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This supplemental material provides extra proof of the
proposed LPS feature and more results for LPS and our
learned descriptor. In the first section, we provide proof of
scale and rotation invariance of LPS feature. In the second
section, more comparison results are presented to supple-
ment the paper. Our LPS feature and newly-learned descrip-
tor are tested between different vertex numbers. In addition,
we also test our approach on another dataset, SCAPE, to
show we have good generalization ability.

1. Invariant properties of scaling and rotation
Review Equation (4) in the paper, we know that the

eigenvectors are orthonormal in terms of A-inner produc-
t. So there is an implicit constraint here, which is

〈Φi,Φj〉A = ΦT
i AΦj = δij (S1)

Given a surface S and S ′ = κS which is scaled by a
factor κ. The new matrix A′ = κ2A which represents the
area and f ′ = κf which represents the coordinate. From
Equation (S1), if i = j, we can deduce Φ′

j = 1
κΦj . Re-

call the Equation (4), because angle does not change due to
scale changes, so T does not change due to scale changes.
Therefore, λ′ = 1

κ2λ. From the Equation (7), we know
σj = fTAΦj , so σ′

j = κ2σj .
Review the original energy of different frequency bands

Ẽj = λj
d∑
i=1

σ2
ij , the scaled energy Ẽ′

j = κ2Ẽj . From this

we can see that if the energy is multiplied by λj , then the
energy is independent of the scale change. We perform the
square root operation of the energy multiplied by λj , so the
final energy on each band is expressed as follows.

Ẽj = λj

√√√√ 3∑
i=1

σ2
ij (S2)
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For rotation invariance, if the model is rotated, then F′ =
FR. Discrete energy Ẽ′

j can be expressed as

Ẽ′
j = λj

√
ΦT
j ATF′F′TAΦj (S3)

= λj

√
ΦT
j ATFRRTFTAΦj . (S4)

Because the rotation matrix has property RRT = I, and
then

Ẽ′
j = λj

√
ΦT
j ATFFTAΦj = Ẽj . (S5)

Therefore, rotation also has no effect on our proposed
LPS features.

2. More results
We present more comparisons of different local descrip-

tors with different resolutions. We perform different tests
on other incompatible data. Three learned descriptors (OS-
D [5], CGF32 [3] and LDGI [8]) and four hand-crafted al-
ternatives (SI [2], SHOT [7], RoPS [1] and HKS [6]) are
chosen for comparison.

Fig. 1 shows the matching results on SCAPE dataset,
in which ‘OURS SCAPE’ means shape matching on S-
CAPE using our learned descriptors and ‘OUR-LPS S-
CAPE’ means shape matching on SCAPE using our un-
learned LPS features. It should be noted that all of learned
descriptors are trained on FAUST and tested on SCAPE.
Fig. 2 and Fig. 3 show the matching results between multi-
resolution data instead of original training data, in which
‘OURS mK-nK’ means shape matching between two differ-
ent resolutions of shapes with mK and nK points using our
learned descriptors and ‘OUR-LPS mK-nK’ means shape
matching between two different resolutions of shapes with
mK and nK points using our unlearned LPS features. Fig. 4
and Fig. 5 show the other two comparison results to supple-
ment the body of the text, in which ‘OURS Ori-nK’ means
shape matching between original shape and high-resolution
shape with nK points.
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Figures 1 to 5 show the performance on all the de-
scriptors using the standard cumulative match character-
istic (CMC) and Princeton protocol (PP) [4]. As can be
observed, the descriptors we have learned show good gen-
eralization capabilities on SCAPE dataset and different res-
olutions. In addition, our approach achieves the best results
compared to other local descriptors.
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Figure 1. Performances of different descriptors for dense matching
on SCAPE model library. Left: CMC curve. Right: correspon-
dence quality of geodesic error.
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Figure 2. Performances of different descriptors for dense match-
ing between resolution 10K and 15K. Left: CMC curve. Right:
correspondence quality of geodesic error.
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Figure 3. Performances of different descriptors for dense match-
ing between resolution 12K and 15K. Left: CMC curve. Right:
correspondence quality of geodesic error.

Affect of geodesic diameter. We perform a new test using
different sizes of the geodesic disk. We choose six geodesic
radii, which are 3.3ρ0, 4.5ρ0, 6.5ρ0, 9.0ρ0, 10.0ρ0 and
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Figure 4. Performances of different descriptors for dense match-
ing between resolution 6890 and 10K. Left: CMC curve. Right:
correspondence quality of geodesic error.
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Figure 5. Performances of different descriptors for dense match-
ing between resolution 6890 and 15K. Left: CMC curve. Right:
correspondence quality of geodesic error.
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Figure 6. LPS testing results using different geodesic diameters.

13.0ρ0. As the radius of the disk expands, the accuracy
of CMC has an extreme value when ratio is 6.5, and then
decreases, but PP increases with the increasing of geodesic
radius (see Fig. 6). In all of our experiments, we balance
both factors simultaneously and choose 6.5 & 9.0ρ0 to con-
struct our LPS feature.
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