is trivial since S1 is either a subsegment of S2 or the union is impossible.
Consequently, we also assume that the abscissa of P2 is greater than the abscissa
of P1.

The first part of Problem 1 consists in deciding if there exists a separating
line for the set S1 ∪ S2: we will say that the union is possible in this case. If so,
then among all the separating lines, the final goal is to find the one with minimal
characteristics.

Property 1. The preimage of S1 ∪ S2 is equal to the intersection between the
preimages of S1 and S2.

Proof. The proof is straightforward since the lines that are separating for S1∪S2

are the ones that are separating for S1 and S2.

Corollary 1. The critical support points of the set of separating lines of S1∪S2

are either upper leaning points or lower leaning points translated by (0, 1) of S1

and S2. Thus, to compute the set of separating lines of S1 ∪ S2, it is enough
to update the set of separating lines of S1 with the leaning points of S2 (or
conversely).

Proof. The critical support points are, in the dual space, lines supporting the
edges of the preimage. From Property 1, the lines supportting the edges of P(S1∪
S2) are lines supporting the edges of P(S1) or P(S2). However, since S1 and S2

are DSSs, the edges of their preimages are supported by the dual representation
of either upper leaning points or lower leaning points translated by (0, 1).

3 Fast Union of DSSs: an arithmetical algorithm

3.1 Fast computation of the set of separating lines

A first straightforward solution to compute the set of separating lines of S1 ∪
S2 is to use the state-of-the-art algorithm of O’Rourke [11], re-interpreted in
the digital space by Roussillon [14]. Whether it be in the dual space or in the
digital space, these algorithms update the critical support points iteratively for
each point added. Since at most four points have to be considered in our case,
the algorithm is already quite efficient compared to the classical arithmetical
recognition algorithm for instance. However, we propose an algorithm that is
both faster and simpler to implement, in the spirit of the arithmetical recognition
algorithm.

The idea is the following: if we know that the slopes of the separating lines of
S1 ∪S2 are greater/lower than the slopes (given by the minimal characteristics)
of S1 and S2 respectively, then we can conclude that some leaning points of S1

or S2 cannot be critical support points for S1 ∪ S2.

Property 2. Let S1 be a DSS of minimal characteristics (a1, b1, µ1). Let L1f , L1l,
U1f , U1l be its first and last, lower and upper leaning points. If all the separating
lines of S1 ∪ S2 have a slope greater (res. lower) than a1

b1
, then U1l (resp. U1f )

and L1f (resp. L1l) are not critical support points for S1 ∪ S2.



Proof. If all the separating lines of S1 ∪ S2 have a slope lower than a1
b1

, then,
in the dual space and from Property 1, P(S1 ∪ S2) is a subpart of the triangle
defined by the vertices ABD (see Figure 1(b)). In particular, the edges [BC]
and [DC] of P(S1) supported by U∗1f and L∗1l respectively cannot be edges of
P(S1 ∪ S2). Therefore, the leaning points U1f and L1l are not critical support
points for S1 ∪S2. The proof is the same if we suppose that the separating lines
all have a slope greater than a1

b1
.

Note that if S1 has three leaning points only, let’s say for instance only one
lower leaning point L1, then setting L1l and L1f to L1 (L1 is “duplicated”),
the property is also valid. A similar result holds when the leaning points of
S2 are considered. However, guessing the slope of the union can be tricky, and
taking into account only the DSS slopes is not enough. For example, it is easy to
exhibit cases where the slope of S2 is greater than the slope of S1, and the slope
of S1 ∪ S2 is nevertheless lower than both the slope of S1 and the slope of S2

(see Figure 2(a)). We establish hereafter some properties linking the remainder
of the leaning points of S2 and the slope of the separating lines for S1 ∪ S2 if
they exist.
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Fig. 2. (a) The slope of S1 is equal to 2
5

and lower than the slope of S2, which is equal
to 1

2
. However, the slope of S1∪S2 is equal to 3

8
and smaller than both. (b) Illustration

of Property 4.

Let’s start with a very simple consideration.

Property 3. If for all the leaning points P of S2 (resp. S1), we have 0 ≤ r1(P ) <
b1 (resp. 0 ≤ r2(P ) < b2), then there exists a DSL containing S1 ∪ S2 and its
minimal characteristics are the one of S1 (resp. S2).

Proof. In the dual space, the points B and D of the preimage of S1 satisfy all
the constraints related to the points P defined as above, which ends the proof.

With the following property, we investigate the other cases.



Property 4. Let P be a leaning point of S2.

– if r1(P) ≥ b1, the slope of all the separating lines for S1∪S2, if any, is lower
than the slope of S1

– if r1(P) < 0, the slope of all the separating lines for S1∪S2, if any, is greater
than the slope of S1

Let P be a leaning point of S1.

– if r2(P) ≥ b2, the slope of all the separating lines for S1 ∪ S2, if any, is
greater than the slope of S2

– if r2(P) < 0, the slope of all the separating lines for S1 ∪S2, if any, is lower
than the slope of S2

Proof. We prove the first item, for a leaning point of S2 with a remainder greater
than or equal to b1. Proving the other cases is similar. Consider a point P ∈ S2

such that r1(P ) ≥ b1. Let us consider the stripe defined by the constraints
related to this point in the dual space. It is very simple to see that the point
(a1b1 ,

µ1

b1
) is above this stripe (see Figure 2(b)). Since P does not belong to S1,

and with the assumptions made in Section 2.2 on the relative position of S1 and
S2, its abscissa is greater than the abscissas of all the leaning points of S1. This
means that the intersection, if not empty, between the stripe and P(S1) lies in
the subspace α < a1

b1
.

Table 1 summarises the computation of the four possible critical support
points combining Properties 2 and 4. Figure 6 in Appendix illustrates the first
line of this table.

remainder
value

< 0 ≥ b

P ∈ S2 r1(P ) (Uf , Lf ) = (U1f , L1l) (Uf , Lf ) = (U1l, L1f )

P ∈ S1 r2(P ) (Ul, Ll) = (U2l, L2f ) (Ul, Ll) = (U2f , L2l)
Table 1. Possible critical support points according to remainder values

At this point, we have identified four points denoted by Uf , Ul, Lf and Ll,
that may be critical support points for S1 ∪ S2. However, they may not be all
critical support points. Since the preimage of S1 ∪S2 is a convex polygon, it has
at least three edges and thus, at least three out of the four possible points are
indeed critical support points. Property 5 gives a way to decide whether the four
points are critical support points or not.

Property 5. Uf and Ul (resp. Lf and Ll) are both critical support points if and
only if Lf and Ll (resp. Uf and Ul) belong to the DSL of directional vector
Ul −Uf (resp. Ll −Lf ) and upper (resp. lower) leaning points Uf and Ul (resp.
Lf and Ll).



Proof. Uf and Ul are both critical support points is equivalent to say that the
straight line (UfUl) is separating for S1 ∪ S2. This is also equivalent to the fact
that Lf and Ll belong to the DSL as defined in the property statement.

If the four points are not all critical support points, the three critical support
points are identified using Property 6.

Property 6. Let Uf , Ul, Lf and Ll be the four possible critical support points
for S1 ∪ S2. If they are not all critical support points, then:

– if Uf and Ul are both critical support points then:
• if the slope of (UfUl) is lower than the slope of (LfLl), Lf is the third

critical support point ;
• otherwise, Ll is the third critical support point ;

– if Lf and Ll are both critical support points then:
• if the slope of (LfLl) is greater than the slope of (UfUl), Uf is the third

critical support point ;
• otherwise, Ul is the third critical support point ;

Proof. We write the proof for the case where Uf and Ul are both critical support
points. The other case is similar.

Consider the dual representation of the points Uf and Ul, denoted by U∗f
and U∗l . By hypothesis, these two lines support edges of P(S1 ∪ S2). Consider
now the dual representation of the points Lf + (0, 1) and Ll + (0, 1), denoted
by L∗f+ and L∗l+. The third edge of P(S1 ∪ S2) is a segment of either L∗f+ or
L∗l+. We suppose now that the slope of (UfUl) is lower than the slope of (LfLl)
and illustrate the rest of the proof with Figure 3. Then, the abscissa of point
D = L∗f+ ∩ L∗l+ is greater than the abscissa of point B = U∗f ∩ U∗l (it lies in
the light-gray half-space on Figure 3). It is now easy to see that if D is above
the line U∗f , then both L∗f+ and L∗l+ support edges of P(S1 ∪ S2), which is not
possible by hypothesis. Then, D is below the line U∗f , which implies that the
third edge of the preimage is a segment of L∗f+, and equivalently Lf is the third
critical support point.

3.2 Pulling out the minimal characteristics

In the previous section, we showed how to efficiently compute the three or four
critical support points of S1∪S2. These points also define the preimage of S1∪S2.
Until now, the results were valid whether the two DSSs were connected or not. In
order to compute the minimal characteristics, we have to consider several cases.

Input DSSs are connected We consider here the case where the first point
of S2 is either a point of S1 or 8-connected to the last point of S1. In this case,
if there exists a DSL containing S1 ∪ S2, then S1 ∪ S2 is a DSS of length n, the
difference of abscissa between the first point of S1 and the last point of S2. As
a consequence, P(S1 ∪ S2) is a cell of the Farey Fan of order n, with very well-
known properties. In particular, the critical support points computed in Section
3.1 are exactly the leaning points of the DSS.
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Fig. 3. Illustration of the proof of Property 6.

S1 last point and S2 first point have the same ordinate We show that
this case is actually as easy as the previous one.

Property 7. If the last point of S1 and the first point of S2 have the same ordi-
nate, then P(S1 ∪S2) is a unique cell of the Farey Fan of order n, the difference
of abscissa between the last point of S2 and the first point of S1.

Proof. In a DSS, the edges of the preimage are defined by the leaning points only.
Actually, the preimage of a DSS is equal to the preimage of its leaning points,
all the other points make no contribution. If the last point of S1 and the first
point of S2 have the same ordinate, then all the missing points between these
two points also have this same ordinate. Consequently, they cannot be neither
lower nor upper leaning points for any DSL containing S1∪S2. This proves that
P(S1 ∪ S2) is the same as the preimage of the set of pixels composed of S1, S2

and all the missing points between the two. Then, P(S1 ∪ S2) is the preimage
of a DSS of length n, the difference of abscissa between the last point of S2 and
the first point of S1, which is similar to the previous case.

Disconnected DSSs This case is trickier since P(S1∪S2) may not be a unique
cell but can be a union of adjacent cells of a Farey Fan (see Figure 4 for an ex-
ample). The characteristics given by the critical points may not be the minimal
ones. However, from the critical support points we can easily infer the range
of slopes of the separating lines. If we denote slow and sup the minimum and
maximum slopes of the separating lines, the slope of the line of minimal charac-
teristics is given by the fraction of smallest denominator between slow and sup.
It is finally easy to decide which one of either Uf or Ul is an upper leaning point
of the line of minimal characteristics (see Algorithm 1 for more details).

3.3 General algorithm

All the properties presented above are put together to design the fast union
algorithm described in Algorithm 1. The algorithm returns the minimal charac-
teristics of S1 ∪ S2 if the union is possible. The result is given as a directional
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Fig. 4. When S1 and S2 are not connected, like the ones depicted in (b), P(S1 ∪ S2)
may be the union of several cells: in (a), P(S1) is depicted in light gray, and the
two constraints related to the leaning points of S2 are depicted in red and blue. The
intersection is bordered by a dotted black line: it is composed of three cells, each one
being the preimage of a DSS containing S1 ∪ S2, depicted in (c), (d), and (e).

vector (b, a) and an upper leaning point. The algorithm can be decomposed into
three main parts. Between line 1 and 2, the four possible critical support points
are computed. The function initCriticalSupportPoint is the implementation
of Table 1 and is detailed in Algorithm 2 presented in Appendix. The string
parameter given in input is there to discriminate between the two lines of Table
1. At the same time, easy cases where S1 ∪ S2 has the same minimal character-
istics as S1 or S2 are treated: in such cases, the variable inDSL is set to true by
initCriticalSupportPoint and we can conclude directly. Then, between lines 3
and 4, the exact critical support points are computed. The function isSolution?
implements Property 5 and is detailed in Algorithm 3 in Appendix: here, the
string parameter tells if the upper leaning points are tested w.r.t the lower lean-
ing points or conversely. The function thirdPoint implements Property 6: if the
variable solU is true, then the first item of the property is concerned, otherwise
solL is true, and the second item is concerned. The last part, between lines 5
and 7 returns the minimal characteristics of S1 ∪ S2. On line 6, if S1 and S2

are connected or if the last point of S1 and the first point of S2 have the same
ordinate, the result is straightforward from the critical support points. Other-
wise, as explained in Section 3.2 the line of minimal characteristics is computed
among all the separating lines. Function minimalSlope is then called. It can be
implemented in several way, using for instance the decomposition into continued
fractions, or, like in [16]-Algorithm 3 (see also [7, 6]) using the Stern-Brocot tree.

3.4 Complexity analysis

Lemma 1. The complexity of Algorithm 1 is O(1) when S1 and S2 are connected
or when the last point of S1 and the first point of S2 have the same ordinate. Its



Algorithm 1: FastArithmeticalDSSUnion(DSS S1, DSS S2)

Uf , Ul, Lf , Ll critical support points of S1 ∪ S2;
boolean inDSL ← false; boolean solU, solL;
connected ← true if S1 and S2 are connected or the last point of S1 and the first
point of S2 have the same ordinate, false otherwise;

1 (Ul, Ll, inDSL) ← initCriticalSupportPoints(S1, S2, “after”)
if inDSL = true then return DSS(a1,b1,U1f )
else

(Uf , Lf , inDSL) ← initCriticalSupportPoints(S2, S1, “before”)
if inDSL = true then2 return DSS(a2,b2,U2l)
else

// Four possible critical support points are known

3 (solL,aL, bL) ← isSolution? (Lf ,Ll,Uf ,Ul,”lower”)
(solU,aU , bU ) ← isSolution? (Uf ,Ul,Lf ,Ll,”upper”)
if solU = false and solL = false then

return DSS(0,0,Point(0,0)) // Union of S1 and S2 is not possible

else
if solU = false or solL = false then

// Three points only are critical

if solU = true then (a, b)← (aU , bU ) else (a, b)← (aL, bL)
(Uf ,Ul,Lf ,Ll) = thirdPoint (Uf ,Ul,Lf ,Ll,solU,solL)

4 else (a, b)← (aU , bU ) // The four points are critical

// At this point, the exact critical support points are known

5 if connected = true then
return DSS(a,b,Uf )

else
6 (a, b)← minimalSlope (Uf ,Ul,Lf ,Ll)

if Ul = Uf then U ← Uf

else
if slope((Uf Ul)) >

a
b
then U ← Uf else U ← Ul

7 return DSS(a,b,U)

complexity is O(log(n)) otherwise, where n is the difference of abscissa between
the last point of S2 and the first point of S1.

Proof. If we assume a computing model where the standard arithmetic opera-
tions are done in constant time, then all the operations from line 1 to line 5
are also done in constant time. Whichever the algorithm chosen, the function
minimalSlope on line 6 always requires, in a more or less direct way, the com-
putation of the continued fractions of two fractions p

q with p ≤ q ≤ n, and n is
the difference of abscissa between the last point of S2 and the first point of S1.
This is done in O(log(n)) time (see [6] for instance).



4 Experimental results

Algorithm 1 was implemented in C++ using the open-source library DGtal [1].
We refer to it as the FastArithmetical algorithm in the following. We com-
pare our algorithm with two other ones. The first one is the well-known arith-
metical recognition algorithm [4], implemented in DGtal (called Arithmetical

algorithm in what follows). As stated at the beginning of Section 3.1, the al-
gorithm of O’Rourke [11] can be used to compute the set of separating lines.
It was implemented in DGtal by T. Roussillon as the StabbingLine algorithm.
The Arithmetical algorithm works only when the two DSSs are connected and
is used as follows : the minimal characteristics are initialised with the ones of
S1, and updated as the points of S2 are added one by one. Concerning the
StabbingLine algorithm, the preimage is initialised with the one of S1 and up-
dated as the leaning points of S2 are added (Corollary 1). The result is the set
of critical support points of S1 ∪ S2.

The experimental setup is the following:

– a DSL of characteristics (a, b, µ) is picked up at random ;
– the abscissas x1 and x2 of the first and last points of S1 are randomly

selected ;
– the abscissa x3 of the first point of S2 is either equal to x2+1 in the connected

case, or randomly selected and greater than x2 in the disconnected one ;
– the abscissa of the last point is set at a fixed distance from x3 ;

Two parameters govern this setup : maxb is the maximal value of b ; valX is the
length of S2. b is randomly picked in the interval [1, maxb], a is drawn in the
interval [1, b] and such that a and b are relatively prime, and µ in the interval
[0, 2maxb]. The value of x1 is drawn in the interval [0, maxb]. The length of S1

(i.e. x2 − x1) is randomly selected in the interval [valX, 2valX], so that S1 is
always longer than S2. In our test, maxb is set to 1000 and valX varies from 10
to 2maxb. For each value of valX, 2000 pairs of values (a, b) are drawn. For each
of them, 5 different values of µ are picked up, and then 10 different values of x1
are tested, for a total of 105 tests.

When the two DSSs are connected, the first test we perform consists in verify-
ing that the three algorithms actually compute the same minimal characteristics.
Then, the performances in terms of computation time are compared. Figure 4
shows the results (logarithmic scale for both axis): the x-axis represents the value
of valX, the y-axis is the mean CPU computation time for a pair of DSSs, and
for each algorithm.

First we can observe that the experimental behaviour of FastArithmetical
algorithm confirms the constant-time complexity. Unsurprisingly, the Arithme-

tical algorithm has a linear-time complexity. Concerning the StabbingLine

algorithm, its performances are slightly worse than the FastArithmetical algo-
rithm, and a slight increase of the mean computation time is observed for larger
DSS lengths: this is due to the fact that a post-treatment has to be done on the
result returned by this algorithm in order to compute the minimal characteris-
tics. This post-treatment involves a gcd computation, which explains the plot.
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Fig. 5. Experimental results

However, the main information is that the FastArithmetical algorithm gets
faster than the classical Arithmetical one when the length of the smallest DSS
is greater than 20. In comparison, the StabbingLine algorithm becomes faster
for lengths greater than 200 only. This means that what could appear as a small
gain on a constant term in comparison to the StabbingLine algorithm makes
the FastArithmetical relevant in practice compared to the Arithmetical al-
gorithm. Last, the FastArithmetical remains faster than the StabbingLine

algorithm even when the two DSSs are not connected. The slight decrease of the
mean computation time for long DSSs is related to the fact that the longer the
DSSs, the more easy cases appear.

5 Conclusion

In this work, we have shown that the union of two DSSs can be very efficiently
computed since it is enough to “update” the minimal characteristics of the first
segment with the leaning points of the second one. To do so, we have demon-
strated that a state-of-the-art algorithm - the stabbing line algorithm - can be
used to compute the union in logarithmic time. Moreover, we have exhibited
a number of simple arithmetical properties to design an even faster algorithm.
This algorithm runs in O(log(n)) worst-time complexity, and O(1) for easy cases
and the experiments have shown that the implementation concretises this com-
plexity.

Now, an interesting question remains: what if the union is not possible ?
Can we measure the “distance” between the two DSSs ? A solution would be to
consider “thicker” DSSs and to compute the thickness necessary for the union
to be possible. This problem seems actually to be very close the the blurred DSS
recognition algorithms [3, 13], and this trail seems worthy to be followed.
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Fig. 6. Illustration of the first line of Table 1: the leaning points of S1 marked with a
cross cannot be critical support points if the point U of S2 is added.

Algorithm 2: InitCriticalSupportPoints(DSS S, DSS S′, string

position)

Uf , Ul, Lf , Ll the leaning points of S, r remainder function of S
inDSL a boolean; inDSL ← true
foreach leaning point P of S′ and if inDSL = true do

if r(P ) < 0 then
if position = “after” then U ← Uf , L ← Ll else U ← Ul, U ← Uf

inDSL ← false
else

if r(P ) ≥ b then
if position = “after” then U ← Ul, L ← Lf else U ← Uf , L ← Ll

inDSL ← false
else

if r(P ) = 0 then U ← P
if r(P ) = b− 1 then L ← P

end
return (U,L,inDSL)

Algorithm 3: isSolution?(Pf,Pl,Qf,Ql, string type)

// compute the characteristics defined by the points Pf and Pl

a← Pl.y − Pf .y, b← Pl.x− Pf .x
if type = “lower” then µ← b− 1− aPf .x+ bPf .y
else µ← −aPf .x+ bPf .y
// check the position of Qf and Ql w.r.t these characteristics

Let r(Q) = aQ.x− bQ.y + µ
if 0 ≤ r(Qf ) < b and 0 ≤ r(Ql) < b then return (true,a, b, µ)
else

return (false,a, b, µ)


