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Abstract. This paper presents a new objective metric for assessing the
visual difference between a reference or ‘perfect’ mesh and its distorted
version. The proposed metric is based on the measurement of a distance
between curvature tensors of the two triangle meshes under comparison.
Unlike existing methods, our algorithm uses not only eigenvalues but
also eigenvectors of the curvature tensor to derive a perceptually-oriented
distance. Our metric also accounts for some important properties of the
human visual system. Experimental results show good coherence between
the proposed objective metric and subjective assessments.

1 Introduction

Three-dimensional (3D) meshes are now used in many multimedia applications
such as digital entertainment, medical imaging and computer-aided design. It is
common that 3D meshes undergo some lossy operations like simplification, com-
pression and watermarking. Since the end users are often human beings, it is
thus important to derive metrics that can faithfully evaluate the perceptual dis-
tortions introduced by such operations [1]. Classical metrics of simple geometric
distances (e.g. root mean squared error and Hausdorff distance) [2, 3] have been
demonstrated not relevant to human visual perception and thus fail to predict
the visual difference between a pair of reference and deformed meshes [1].

In order to design an accurate mesh visual distance metric, this paper at-
tempts to reconcile several properties of the human visual system (HVS) with
differential geometric quantities. Our contributions are summarized as follows:

• Introduction of an effective approach to the assessment of mesh visual quality
(MVQ) based on a novel distance measure between mesh curvature tensors.

• Use of not only curvature values, but also surface principal directions (which
have been proven perceptually important) to define the curvature tensor
distance. This distance measure seems generic enough to be used in the
future in other applications such as mesh segmentation and shape matching.

• Integration of some HVS features in the metric: we introduce a roughness-
based weighting of local visual distance to simulate the visual masking effect,
and a processing step similar to Divisive Normalization Transform (DNT)
to mimic an important neural mechanism known as adaptive gain control.



The proposed metric has the potential to be used, for instance, to benchmark a
variety of mesh processing algorithms, or to guide the design of new perceptually-
oriented algorithms. The rest of this paper is organized as follows: The relevant
research is briefly reviewed in Section 2; Section 3 details the pipeline of the
proposed MVQ metric; Section 4 presents some experimental results, including
the comparison with state-of-the-art metrics; Finally, we conclude in Section 5.

2 Related Work and Motivation

Mesh visual quality assessment. The first perceptually-oriented MVQ metric
was introduced by Karni and Gotsman [4] for the evaluation of their mesh com-
pression algorithm. The authors derived a metric by combining errors in both
vertex positions and mesh Laplacian coordinates. Corsini et al. [5] developed
two perceptual metrics, named respectively 3DWPM1 and 3DWPM2, for the
visual quality assessment of watermarked meshes. The visual distortion is mea-
sured as the roughness difference between the original and watermarked meshes.
Bian et al. [6] derived a perceptual measure where the visual difference between
a pair of meshes is defined as the amount of strain energy required to induce the
deformation between them. Lavoué et al. proposed a metric called mesh struc-
tural distortion measure (MSDM) [7], which can be considered as an extension
of the well-known structure similarity index of 2D images [8] to the case of 3D
triangle meshes. MSDM relates the visual degradation to the alteration of local
statistics (i.e. mean, variance and covariance) of mesh curvature amplitudes. An
improved multiscale version MSDM2 [9] has been recently proposed, which also
integrates a vertex matching preprocessing step to allow the comparison of two
meshes with different vertex connectivities.

Motivation. MSDM2 exhibits good correlation with subjective scores [9],
though by considering only the modification in mesh curvature amplitudes. We
argue that the modification in surface principal directions (as defined by the or-
thogonal directions of minimum and maximum curvatures) is also important to
MVQ assessment, because intuitively these directions imply structural informa-
tion of the surface and thus should be visually important. Indeed, when drawing
a 3D object, one strategy of caricaturists is to draw strokes on these lines of cur-
vatures. In the digital world, surface principal directions have been successfully
used for describing [10] and illustrating [11] complex 3D objects, and for guiding
a remeshing algorithm [12]. Motivated by the above observation, we introduce
a new MVQ metric, named TPDM for Tensor-based Perceptual Distance Mea-
sure, that makes use of full information of the mesh curvature tensor, i.e. both
curvature amplitudes and principal directions. In the following, we will briefly
present a technique for estimating mesh curvature tensors and explain how to
obtain curvature amplitudes and principal directions from the tensor.

Curvature tensor estimation. The estimation of mesh curvature tensor is
a well-researched problem. So far, the most popular estimation technique is
the one from Cohen-Steiner and Morvan [13]. Based on the solid foundation



of normal cycle theory, they derived an elegant per-vertex curvature tensor
estimation. Tensors computed on edges are averaged on a geodesic disk win-
dow B of user-defined size to obtain the curvature tensor T on each vertex v:

T (v) =
1

|B|
∑

edges e

β (e) |e ∩B| ē ēt, (1)

where |B| is the area of the geodesic disk, β (e) is the
signed angle between the normals of the two triangles
incident to edge e, |e ∩B| is the length of the part
of e inside B, and ē is a unit vector in the direction
of e (cf. the inset on right). The minimum and max-
imum curvature amplitudes (κmin and κmax) are two
eigenvalues of tensor T , and the principal directions are two eigenvectors (γmin
and γmax). The lines of minimum and maximum curvatures define respectively
the directions along which surface normals vary the slowest (e.g. along creases)
and the fastest (e.g. across creases), which represent structural features of the
surface. In the next section, we will derive a perceptually-oriented distance mea-
sure between curvature tensors by incorporating the information from both their
eigenvalues and eigenvectors, and use this distance to conduct MVQ assessment.

3 Curvature Tensor Distance Based MVQ Assessment

3.1 Overview of the Pipeline

Figure 1 illustrates the pipeline of our metric TPDM . First, in order to com-
pare two meshes with potentially different connectivities, we perform a vertex
matching step between the two meshes, based on the AABB tree data structure
in the CGAL library [14]. The next step is to compute a curvature tensor dis-
tance on each local window centered at a vertex. Afterwards, this local tensor
distance is weighted by two roughness-based factors, so as to account for the
visual masking effect. Finally, we use a surface-weighted Minkowski pooling of
the local distances to obtain a global TPDM value.

3.2 Curvature Tensor Distance

After the vertex matching step, each vertex v in the reference mesh Mr has
a corresponding vertex v′ on the surface of the distorted mesh Md. The cur-
vature tensors on the two vertices are denoted respectively by T and T ′. For
the comparison between them, we first establish correspondence relationships
between the principal directions and curvature amplitudes of the two tensors.
More precisely, for γmin of T , we find the principal direction of T ′ that has the
smallest angular distance to it (this direction is denoted by γ′1), and relate γmin
to γ′1. Accordingly, κmin of T is related to the curvature amplitude associated
to γ′1 (denoted by κ′1). Note that κ′1 and γ′1 can be the maximum curvature
and its direction of T ′. Similarly, the following correspondence relationships are



Fig. 1: Block diagram of the pipeline of TPDM (Tensor-based Perceptual Dis-
tance Measure). In the roughness map, warmer colors represent larger values.

established: κmax → κ′2 and γmax → γ′2. We find that the above correspondence
based on the minimum angular distance criterion yields better results of MVQ
assessment than the straightforward min→min/max→max correspondence. In
particular, it enhances the stability of TPDM under the situations where the
principal directions are severely disturbed after strong deformations and where
the values of κmin and κmax are very close to each other.

A local tensor distance (LTD) is computed for each pair of v and v′ as

LTD = θminδκmin + θmaxδκmax , (2)

where θmin is the angle between γmin and γ′1 (similarly for θmax), and δκmin
is

a Michelson-like contrast of the curvature amplitudes κmin and κ′1, i.e. δκmin =∣∣∣ κmin−κ′
1

κmin+κ′
1+ε

∣∣∣ with ε a stabilization constant fixed as 5% of the avarage mean cur-

vature ofMr (similarly for δKmax). Both the differences in curvature amplitudes
and in principal directions are involved in the derivation of LTD.

3.3 Roughness-Based Weighting of Local Tensor Distance

For the development of an effective MVQ metric, we should take into account
some HVS features, in particular the visual masking effect. In the context of
MVQ assessment, this effect mainly means that a same distortion is less visi-
ble in rough regions of the mesh surface than in smooth regions. In order to
account for the visual masking effect, our solution is to modulate the values
of LTDi,i=1,2,...,N (evaluated at each vertex vi of Mr) by two roughness-based
weights (the rougher the local surface is, the smaller the weights are). The local
tensor-based perceptual distance measure LTPDMi is computed as:

LTPDMi = RW
(γ)
i .RW

(κ)
i .LTDi, (3)

where RW
(γ)
i , RW

(κ)
i ∈ [0.1, 1.0] are respectively the weights derived from princi-

pal directions and curvature amplitudes in 1-ring neighborhood of vi. For RW
(γ)
i ,



we first project all the principal directions at the 1-ring neighbors on the tan-
gent plane of vi, and take the sum of the two angular standard deviations of the
projected minimum and maximum curvature directions as the local roughness

value. This value is then mapped to [0.1, 1.0] to obtain RW
(γ)
i . Similarly, to get

RW
(κ)
i , we compute the ratio of the Laplacian of mean curvature in the 1-ring

neighborhood and the mean curvature on vi as the local roughness and map it
to [0.1, 1.0]. It is worth mentioning that the derivation of the roughness weight

RW
(κ)
i includes a divisive normalization similar to that in the neural mechanism

of HVS that partially explains the visual masking effect [15]. Also note that the
vertices in isotropic areas, i.e. where κmin and κmax are close to each other,

are treated differently. For these vertices, we set RW
(γ)
i close to 1, and there-

fore the final weight is dominated by the value of RW
(κ)
i . The reason is that in

isotropic areas, principal directions are not well-defined and their estimation is
not reliable. A roughness map that combines both weights is shown in Fig. 1.

3.4 Global Perceptual Distance

The global tensor-based perceptual distance measure TPDM from Mr to Md

is computed as a weighted Minkowski sum of the local distances LTPDMi:

TPDM =

(
N∑
i=1

wi |LTPDMi|p
) 1

p

, (4)

where wi = si/
∑N
i=1 si with si one third of the total area of all the incident

faces of vi, and we set p = 2.5. The surface-based weighting can, to some extent,
enhance the stability of the metric to the variation of vertex sampling density
over the mesh surface. Compared to the standard mean-squared error in which
p = 2.0, the choice of p = 2.5 can increase the importance of the local distances
of high amplitude. This is perceptually relevant since the part of mesh with high-
amplitude distortion has experimentally more impact on the result of subjective
assessment. Finally, a cumulative Gaussian psychometric function [16] is applied
to bring the TPDM value to the [0, 1] interval. More details on the psychometric
function will be provided in the next section.

4 Experimental Results

In order to verify its efficacy, the proposed metric TPDM has been extensively
tested and compared with existing metrics on three subject-rated databases:

• The LIRIS/EPFL general-purpose database1 [7]: It contains 4 reference
meshes and in total 84 deformed models. The distortion types include noise
addition and smoothing, applied either locally or globally on the reference
mesh. Subjective evaluations were made by 12 observers.

1 http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html



• The LIRIS masking database2 [17]: It contains 4 reference meshes and in
total 24 deformed models. The local noise addition distortion included in
this database was designed specifically for testing the capability of MVQ
metrics in capturing the visual masking effect. 11 observers participated in
the subjective tests.

• The IEETA simplification database3 [18]: It contains 5 reference meshes and
in total 30 simplified models. 65 observers participated in this study.

TPDM has been compared with five state-of-the-art metrics, i.e. the Haus-
dorff distance HD [2, 3], the root mean squared error RMS [2, 3], the two
roughness-based metrics 3DWPM1 and 3DWPM2 from Corsini et al. [5], and
MSDM2 [9]. The coherence between the distance values produced by the ob-
jective metrics and the subjective mean opinion scores (MOS) is measured by
using two different kinds of correlation: the Pearson linear correlation coefficient
(PLCC) that measures the prediction accuracy of the objective metrics, and the
Spearman rank-order correlation coefficient (SROCC) that measures the pre-
diction monotonicity. Before computing PLCC, it is recommended to conduct
a psychometric fitting between the objective measures and the MOS values, in
order to partially remove the non-linearity between them. In our tests, we apply
a cumulative Gaussian psychometric function [16]:

g(a, b, R) =
1√
2π

∫ ∞
a+bR

e−(t2/2)dt, (5)

where R is the raw TPDM value, and the two parameters a and b are obtained
through non-linear fitting using the raw TPDM and the corresponding MOS
values of the group of Dinosaur models in the general-purpose database. As
shown in Fig. 2.(b) and (c), the same psychometric function has been used for
the models in the masking and simplification databases.

Tables 1, 2 and 3 present the results on the general-purpose, masking and
simplification databases, respectively. In general, TPDM exhibits quite good
performance on all the three databases, reflected by its high correlation with
subjective scores on most individual models and on the whole repositories. In
particular, TPDM has always the highest overall PLCC value (the second last
column in the tables), thus the highest prediction accuracy on all the three
databases. On the general-purpose database (cf. Table 1), TPDM has the high-
est PLCC and SROCC for almost every individual model as well as for the
whole repository, and there is much improvement in the overall PLCC com-
pared to MSDM2, the best metric proposed so far. On the masking database
(cf. Table 2), although the overall SROCC of TPDM is not as high as that
of MSDM2, we can still conclude that TPDM well captures the visual mask-
ing effect, as reflected by the high individual and overall correlation values (all
> 80%). TPDM has slightly better overall performance than MSDM2 on the
simplification database (cf. Table 3). However for the Head model the correlation

2 http://liris.cnrs.fr/guillaume.lavoue/data/datasets.html
3 http://www.ieeta.pt/~sss/index.php/perceivedquality/repository



Fig. 2: Psychometric function curve plotted with TPDM -MOS values of all the
reference/distorted models in: (a) the LIRIS/EPFL general-purpose database;
(b) the LIRIS masking database; and (c) the IEETA simplification database.

is rather low, and the reason is that TPDM has difficulties in distinguishing the
quality of the simplified Heads generated by different mesh simplification algo-
rithms but with the same vertex reduction ratio.



Table 1: PLCC (rp) and SROCC (rs) (%) of the different objective metrics on
the LIRIS/EPFL general-purpose database.

Metric
Armadillo Dinosaur Rockerarm Venus All models
rp rs rp rs rp rs rp rs rp rs

HD [2, 3] 30.2 69.5 22.6 30.9 5.5 18.1 0.8 1.6 1.3 13.8

RMS [2, 3] 32.2 62.7 0.0 0.3 3.0 7.3 77.3 90.1 7.9 26.8

3DWPM1 [5] 35.7 65.8 35.7 62.7 53.2 87.5 46.6 71.6 38.3 69.3

3DWPM2 [5] 43.1 74.1 19.9 52.4 29.9 37.8 16.4 34.8 24.6 49.0

MSDM2 [9] 72.8 81.6 73.5 85.9 76.1 89.6 76.5 89.3 66.2 80.4

TPDM 79.3 85.4 89.4 92.2 91.4 90.6 87.6 89.9 84.9 85.2

Table 2: PLCC (rp) and SROCC (rs) (%) of the different objective metrics on
the LIRIS masking database.

Metric
Armadillo Bimba Dinosaur Lion All models
rp rs rp rs rp rs rp rs rp rs

HD [2, 3] 37.7 48.6 7.5 25.7 31.1 48.6 25.1 71.4 4.1 26.6

RMS [2, 3] 44.6 65.7 21.8 71.4 50.3 71.4 23.8 71.4 17.0 48.8

3DWPM1 [5] 41.8 58.0 8.4 20.0 45.3 66.7 9.7 20.0 10.2 29.4

3DWPM2 [5] 37.9 48.6 14.4 37.1 50.1 71.4 22.0 38.3 18.2 37.4

MSDM2 [9] 65.8 88.6 93.7 100 91.5 100 87.5 94.3 76.2 89.6

TPDM 91.3 88.6 97.1 100 97.1 100 86.7 82.9 87.1 87.3

Table 3: PLCC (rp) and SROCC (rs) (%) of the different objective metrics on
the IEETA simplification database.

Metric
Bones Bunny Head Lung Strange All models
rp rs rp rs rp rs rp rs rp rs rp rs

HD [2, 3] 84.8 94.3 14.3 39.5 53.0 88.6 64.9 88.6 27.4 37.1 25.5 49.4

MSDM2 [9] 96.7 77.1 96.3 94.3 79.0 88.6 85.3 65.7 98.1 100 79.6 86.7

TPDM 98.9 94.3 97.9 94.3 63.1 65.7 99.9 100 98.8 94.3 86.4 86.7

Figure 3 illustrates the distance maps produced by TPDM and RMS for
a noised Bimba model. The map of TPDM is quite consistent with human
perception (i.e. the perceived distortion is higher in smooth regions than in
rough regions), while the map of RMS is purely geometric. Figure 4 shows an
application of our metric in the visual quality assessment of watermarked meshes.
The two watermarked models have exactly the same geometric maximum root
mean squared error (MRMS) [3] compared to the original mesh, but their visual



Fig. 3: From left to right: the original Bimba model, the deformed model after
uniform noise addition, the distance map of TPDM , and the distance map of
RMS. In the maps, warmer colors represent higher values.

Fig. 4: From left to right: the original Venus model, the model watermarked by
the method in [19], and the model watermarked by the method in [20].

quality is quite different. TPDM provides correct MVQ evaluation results that
are consistent with a subjective assessment.

5 Conclusions and Future Work

A new curvature-tensor-based approach to the objective evaluation of mesh vi-
sual quality has been proposed. We show that it is beneficial to use the full
information of the curvature tensor for MVQ assessment. The local curvature
distance and the local roughness measures that we propose may be found useful
in other mesh applications. Experimental results show that our metric TPDM
has high correlation with subjective scores and that it slightly outperforms exist-
ing metrics. Future work mainly consists of the integration of more HVS features
in the metric (e.g. the contrast sensitivity function), the improvement of the
roughness measure which at present appears a little noisy, and the development
of a curvature-tensor-based visual quality metric for dynamic meshes.

Acknowledgments

We would like to thank the anonymous reviewers for their helpful and construc-
tive comments. This work has been in part supported by the MOOV3D project
of the Minalogic competitive cluster.



References
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20. Wang, K., Lavoué, G., Denis, F., Baskurt, A.: Robust and blind mesh watermarking
based on volume moments. Comput. & Graphics 35(1) (2011) 1–19


