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Abstract In many applications, separable algorithms have
demonstrated their efficiency to perform high performance
volumetric processing of shape, such as distance transfor-
mation or medial axis extraction. In the literature, several
authors have discussed about conditions on the metric to
be considered in a separable approach. In this article, we
present generic separable algorithms to efficiently compute
Voronoi maps and distance transformations for a large class
of metrics. Focusing on path-based norms (chamfer masks,
neighborhood sequences...), we propose efficient algorithms
to compute such volumetric transformation in dimension n.
We describe a new O(n ·Nn · logN · (n+ log f )) algorithm
for shapes in a Nn domain for chamfer norms with a ratio-
nal ball of f facets (compared to O( f b

n
2 c ·Nn) with previous

approaches). Last we further investigate an even more elab-
orate algorithm with the same worst-case complexity, but
reaching a complexity of O(n ·Nn · log f · (n+ log f )) exper-
imentally, under assumption of regularity distribution of the
mask vectors.
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1 Introduction

Volumetric analysis of digital shapes is crucial in many ge-
ometry processing applications, for instance to be able to
measure distances between two points in Zn, or to measure
the width of a shape or the proximity between two shapes.
Since early works on digital geometry, distance transforma-
tion has been widely investigated [26,27]. Given a finite in-
put shape X ⊂ Zn, the distance transformation labels each
point in X with the distance to its closest point in Zn \X . La-
beling each point by the closest background point leads to
Voronoi maps (e.g. the restriction to Zn of Voronoi diagrams
from computational geometry [13]). Since such characteri-
zation is parametrized by a distance function, many authors
have addressed this distance transformation problem with
trade-offs between algorithmic performances and the accu-
racy of the digital distance function with respect to the Eu-
clidean one. Hence, authors have considered distances based
on chamfer masks [27,6,14] or sequences of chamfer masks
[26,22,28,24]; the vector displacement based Euclidean dis-
tance [12,25]; Voronoi diagram based Euclidean distance [7,
20] or the square of the Euclidean distance [15,21]. For the
Euclidean metric, separable volumetric computations have
demonstrated to be very efficient with the design of optimal
O(n ·Nn) time algorithms for shapes in Nn domains, optimal
multithread/GPU implementation or extensions to toric do-
mains (please refer to [9] for a discussion). For path-based
metrics (e.g. chamfer mask, -weighted- neighborhood se-
quences), two main techniques exist to compute the distance
transformation. The first one considers a weighted graph
formulation of the problem and Dijkstra-like algorithms on
weighted graphs to compute distances. If m denotes the size
of the chamfer mask, computational cost could be in O(m ·
Nn) using a cyclic bucket data structure [30]. Another ap-
proach consists in a raster scan of the domain: first the cham-
fer mask is decomposed into disjoint sub-masks; then the
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domain grid points are scanned in a given order (consistent
with the sub-mask construction) and a local computation is
performed before being propagated [26,6]. Scanning the do-
main several times (one per sub-mask) leads to the distance
transformation values. Again, we end up with a O(m ·Nn)

computational cost. Besides specific applications which use
the anisotropic nature of the chamfer mask, rotational de-
pendency is usually enforced by increasing the mask size
m (its number of vectors, see below) leading to expensive
computational costs.

In [10], we have demonstrated that in dimension 2, we
can adapt separable algorithms used for the Euclidean dis-
tance to extract path-based metric distance transformation in
O(log2 m ·N2).

Contributions This article details the preliminary anal-
ysis of [10] and extend it to higher dimensional distance
transformation problems. More precisely, we describe ef-
ficient and parallel algorithms in arbitrary dimension n to
compute error-free distance transformation and Voronoi map
for chamfer norms and other path-based metrics. Overall
computational costs are summarized in Table 1 (see 3.2 for
predicate definitions).

The article is organized as follows: First, we recall basic
definitions and properties of path-based norms (Section 2).
In Section 3 we clarify the separable n-dimensional Voronoi
map extraction algorithm and for the sake of consistency, we
detail the 2D algorithm first proposed in [10]. In Sections 5
and 7, we present and analyse the proposed n−dimensional
algorithm.

2 Preliminaries

Definition 1 (Norm and metric induced by a norm) Given
a vector space EV, a norm is a map g from EV to a sub-group
F of R such that ∀x,y ∈ EV ,

(non-negative) g(x)≥ 0 (1)

(identity of indiscernibles) g(x) = 0⇔ x = 0 (2)

(triangular inequality) g(x+y)≤ g(x)+g(y) (3)

(homogeneity) ∀λ ∈ R, g(λ ·x) = |λ | ·g(x)
(4)

d(a,b) :=g(b−a) is the metric induced by the norm g. The
triplet (E,F,d), where E is a field, and F a sub-group of R
is called a metric space if d : E×E → F (with E such that
for a,b ∈ E, (b−a) ∈ EV ).

Note that the above definition can be extended from vector
spaces to modules on a commutative ring (Zn being a mod-
ule on Z but not a vector space) [29]. Path-based approaches
(chamfer masks, -weighted- neighborhood sequences...) aim
at defining digital metrics induced by norms in metric spaces

(Zn,Z,d). Note that (weighted, with wi ≥ 0) Lp metrics

dLp(a,b) =

(
n

∑
k=1

wk|ak−bk|p
) 1

p

, (5)

define metric spaces (Zn,R,dLp) which are not digital.
However, rounding up the distance function (Zn,Z,ddLpe)
is a digital metric space [16].

Definition 2 (Distance Transformation and Voronoi
Map) The distance transform DTX associated with a digital
metric space (Zn,Z,d) is a map X → Z such that, for a ∈ X
DTX (a) = minb∈Zn\X{d(a,b)}. The Voronoi map is the map
X → Zn\X : ΠX (a) = argminb∈Zn\X{d(a,b)}.

The Voronoi map ΠX corresponds to the intersection be-
tween the continuous Voronoi diagram for the metric d of
points Zn \X and the lattice Zn. If a digital point a belongs
to a Voronoi diagram d−facet (0≤ d < n), a is equidistant to
n+1−d or more points in Zn \X but only one is considered
in ΠX (a) this choice has no influence on DTX .

Definition 3 (Chamfer Mask) A weighted vector is a pair
(v,w) with v ∈ Zn and w ∈ N∗. A chamfer mask M is a
central-symmetric set of weighted vectors with no null vec-
tors and containing at least a basis of Zn.

In most situations, vectors of a chamfer mask exhibit axial
symmetries. We may refer to the generator G of M as the
subset of vectors defining M by symmetries (usually de-
fined in the subspace xn≥ . . .≥ x1≥ 0 of Zn). Many authors
have proposed algorithmic and/or analytic approaches to
construct chamfer masks approximating the Euclidean met-
ric. In the following, we focus on chamfer norms which are
chamfer metrics induced by a norm. To evaluate distances
between two digital points for a given chamfer metric, di-
rect formulations have been proposed with simple geomet-
rical interpretation:

Definition 4 (Rational ball, minimal H-representation
[29,23]) Given a Chamfer normM, the rational ball associ-
ated withM is the polytope

BR = conv
{

vk

wk
; (vk,wk) ∈M

}
. (6)

where conv denotes the the convex hull. Rational balls for
some chamfer masks are illustrated in Figure 1.

The rational ball BR can also be described as the H-
representation of polytope with minimal parameter [24]:
P= {x∈Zn;Ax≤ y } such that ∀k∈ [1 . . . f ], ∃x∈P Akx=
yk.

1 f is the number of rows in A and the number of facets
in BR, and is thus related to |M|.

1 Ak being the kth row of A.
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Table 1 Computational cost summary for separable Voronoi map computation on Nn domains (m being the size of the chamfer norm and f the
number of row in a H-representation of the mask, see below).

Metric CLOSEST HIDDENBY Sep. Voronoi Map Reference
L2 O(1) O(1) Θ(n ·Nn) [15]
L∞ O(1) O(1) Θ(n ·Nn) [21]
L1 O(1) O(1) Θ(n ·Nn) [21]

Lp (exact pred.) O(log p) O(log p · logN) O(n ·Nn · log p · logN) Lem. 1
Lp (inexact pred.) O(1) O(logN) O(n ·Nn · logN) Lem. 1
2D Chamfer norm O(logm) O(log2 m) O(log2 m ·N2) [10] and Theorem 1

2D Neig. seq. norm O(logm) O(log2 m) O(log2 m ·N2) [24] with Theorem 1
nD Chamfer norm O(n+ log f ) O((n+ log f ) · logN) O(n ·Nn · logN · (n+ log f )) Corollary 1

3

4

(a) (b)

5

7
11

(c) (d) (e)

Fig. 1 Chamfer masks and rational balls: in dimension 2, generator vectors for the mask M3−4 (a), its rational ball (b). Generator vectors for
M5−7−11 (c) and its rational ball (d). In dimension 3, rational ball of a chamfer mask obtained using generator vectors (x,y,z) ∈ [[−3,3]]3 and
weights computed using [14].

The distance between two points a and b in Zn for a
chamfer mask is the length shortest path between a and b
on a weighted graph G = (V,E) where the vertices are grid
points and there is a (weighted) edge between two points
if their difference is a vector v ∈M (the edge is weighted
by the associated vector weight) [5]. Since weights are pos-
itive integers (see Def. 3), distance values are scaled by
the weight of the first vector ((1,0 . . . ,0)T by convention).
Hence, using masks defined in Fig. 1, 1

3 · dM3−4(a,b) and
1
5 ·dM5−7−11(a,b) are approximations of dL2(a,b).

An important result for distance computation can be
summarized as follows:

Proposition 1 (Direct Distance Computation [23]) Given
a chamfer mask M induced by a norm and (A,y) its min-
imal parameter H-representation, then for any a ∈ Zn, the
chamfer distance of a from the origin is

dM(O,a) = max
1≤k≤ f

{AkaT} . (7)

Among path-based digital metric, (weighted) neighborhood
sequences have been proposed to have better approxima-
tion of the Euclidean metric from sequences of elemen-
tary chamfer masks [26,22,28,24]. A key result has been
demonstrated in [24] stating that for such distance functions,
a minimal parameter polytope representation exists and that
distances can be obtained from a expression similar to (7):

d(O,a) = max
1≤k≤ f

{ fk(AkaT )} , (8)

fk being some integer sequence characterizing the neighbor-
hood sequence metric. In the following and for the sake of
simplicity, we describe our algorithms focusing on chamfer
norms but similar results can be obtained for more generic
path-based metrics such as neighborhood sequences.

3 Separable distance transformation

3.1 Voronoi map from separable approach and metric
conditions

In [15,7,21,20], several authors have described optimal in
time and separable techniques to compute error-free Voronoi
maps or distance transformations for L2 and Lp metrics.
Separability means that computations are performed di-
mension by dimension. In the following, we consider the
Voronoi Map approach as defined in [7]. Let us first define an
hyper-rectangular image IX : [1..N1]× . . .× [1..Nn]→{0,1}
such that IX (a) = 1 for a ∈ [1..N1]× . . .× [1..Nn] iff a ∈ X
(IX (a) = 0 otherwise). The separable algorithm that com-
putes the Voronoi Map for Ix is defined in Algorithm 1. First,
the Voronoi map is initialized by processing each span2 of
the input image along the first dimension in order to create
independent 1D Voronoi maps for the metric (lines 5− 6).
Then, for each further dimension, the partial Voronoi map

2 An image span S along the qth direction is a vector of Nq points
with same coordinates except at their qth one.
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Fig. 2 Geometrical predicates for Voronoi map construction: HID-
DENBY(a,b,c,S) returns true in (a) and false in (b) (straight seg-
ments correspond to Voronoi diagram edges). (c) illustrates the CLOS-
EST(a,b,c) predicate for c ∈ S.

ΠX is updated using one dimensional independent processes
on each span along the qth dimension (line 8). Algorithm 2
describes the function VORONOIMAPSPAN. This function
is the core of the separable algorithm as it defines the 1D
processes to perform on each row, column and higher di-
mensional image span. In this process, metric information
are embedded in the following key predicates (see Fig. 2):

1. CLOSEST(a,b,c): given three points a,b,c ∈ Zn this
predicate returns true if d(a,b)< d(a,c);

2. HIDDENBY(a,b,c,S): given three points a,b,c ∈ Zn

such that aq < bq < cq
3 and a 1D image span S, this

predicates returns true if there is no s ∈ S such that

d(b,s)< d(a,s) and d(b,s)< d(c,s) . (9)

Algorithm 1: VORONOIMAP(BINARY MAP IX )

1 ΠX = empty image, same size as IX ;
2 for q in {1 . . .n} do
3 for (x1, ..xq−1,xq+1, ..xn) in

[1..N1]× ..[1..Nq−1]× [1..Nq+1]..× [1..Nn] do
4 S = {si}i∈[1..Nq] where si = (x1..xq−1, i,xq+1..xn);

// all the coordinates are fixed in S
except the qth one

5 if q == 1 then
// ΠX is initialized span by span

6 ΠX = ΠX ∪ VORONOIMAPSPAN(IX , q, S);

7 else
// ΠX is updated along span S

8 ΠX = VORONOIMAPSPAN(ΠX , q, S);

9 return ΠX

In other words, HIDDENBY returns true if and only if the
Voronoi cells of sites a and c hide the Voronoi cell of b along
S. For L1, L2 and L∞ metrics, CLOSEST and HIDDENBY

predicates can be computed in O(1) [7,15,21]. Hence, Al-
gorithm 2 is in O(Nq) for dimension q, leading to an overall
computational time for the Voronoi Map (Algorihtm 1) and

3 Subscript aq denotes the qth coordinate of point a ∈ Zn.

Algorithm 2: VORONOIMAPSPAN(MAP MX , DIMENSION

q , 1D SPAN S)

Data: q is an integer in {1 . . .n};
S is a 1D span along dimension q, with points {s1, . . . ,sNq}
sorted by their qth coordinate;
MX is either a binary map if q = 1 or a partial Voronoi Map.
Result: Partial Voronoi map ΠX updated along S.

1 if q == 1 ; // Special case for the first dimension

2 then
3 ΠX = empty image, same size as MX ;
4 k = 0;
5 foreach point s in S do
6 if MX (s) == 0 then
7 LS[k] = s;

// LS =list of the sites visible on S
8 k++;

9 else
10 ΠX =MX ;
11 LS[0] =MX (s1);
12 LS[1] =MX (s2);
13 k = 2 , l = 3;

// Update the list LS
14 while l ≤ Nq do
15 w =MX (sl);
16 while k ≥ 2 and HIDDENBY(LS[k−1],LS[k],w,S) do

// LS[k] is no longer visible, unstack

17 k−− ;

18 k++ ; l ++;
19 LS[k] = w;

20 foreach point s in S by increasing qth coordinate do
21 while (k < |LS|) and CLOSEST(s, LS[k+1], LS[k]) do

// s is closer to LS[k+1], look further

22 k++ ;

23 ΠX [s] = LS[k];

24 return ΠX

Distance Transformation computations in Θ(n ·Nn) (if we
assume that ∀q ∈ [1 . . .n],Nq = N).

In [15] or [20], authors discussed about conditions on the
metric d to ensure that Algorithm 2 is correct. The key prop-
erty can be informally described as follows: given two points
a,b ∈ Zn such that aq < bq and a straight line l along the qth

direction and if we denote by vl(a) (resp. vl(b)) the inter-
section between the Voronoi cell of a (resp. b) and l, then
vl(a) and vl(b) are simply connected Euclidean segments
and vl(a) appears before vl(b) on l (so called monotonicity
property in [20] and is related to quadrangle inequality in
[15]). These contributions are summed up the Definition 5
and Proposition 2.

Definition 5 (Axis symmetric ball norm) A metric d in-
duced by a norm whose unit ball is symmetric with respect
to grid axes is called axis symmetric ball norm.

Proposition 2 (Metric conditions [15]) Algorithm 1 ex-
actly computes the Voronoi Map ΠX of a binary input image
IX for any axis symmetric ball norm.
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Proposition 2 implies that most chamfer norms and
neighborhood sequence based norms can also be consid-
ered in separable Algorithm 1 (see Fig. 3). However, note
that Algorithm 2, and as a by-product Algorithm 1, are ex-
act only if the distance comparison predicate is exact, i.e. if
we can compare two distances, through the CLOSEST and
HIDDENBY predicates, without error.

Furthermore, computational efficiency of the algorithm
requires the design of efficient algorithmic tools to imple-
ment these predicates, and this the purpose of the next sec-
tions.

Fig. 3 Distance transformation from a single source for different met-
rics satisfying Definition 5 and thus Proposition 2: (from left to right)
L1, L2, L4, L80, M3−4 and M5−7−11.

3.2 Generic predicates and Complexity analysis for axis
symmetric ball norms

We first detail the overall computational cost of Algorithms
2 and 1. We assume in the following that ∀q ∈ [1 . . .n], Nq =

N.

Lemma 1 ([10]) Let (Zn,F,d) be a metric space induced
by a norm with axis symmetric unit ball. If C denotes the
computational cost of CLOSEST predicate and H is the
computational cost of the HIDDENBY predicate, then Al-
gorithm 2 is in O(N · (C +H)), leading to a complexity of
O(n ·Nn · (C+H)) for Algorithm 1.

For a given axis symmetric ball norm d, we first define
generic Algorithms 3, 4 and 5. Note that these algorithms
are valid for any dimension n. The computational cost of the
CLOSEST predicate is simply the one of a distance evalua-
tion. As a first approach, Algorithms 4 and 5 show that the
HIDDENBY predicate can be obtained by a binary search
on the 1D image span S to localize the abscissa of Voronoi
edges of sites {a,b} and {b,c} (see Fig. 4).

The complexity H of Algorithm 5 can be expressed as a
function of the complexity C of Algorithm 3, leading to the
general result below:

Algorithm 3: Generic CLOSESTND(a,b,c ∈ Zn).

1 return d(a,b)< d(a,c);

Algorithm 4: Generic VORONOIEDGE(a,b,si,s j ∈ Zn) with
i < j, aq < bq.

1 if ( j− i = 1) then
2 if i = 1 and CLOSEST(si,b,a) then
3 return −∞;

4 if i = Ni and CLOSEST(si,a,b) then
5 return ∞;

6 return i;

7 mid = i+( j− i)/2;
8 if CLOSEST(smid ,a,b) then

// smid closer to a
9 return VORONOIEDGE(a,b,smid ,s j)

10 else
// smid closer to b

11 return VORONOIEDGE(a,b,si,smid)

Algorithm 5: Generic HIDDENBY(a,b,c ∈ Zn;S in the qth

direction) with aq < bq < cq.

1 vab = VORONOIEDGE (a,b,s1,sNq );
2 vbc = VORONOIEDGE (b,c,s1,sNq );
3 return (vab > vbc);

Lemma 2 ([10]) LetM be a chamfer norm with axis sym-
metric unit ball in dimension n whose rational ball has f
facets, Algorithm 1 can be implemented with a computa-
tional complexity of O(n ·Nn ·C · logN), where Nn is the size
of the image.

Although similar approaches could be contemplated for
other path-based metrics, in the following we focus on
chamfer norms. Section 3 focuses on dimension 2 while
Section 5 tackles the problem in higher dimensions.

4 Sublinear algorithm in dimension 2 for chamfer
norms

Let us consider a 2D chamfer normM with m weighted
vectors (note that f := |BR| = m in 2D). We suppose that
vectors {vk}k=1...m are sorted counterclockwise. We define
a wedge as a pair (vk,vk+1) of vectors. To each wedge is
associated a row Ak in the minimal H-representation of A
(Ak can also be seen as a –non-unitary– normal vector to BR
facets [23]). Using similar notations, [29,28] demonstrate
that the distance evaluation of point a can be obtained in
two steps: first, we compute the wedge (vk,vk+1) a belongs
to. Then,

dM(O,a) = Ak ·aT . (10)



6 David Coeurjolly, Isabelle Sivignon

Lemma 3 ([10]) Given a chamfer norm M in dimension
2 with m vectors, the distance computation and thus the
CLOSEST predicate are in O(logm).

Lemma 4 extends this results to higher dimensions. To op-
timize the HIDDENBY predicate, we need to focus on the
VORONOIEDGE function. Given two points a and b (aq <

bq) and a 1D image span S along the qth dimension, we have
to find the abscissa eq∈ Z of the point e∈ Zn on S such that
all the points of S of abscissa lower than eq are in the Voronoi
cell of a while all the points with a greater abscissa are in the
Voronoi cell of b. Let us first suppose that we do not know e
but we know the wedge (vk,vk+1) (resp. (v j,v j+1)) the vec-
tor (e−a)T (resp. (e−b)T ) belongs to (see Fig. 4−(c)). In
this situation, we know that e is the solution of

Ak · (e−a)T = A j · (e−b)T , (11)

(since e ∈ S, we have one linear equation with only one un-
known ei). As a consequence, if we know the two wedges
the Voronoi edge belongs to, we have the abscissa in O(1)
(see Algorithm 6 and Fig. 4−(c)).

Algorithm 6: 2D chamfer norm VORONOIEDGE(a,b ∈ Z2,

span S, chamfer norm M= {vk}k=1...m).

1 (vk,vk+1) = VORONOIEDGEWEDGE(a,b,v1,vm,S);
2 (v j,v j+1) = VORONOIEDGEWEDGE(b,a,v1,vm,S);
3 Compute the abscissa eq of the point e such that

Ak · (e−a)T = A j · (e−b)T ;
4 return eq;

To obtain both wedges, we use a binary search sim-
ilar to Algorithm 4: Algorithm 7 returns the wedge as-
sociated with a containing the Voronoi edge with respect
to b. Applying this algorithm to obtain the wedge associ-
ated with b with respect to a defines Algorithm 6. The bi-

a

b

S

(a)

a

b

S

vmid

vmid+1

vj

vi

pmid+1

pmid

(b)

a

b

S

evk

vk+1

vj

vj+1

(c)

Fig. 4 VORONOIEDGEWEDGE and VORONOIEDGE: (a) initial prob-
lem, we want to compute the intersection between S and the Voronoi
edge of a and b (in red). (b) an internal step of VORONOIEDGEWEDGE
to reduce the set of directions of M at a (here the next recursive
call will be on (vi,vmid)).(c) final step of VORONOIEDGE where both
wedges have been obtained and thus e can be computed.

Algorithm 7: VORONOIEDGEWEDGE(a,b∈Z2;vi,v j in M;
span S in dimension q), with i < j.

1 if ( j− i = 1) then
2 return (vi,vi+1);
3 else
4 mid = i+( j− i)/2;
5 Let pmid be the intersection point between (a+vmid) and

S;
6 Let pmid+1 be the intersection point between (a+vmid+1)

and S;
// O(1) evaluation of distances w.r.t. a

7 da
pmid = Amid · (pmid −a)T ;

8 da
pmid+1 = Amid+1 · (pmid+1−a)T ;

// O(logm) evaluation of distances w.r.t. b
9 db

pmid = dM(b, pmid);

10 db
pmid+1 = dM(b, pmid+1);

11 Let bmid be true if da
pmid < db

pmid ; false otherwise;

12 Let bmid+1 be true if da
pmid+1 < db

pmid+1 ; false otherwise;

13 if bmid 6= bmid+1 ; // we found the Voronoi edge

wedge

14 then
15 return (vmid ,vmid+1);

16 if bmid = bmid+1 = true ; // Both points are in a’s
cell

17 then
18 if aq < bq then
19 return VORONOIEDGEWEDGE(a,b,vmid ,v j,S);
20 else
21 return VORONOIEDGEWEDGE(a,b,vi,vmid ,S);

22 if bmid = bmid+1 = f alse; // Both points are in

b’s cell

23 then
24 if aq < bq then
25 return VORONOIEDGEWEDGE(a,b,vi,vmid ,S);
26 else
27 return VORONOIEDGEWEDGE(a,b,vmid ,v j,S);

nary search shrinks the set of vectors {vi, . . . ,v j} to end
up with a wedge (vk,vk+1) such that the intersection point
between the straight line (a+ vk) and S is in the Voronoi
cell of b and such that the intersection between (a+ vk+1)

and S is in the Voronoi cell of a (see Fig. 4−(c)). Algo-
rithm 7 thus first computes the intersection points associated
with a wedge (vi+( j−i)/2,vi+( j−i)/2+1) (lines 5− 6); eval-
uates the distances at these points (lines 7− 10) and then
decides which set {vi, . . . ,vi+( j−i)/2} or {vi+( j−i)/2, . . . ,v j}
has to be considered for the recursive call (lines 14−20 and
Fig. 4−(b)).

Theorem 1 ([10]) LetM be a 2D chamfer norm with axis
symmetric unit ball and m weighted vectors, then we have:
(i) Algorithm 6 is in O(log2 m); (ii) Algorithm 2 (with pred-
icates from Algorithm 6 and Lemma 3), computes a Voronoi
map ΠX and thus the distance transformation of X for met-
ric dM in O(log2 m ·N2).
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In the next section, we extend all these results to higher
dimension. First, we use the combinatorics of the rational
ball to design an efficient CLOSEST predicate. Then, we
show that the 2D VORONOIEDGE principle naturally arises
in the nD case.

5 Distance transformation algorithm in higher
dimension for chamfer norms

5.1 CLOSEST predicate and first results

Let us consider a general chamfer norm in arbitrary dimen-
sion n. First, let us discuss about chamfer mask combina-
torics. If m denotes the number of weighted vectors of M,
its rational ball BR has O(mb

n
2 c) i−facets (0 ≤ i ≤ d) [13].

If we denote by f the number of (n− 1)−facets of BR (i.e.
number of row in the H-representation of BR), we have by
duality the result that |BR|=O( f b

n
2 c). As a consequence, we

have the following distance evaluation result:

Lemma 4 Let M be a chamfer norm whose rational ball
BR has f (n−1)−facets in dimension n, then distance com-
putation and thus CLOSEST predicate are in (amortized)

O(n+ log f ) with O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
space and preprocessing

time4.

Proof Similarly to the 2D case, the distance dM(O,a) for
a ∈ Zn is given by first solving a ray-shooting problem
on convex polytopes which consists in first computing the
(n− 1)-facet of BR pierced by the ray (O,a). Once the
facet is obtained, the associated Ak row is used to eval-
uate dM(O,a) = Ak · aT in O(n). Following [19], such a
ray-shooting query on convex polytopes can be solved in

O(log f ) thanks to a preprocessing in O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
. In

the case when the ray hits a facet of dimension strictly
lower than n−1, the algorithm returns one of the adjacents
(n− 1)-facets. Propositions 3 and 4 from [23] ensure that
the choice of any (n− 1)-facet leads to the same distance
evaluation. Please note also that the preprocessing time is
roughly equivalent to the convex hull computation in higher
dimension which is in O( f b

n
2 c). Hence, preprocessing for

ray-shooting can be done while computing the rational ball
BR using Eq. (6).�

Algorithm 4 being valid in any dimension, we can use
Corollary 2 to straightforwardly obtain the result below:

Corollary 1 LetM be a chamfer norm whose rational ball
BR has f (n− 1)−facets in dimension n, separable exact
Voronoi Map ΠX can be obtained in O(n ·Nn · logN · (n+
log f )), thanks to a preprocessing in O

(
f b

n
2 c

(log f )b
n
2 c−δ

)
.

4 δ is an arbitrarily small positive constant.

However, we show below that we can still expect faster
VORONOIEDGE function even in higher dimension.

5.2 Improved HIDDENBY predicate algorithm

In dimension 2, we have shown that Algorithm 7 enables to
lower down the complexity from a logarithmic factor on the
size N of the image to a logarithmic factor on the size m of
the mask. In this algorithm, binary search is performed on
a set of vectors going from a point a to points (denoted by
pmid and pmid+1) on a span S. Whatever the dimension n of
the image, these vectors lie in the smallest affine subspace
containing S, which is a one-dimensional flat, and the point
a ∈ Zn. In the general case where the point does not lie on
the span, this is actually always a 2-flat (see Fig. 5).

Computing the intersection of this 2-flat with the ratio-
nal ball BR comes down to intersecting a n-polytope with
n− 2 hyperplanes. By duality, each of these operations is
equivalent to a convex hull computation, with a complex-
ity of O( f bn/2c) [8,2]. As a consequence, in order to make
the approach efficient, we must avoid to compute explicitely
this intersection.

To do so, in Algorithm 8 we rewrite the
VORONOIEDGEWEDGE function, as a modification of
Algorithm 7. Recall that the goal of this function is to find
the n− 1-facet (wedge) of the rational ball containing the
vector v such that (a+ v)∩ S is on the bisector of a and b.
Let us first give some notations. Let P be the 2-flat defined
by S and a. We denote by Fa

v the result of the ray shooting
of vector a + v on the rational ball BR centered in a. AF
denotes the row of matrix A corresponding to the n−1 facet
Fa

v .
The algorithm computes two vectors vi and v j of P such

that ei = (a+ vi)∩ S belongs to the Voronoi cell of a, e j =

(a+v j)∩S to the Voronoi cell of b and Fa
vi
=Fa

v j
. Note that,

contrary to Algorithm 7 vectors vi, v j are not necessarily
chamfer vectors anymore, but by construction, they always
lie in P . Finally, the boolean a-IS-LOW is true when s1 is in a’s
Voronoi cell, false otherwise.

Two invariants are maintained in Algorithm 8 : (i) ei is
lower than e j on span S (eiq < e jq) ; (ii) if a-IS-LOW is true, ei
in a’s Voronoi cell, e j in b’s Voronoi cell, and conversely if
a-IS-LOW is false.

The first test on line 1 ends the recursive call when the
wedge of the bisector has been found. If the test on line 5
is true, the recursion ends: indeed, in this case, points beiqc
and de jqe are successive points of S, and from invariants (i)
and (ii), we know that beiqc lies in the same Voronoi cell as
ei, and de jqe in the same Voronoi cell as e j, which are differ-
ent by invariant (ii) and precondition of Algorithm 9.In this
case, the intersection between the bisector and S is actually
equal to beiqc. Lines 8− 23 of the algorithm is the core of
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the binary search process: vector v is defined as the bisector
of vi and v j and we test whether the intersection between the
line (a+v) and S lies in the Voronoi cell of a or b.

a

v1

vN

S

Fig. 5 Vectors vi lie in a 2-flat defined by S and a, in light red. The
distance dM between a point on S and a is computed via a ray shooting
that returns the n− 1-facet of BR traversed by the ray : the facets Fa

v1
and Fa

vN
are depicted in light blue.

The nD variant of the VORONOIEDGE function (Algo-
rithm 6) is then pretty straightforward : first, lines 1 to 9 are
dedicated to the initialization of the boolean a-IS-LOW ; then
it is enough to call the VORONOIEDGEWEDGEND function
and replace the wedge (vk,vk+1) by its nD counterpart Fk.

Corollary 2 Let M be a chamfer norm in dimension n
whose rational ball BR has f (n− 1)−facets. Let W be the
computational time complexity of the VORONOIEDGEWED-
GEND function. Then, the separable exact Voronoi Map can
be obtained in (amortized) O(n ·Nn · (n+ log f +W )) with

a O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
space and preprocessing time. More pre-

cisely, the worst-case complexity W being O((n + log f ) ·
logN), this leads to a global (amortized) complexity of
O(n ·Nn · logN · (n+ log f )) (same preprocessing).

Proof Following Lemma 1, the generic separable algo-
rithms computes the Voronoi map in O(n · Nn · (C +

H). Corollary 4 states that C = O(n + log f ) with a

O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
space and preprocessing time. Remains to

evaluate H, i.e. the complexity of the VORONOIEDGEND
function. In Algorithm 9, the first eight lines and the veri-
fication of the precondition are in O(C) since only distance
computations are involved. Lines 10 and 12 are calls to the
VORONOIEDGEWEDGEND function, with a complexity in
O(W ). In the worst case, we have W =O((n+ log f ) · logN)

thanks to the test on line 5. Last, the system to solve in line
13 has only one unkwown eq since e belongs to the one-
dimensional span S, with a complexity of O(1). ut

Algorithm 8: VORONOIEDGEWEDGEND(a,b∈Zn;vi,v j in
P; S along the qth direction; Fvi , Fv j ; boolean a-IS-LOW )

1 if Fvi = Fv j then
2 return Fvi ;
3 else
4 ei = (a+ vi)∩S, e j = (a+ v j)∩S;
5 if de jqe= beiqc+1 then
6 return Fvi ;
7 else
8 v = vi

‖vi‖ +
v j
‖v j‖ ;

9 p = (a+v)∩S;
// O(n+ log f ) evaluation of distances

w.r.t. a and b
10 da

p = AFa
v · (p−a)T ;

11 db
p = AFb

(p−b)
· (p−b)T ;

12 Let IN-a be true if da
p < db

p; false otherwise;
13 if IN-a = true then
14 if a-IS-LOW then
15 return

VORONOIEDGEWEDGE(a,b,v,v j,S,Fa
v ,Fv j )

16 else
17 return

VORONOIEDGEWEDGE(a,b,vi,v,S,Fvi ,Fa
v )

18 else
19 if a-IS-LOW then
20 return

VORONOIEDGEWEDGE(a,b,vi,v,S,Fvi ,Fa
v )

21 else
22 return

VORONOIEDGEWEDGE(a,b,v,v j,S,Fa
v ,Fv j )

Note that in the worst-case, this approach does not im-
prove the result presented in Corollary 1 (using the generic
VORONOIEDGE of Algorithm 4). However, in Section 7, we
give some experimental insights on a finer analysis of the
complexity W under distribution hypothesis.

6 Lp metric case

As a direct consequence of Lemma 1, we briefly derive com-
putational costs for Lp metrics. For such metrics, the CLOS-
EST and HIDDENBY predicates are in O(1) for p= {1,2,∞}
with exact integer only computations [20,21]. We thus have
distance transformation algorithms in Θ(n ·Nn).

For p∈R, p≥ 1, we can use approximations of the eval-
uation of distances on IEEE 754 double and then consider
the Generic HIDDENBY predicate in O(logN) (Alg. 5). As
predicates being based on floating point computations, nu-
merical issues may occur but we have an O(n ·Nn · logN)

distance transformation algorithm (Lp inexact predicates in
Table 1).

If p∈Z, p≥ 3, we use exact integer number based com-
putations of distances storing sum of power p quantities
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Algorithm 9: VORONOIEDGEND(a,b ∈ Zn, span S).
Precondition: the bisector of a and b intersects the span S.

1 if aq < bq then
2 a-IS-LOW = true
3 else
4 if bq < aq then
5 a-IS-LOW = false
6 else

; // Compute Voronoi cells of s1 and sN.

7 da
s1 = AFa

(s1−a)
· (s1−a)T ; db

s1 = AFb
(s1−b)

· (s1−b)T ;

8 a-IS-LOW = (da
s1 ≤ db

s1 ) ; // s1 is in a’s Voronoi

cell

9 ;

10 v1 = s1−a,vN = sN −a;
11 Fk =

VORONOIEDGEWEDGEND(a,b,v1,vN ,Fv1 ,FvN ,S,a-IS-LOW);
12 v1 = s1−b,vN = sN −b;
13 F j =

VORONOIEDGEWEDGEND(b,a,v1,vN ,Fv1 ,FvN ,S,¬(a-IS-LOW));

14 Compute the abscissa eq of the point e ∈ S such that
Ak · (e−a)T = A j · (e−b)T ;

15 return eq;

(which can be computed in O(log p) thanks to exponenti-
ation by squaring). The HIDDENBY predicate is also based
on Algorithm 5, leading to an O(n ·Nn · log p · logN) distance
transformation algorithm (Lp exact predicates in Table 1).

7 Experimental analysis

7.1 Insights on the complexity in dimension n

The complexity W of Algorithm 9 depends on the number
of recursion steps done until the two vectors stab the same
(n− 1)-face of the rational ball BR. Thus, this complexity
depends on the distribution of the chamfer vectors defining
BR.

Let us denote by P the intersection between the (n−1)-
faces of BR and the 2-flat P (see the red polygon on Fig.
5). Note that P goes through the center of BR. If we as-
sume that the vectors defining BR are uniformely distributed
on the unit sphere Sn and that the faces of P are also uni-
formely distributed on BR ∩ P , then we can expect that
W =O((n+ log f ) · log |P|). Even if studying precisely these
questions is out of scope of this work, in the following we
give insights on both the relevance of these assumptions and
the behaviour of |P| in the context of chamfer norms.

7.1.1 Some observations on the distribution hypothesis

Following [29,14], a classical way of defining chamfer
norms is to consider a set of vectors defined from a sub-
set of Farey sequences. Recall that the Farey sequenceF n

m

of dimension n and order m is defined as follows :F n
m =

{( x2
x1
, . . . , xn

x1
),gcdi∈1..n(xi) = 1,0 ≤ xn ≤ xn−1 ≤ ·· · ≤ x1 ≤

m}. Then a Farey sequenceF n
m is in bijection with all the

points (x1, . . . ,xn) in Zn, 0≤ xn ≤ ·· · ≤ x1 ≤m visible from
the origin5. The vectors vk of a chamfer norm in dimension n
can be defined using a subset of a particularF n

m: the weights
wk are set so that the rational ball BR is convex. By construc-
tion, such chamfer masks are norms with axis symmetric
unit balls.

Studying the distribution of such sets of vectors is a field
of research in itself, and we simply mention below several
results relevant to our context.

First, it is well-known that [18,17] n-dimensional lat-
tice points visible from the origin have a constant density
in Rn. Moreover, in [4] the authors study in the 2D case
the distribution of the angles of straight lines from the ori-
gin through visible points. More precisely, they study the
proportion of differences between consecutive angles which
are larger than the average: they show that this proportion is
smaller than what is expected for a random distribution, and
give an explicit formulation of the repartition function. Sim-
ilar results in higher dimension remain an open question.

These results tend to support the hypothesis of a uni-
form distribution of the vectors of BR, but the question of
the distribution of the faces of the polygon P has not been
investigated to our knowledge.

7.1.2 Experimental behaviour of |P|

In this part, we investigate the number of faces of P when
BR is a rational ball defined from Farey Sequences. The re-
sults are presented in Figure 6 and we detail below how the
rational balls are generated, how the 2-flats P are selected,
and how the intersection between BR and P is performed.

In the four subfigures of Figure 6, rational balls are de-
fined from Farey sequences:

– In (b-d), the vectors of BR are all normalized vectors of
a Farey sequence of order m (the higher the order, the
greater the number of vertices - and (n− 1)-faces - of
BR). The order of the Farey sequences ranges from 1 to
10 in (b-c), from 1 to 6 in (d);

– in (a), BR is computed thanks to the algorithm presented
in [14].6 Given a (odd) mask size m, and a maximal error
ε , the algorithm computes a subset of vectors of Fm−1

2
and weights such that the rational ball BR is convex and
the error with respect to the optimal theoretical error ex-
pected (wrt the Euclidean distance) for this mask size is
below ε .

5 A point p ∈ Zn is visible from the origin in Zn if there is no point
of Zn on (Op) between O and p.

6 Code is available on the TC18 website www.tc18.org/code_

data_set/code.php

www.tc18.org/code_data_set/code.php
www.tc18.org/code_data_set/code.php
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Once the sets of vectors defined, we use Qhull [3] to
compute both the rational ball itself and its intersection with
a 2-flat P that goes through the center of BR. This intersec-
tion is performed by randomly picking the coefficients of
n− 2 (n− 1)-hyperplanes containing the center of BR, and
iteratively adding each (n− 1)-hyperplane. The vertices of
P are the points lying on all (n−1)-hyperplanes.7

For each rational ball, a certain number of cuts is per-
formed: from 1000 in dimension 3 to only 6 in dimension
5 for rational balls obtained from Farey sequences of order
5 and 6 (due to precision issues in Qhull). 95% confidence
intervals are depicted for each point (i.e. for each rational
ball) as error bars, but most of the time too small to be vis-
ible on the graphs. Note that this remark suggests that the
size of |P| does not depend on the position of P , thus sup-
porting the uniform distribution hypothesis discussed in the
previous section.

Analysing these results, we see that |P| seems to behave
as f α , with α < 0 and decreasing when the dimension in-
creases. This suggests that, in practice, the complexity W of
Algorithm 9 is expected to be O((n+ log f ) · log f ). Simi-
larly to dimension 2 (see Algorithm 6), this approach is ex-
pected to lower down the worst case complexity of the com-
putation of the distance transformation for chamfer norms in
dimension n from a logarithmic factor on the size N of the
image, to a logarithmic factor on the size f of the rational
ball.

7.2 Distance transformation in dimension 2

We evaluate the performance of the separable approach to
compute distance transformation for chamfer norms. To ef-
ficiently implement predicates leading to the subquadratic
algorithm in dimension 2 (Alg. 6 and 7), we store the cham-
fer norm weighted vectorsM in a random access container
sorted counterclockwise to be able to get the mid-vector
vmid in O(1). When implementing Algorithms 6 and 7, few
special cases have to be taken into account. For instance,
we have to handle situations where a, b or c belong to S
in Alg. 6 and 7. Furthermore, Eq. (11) has a solution iff
Ak 6= A j. Thanks to the geometrical representation of the bi-
nary search process (Fig. 4), such special cases are easy to
handle. Fig. 7-(a) illustrates some results on a small domain.

To evaluate experimentally the computational cost given
in Theorem 1, we generate m random vectors (x,y)T with
gcd(x,y) = 1, setting all weights to one. In Fig.7-(b−c), we
have considered a 2D domain 20482 with 2048 random sites.
First, we observe that fixing N, the log2 m term is clearly
visible in the computational cost of the Voronoi map (single

7 Python code used to generate Farey sequences and to com-
pute these graphs is available on http://www.gipsa-lab.fr/

~isabelle.sivignon/recherches_en.html.

thread curve). Bumps in the single thread curve may be due
to memory cache issues. Please note that if we consider clas-
sical chamfer norm DT from raster scan (and sub-masks),
the computational cost is in O(m ·N2) and thus has a linear
behavior in Fig. 7-(c). Since we have a separable algorithm,
we can trivially implement it in a multi-thread environment.
Hence, on a bi-processor and quad-core (hyper-threading)
Intel(R) Xeon(R) cpu (16 threads can run in parallel), we
observe a speed-up by a factor 10 (blue curve in Fig. 7-(b)).
Please note that on this 20482 domain with 2048 sites, Eu-
clidean Voronoi Map (L2) is obtained in 954.837 millisec-
onds on a single core and 723.196 msec on 16 cores.

Implementation of all separable algorithms are publicly
available in the DGtal library [1].

8 Conclusion and Discussion

In this article, we have proposed several generic algorithms
to efficiently solve the Voronoi map and distance transfor-
mation for a large class of metrics. Focusing on chamfer
norms, geometrical interpretation of this generic approach
allows us to design a first subquadratic algorithm in dimen-
sion 2 to compute the Voronoi map. Thanks to separability,
parallel implementation of the distance transformation leads
to efficient distance computation.

In higher dimensions, we have shown that all results
holds: distance function can be evaluated in O(n + logm)

and the binary search described in VORONOIEDGEWEDGE

can also be extended to n-dimensional chamfer norms.
For the L2 metric,(additively) weighted voronoi maps,

also known as power maps, can be used to solve the reverse
distance transformation and medial axis extraction problem
using similar separable techniques [11]. A challenging fu-
ture work would be to extend these results for path-based
norms such as chamfer norms.
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