Motivation

Let \(q_1(x) = g_1^2(x)h(x), \) \(q_2(x) = g_2^2(x)h(x). \) We observe \(p_1, p_2, p_3 = q_1^2 + e_1 \), \(p_2 = q_2^2 + e_2. \)

Goal: recover the common divisor \(h \) and cofactors \(g_1 \) and \(g_2. \)

But, \(\gcd(p_1, p_2) = 1 \) for almost all \(e_1 \) and \(e_2. \)

⇒ we need a notion of approximate (greatest) common divisor.

Problem statement

Problem 1. (Approximate GCD with bounded degree)

Given \(N \) polynomials \(p_1 \in P_n, \ldots, p_N \in P_n \) and degree \(d, \)

\[
\min_{p_i \in P_n} \sum_{k=1}^{N} \|p^k_1 - p^k_2\|_{w_i}^2 \quad \text{subject to} \quad \deg(\gcd(p_1^2, \ldots, p_N^2)) \geq d,
\]

where:

- \(P_n := \{p_n z^0 + \cdots + p_n z^n \mid p_n \in \mathbb{R}[z]\} \subset \mathbb{R}[z], \)
- \(\|p_2^0\|_{w_i}^2 = \sum_{w \in [0, \infty]} ^{w_{i+1}} \|w\| \quad \text{and} \quad \|w\| = \|w\|_{\infty} \equiv \text{max} \|w\| \)
- \(\|w\|_{\infty} = 0 \equiv \text{missing coefficients} (p_k = \hat{p}_k), \)
- \(\|w\| = \infty \equiv \text{fixed coefficients} (p_k = \hat{p}_k), \)

Note: Problem 1 is non-convex.

Parameterizations of the problem

- **Image representation**
 \(\min_{\hat{g}, x \in X, \hat{h} \in h} \|\hat{g} - g^2\|_{\nu} \quad \text{(IM)} \)

 — nonlinear least-squares problem in \(\hat{g}, \hat{h}. \)

- **Kernel representation**
 \(\deg(\gcd(p_1, \ldots, p_N)) \geq d \iff \hat{g}(p) \quad \text{is rank-deficient,} \)
 \where \(p := (\hat{g}, \ldots, \hat{g}) \) \(\text{and} \hat{g}(p) \) \(\text{is a Sylvester-like matrix.} \)

 Example: \(\hat{g}(a, b) = \begin{bmatrix} a_0 & a_1 & \ldots & a_n \\ b_0 & b_1 & \ldots & b_n \\ \vdots & \vdots & \ddots & \vdots \\ n_0 & n_1 & \ldots & n_n \end{bmatrix} \in \mathbb{R}^{(m+n) \times (m+n)}. \)

 ⇒ Problem 1 is a structured low-rank approximation problem:

\[
\min_{\hat{g} \in P_N} \sum_{k=1}^{N} \|p^k_1 - p^k_2\|_{w_i}^2 \quad \text{subject to} \quad \hat{g}(p) \quad \text{is rank-deficient.}
\]

Variable projection principle

Let \(F: \mathbb{R}^{m+n} \rightarrow \mathbb{R}^M \) such that \(F(x, y) = A_2 y + b, \forall x \in \mathbb{X}, \mathbb{X} \subseteq \mathbb{R}^m. \) Then the following nonlinear least squares problem

\[
\min_{x \in \mathbb{X}, y \in \mathbb{R}} \|F(x, y)\|_2^2 \quad \text{(NLS)}
\]

is equivalent to

\[
\min_{x \in \mathbb{X}} \min_{y \in \mathbb{R}} \|F(x, y)\|_2^2 \quad \text{(INNER)}
\]

\[
\min_{x \in \mathbb{X}} \min_{y \in \mathbb{R}} \min_{y \in \mathbb{R}} \|F(x, y)\|_2^2 \quad \text{(OUTER)}
\]

Advantages:

- **(INNER)** is a linear least squares problem, has a closed-form solution.
- the number of variables in nonlinear optimization is reduced from \(m+n \) to \(m. \)
- we can evaluate derivatives of \(f(x) \) and use general-purpose optimization methods for (OUTER).
- (OUTER) is also a nonlinear least squares problem \(f(x) = \|F(x)\|_2^2 \text{ for some } F: \mathbb{R}^m \rightarrow \mathbb{R}^4, \) and we can use specialized methods (e.g. Levenberg-Marquardt).

Application to different parameterizations

- **Image representation**
 The cost function in (IM) has the form
 \[
 \|\hat{g} - \hat{h}\|_2^2
 \]
 where \(\hat{g} := (\hat{g}_1, \ldots, \hat{g}_N) \) and \(F \) is biaffine in \(\hat{g} \) and \(\hat{h}. \)

 ⇒ we can apply the variable projection principle.

 Two options:

 ∗ take \(x = \hat{h}, y = \hat{g}; \) \(\mathbb{X} := \{x : \|x\|_2 = 1\} \) (denoted by \(\text{IM}_{\hat{h}} \))

 ∗ take \(x = \hat{g}, y = \hat{h}; \) \(\mathbb{X} := \{x : \|x\|_2 = 1\} \) (denoted by \(\text{IM}_{\hat{g}} \))

- **Kernel representation** (denoted by KER)
 Structured low-rank approximation \(\equiv \) (OUTER) with

\[
\begin{aligned}
f(x) &= \min_{y \in \mathbb{R}} \|y\|_2^2 \quad \text{subject to} \quad G(x) y = s(x), \quad \text{(LN)}
\end{aligned}
\]

where \(G(x), s(x) \) depend on the structure \(\gamma_2 \) and the polynomials \(p^k \). In this case, (LN) is a least norm problem.

Optimization methods

Under some conditions on the weights,

\[
f(x) = \begin{cases} C - s(x)^{\top} \Gamma^{-1}(x)s(x), & \text{for } \text{IM}_{\hat{h}} \text{ and } \text{IM}_{\hat{g}} \text{.}
\end{cases}
\]

where \(s \) is a linear function and \(\Gamma \) is symmetric positive definite.

\(f \) is minimized with the SLRA package [3,4] for structured low-rank approximation (the Levenberg-Marquardt method is used).

SLRA package exploits structure and bandedness of \(\Gamma \) to evaluate the cost function, its first- and second-order derivatives [2].

Features of the parameterizations

Denote \(n = \sum_{k=1}^{N} n_k, \ell = n - N d. \)

<table>
<thead>
<tr>
<th>Representation</th>
<th>IM</th>
<th>KER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complexity per iteration</td>
<td>(O(n^2))</td>
<td>(O(n^2))</td>
</tr>
<tr>
<td>Handles fixed values</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Handles missing values</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

† can handle, but with complexity \(O(n^3) \) per iteration.

Conclusions:

- Use \(\text{IM}_{\hat{h}} \) if \(d \ll n \) (small degree of the common divisor).
- Use \(\text{IM}_{\hat{g}} \) if \((n_k - d) \ll n \) (small degree of the cofactors).

For more details, examples and comparisons — see [1].

The implementation is embedded in [1] using the literate program style. The methods are implemented in MATLAB and are based on the SLRA package [3,4].

References

