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Abstract 
Brain-Computer Interfaces (BCIs) usually propose typing 
strategies to restore communication for paralyzed and aphasic 
people. A more natural way would be to use speech BCI 
directly controlling a speech synthesizer. Toward this goal, a 
prerequisite is the development a synthesizer that should i) 
produce intelligible speech, ii) run in real time, iii) depend on 
as few parameters as possible, and iv) be robust to error 
fluctuations on the control parameters. In this context, we 
describe here an articulatory-to-acoustic mapping approach 
based on deep neural network (DNN) trained on 
electromagnetic articulography (EMA) data recorded 
synchronously with produced speech sounds. On this corpus, 
the DNN-based model provided a speech synthesis quality (as 
assessed by automatic speech recognition and behavioral 
testing) comparable to a state-of-the-art Gaussian mixture 
model (GMM), yet showing higher robustness when noise was 
added to the EMA coordinates. Moreover, to envision BCI 
applications, this robustness was also assessed when the space 
covered by the 12 original articulatory parameters was reduced 
to 7 parameters using deep auto-encoders (DAE). Given that 
this method can be implemented in real time, DNN-based 
articulatory speech synthesis seems a good candidate for 
speech BCI applications. 
Index Terms: articulatory speech synthesis, brain computer 
interface (BCI), deep neural networks, deep auto-encoder, 
EMA, noise robustness, dimensionality reduction 

1. Introduction 
In the past decades, Brain-Computer Interfaces (BCIs) have 
been studied to restore capabilities to people with severe 
paralysis, such as locked-in syndrome or tetraplegia. Several 
BCI studies succeeded in controlling the movement of 
effectors, such as robotic arms or computer mouse, both in 
animals and humans [1]–[4]. In the case of aphasia, current 
BCI approaches can provide ways to communicate, mostly 
through a typing process [5]. However, speech is our most 
natural way of communication. Restoring communication 
using BCIs could be thus applied to control a parametric 
speech synthesizer in real-time [6]. In such case, speech 
synthesis should be intelligible and performed in real-time. 
Moreover, BCI paradigms generally consider a restricted 
number of degrees of freedom, typically less than 7 [1]–[4]. 
Thus a speech synthesizer for BCI application should be 
controlled by a limited number of parameters. Finally, speech 
synthesis should be robust to input parameter fluctuations (i.e., 
uncontrolled fluctuations of brain activity during BCI). 

Speech synthesis can be achieved in several ways, one 
consisting in predicting the acoustic speech signal from the 

position of vocal tract articulators (articulatory-to-acoustic 
mapping) [7]. Articulatory parameters vary more slowly than 
speech acoustic parameters and potentially rely on a low-
dimension space [8], which are potential assets for BCI 
applications. Moreover, this strategy is compatible with 
decoding cortical signals from the somatotopically organized 
speech motor cortex [9]. The articulatory-to-acoustic mapping 
is useful in applications such as speech coding [10], speech 
synthesis [11], silent speech interfaces [12] and speech 
modification [13]. Regarding BCI applications, a previous 
study reported an electronic circuit implementation of the 
Maeda model of the vocal tract [14]. Here, we rather adopt a 
mathematical approach modeling the transformation of 
electro-magnetic articulography (EMA) recordings [15] into 
acoustic recordings, constructed from a French acoustic-
articulatory database. A state-of-the-art method for 
articulatory-to-acoustic statistical mapping uses a Gaussian 
mixture model (GMM) to infer MEL-cepstral coefficients 
from 14 EMA signals [13]. EMA data has also been combined 
with electro-palatograph and laryngograph measurements 
(almost 200 parameters) to directly predict the spectrum of the 
audio signal using a single-layer neural network [16]. 
However, to date, there has been no evaluation of the 
performance of articulatory models in the case of noisy input 
signals, or when considering a reduction of the dimension of 
the space spanned by the articulatory parameters. 

In the present work, we introduce a data-driven 
articulatory synthesizer based on Deep Neural Networks 
(DNN), which exhibits good robustness to noise and parameter 
reduction with respect to state-of-the-art methods (for instance 
a trajectory GMM), and is compatible with real-time 
implementation for future speech BCI applications. 

2. Methods 

2.1. The PB2007 acoustic-articulatory database 
Articulatory data were recorded synchronously with audio 
signals using the Carstens 2D EMA system (AG200). Six coils 
were glued on the tongue tip, blade, and dorsum, as well as on 
the upper lip, the lower lip and the jaw. Sequences of 
articulatory features were low-pass filtered at 20 Hz and 
down-sampled from 200 Hz to 100 Hz. The recorded database 
consisted of two repetitions of the 16 French vowels, two 
repetitions of 224 Vowel-Consonant-Vowels sequences 
(VCVs), two repetitions of 109 pairs of Consonant-Vowel-
Consonants (CVCs) real French words, and 117 sentences 
(total 20 minutes without silences). The speech signal was 
down-sampled to 16 kHz and parameterized by 20 mel-
cepstrum coefficients using SPTK mcep tools [17] (25ms 
frame length, 10ms frame shift). In order to take into account 
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the dynamic constraints on acoustic parameters, we 
concatenated 3 consecutive acoustic frames in one single 
feature vector for the DNN-based mapping, and we used one 
frame and its derivative for the GMM-based mapping. 
Principal component decomposition (PCA) keeping the full 
variance was applied to the contextualized articulatory data to 
obtain linearly uncorrelated features. 

2.2. Articulatory-to-acoustic mapping with a 
trajectory Gaussian mixture model (GMM) 
We considered the trajectory GMM approach proposed by 
Toda et al. [13] as a reference for articulatory-to-acoustic 
mapping. In the training stage, articulatory-acoustic 
relationships are modeled by a GMM. In the mapping stage, 
the estimated acoustic sequences is defined by !" =arg max! #($|%, &) , with $ = [! ∆!], θ the set of parameters 
of the GMM, x the sequence of articulatory features, y the 
sequence of acoustic features, and Δy its derivative, which can 
be solved in closed form. In our implementation, the 
suboptimum sequence of mixture components indices ("  
defined as (" = [)"*, … , )" +], with )" = arg max, #()|%, &), 
is determined using Viterbi algorithm. We refer the reader to 
[13] for further theoretical aspects. 

2.3. Articulatory-to-acoustic mapping with a Deep 
Neural Network (DNN) 
This section briefly describes DNN-based mapping. A deep 
neural network is a multi-layer discriminative model, made up 
of units organized in layers. The bottom layer is a visible input 
layer h0, while the next L layers are hidden layers h1, h2, ..., 
hL, and the last one is the output layer hL+1. Here we consider 
a fully-connected feed-forward DNN: Each unit of a layer is 
connected to each unit of the next layer, and there are no 
connections between units belonging to the same layer. 
Connections weights are learned during the training phase, 
generally using the back-propagation algorithm. In the 
following, wi,j

(l) denotes the weight of a connection from the 
neuron i of layer l-1 to the neuron j of layer l. Compared to 
simple neural networks, DNNs have more than one or two 
hidden layers. 

Each unit i of a layer, except the input layer, has an 
activation function σ and a bias bi. The output of a unit is the 
application of the activation function of this unit to its 
weighted inputs. The output of the unit i of the layer hl is 
given by the following equation: 

 -.(/) =  0(1 23,.(/). -3(/4*))5678
39*  (1) 

where nl-1 is the number of units in the layer hl-1. 
When a deep neural network is used for a regression 

problem, its input units take the value of the input data, and 
the network is trained such that the outputs of the output layer 
units fit the output data.  More details can be found in [18]. 

DNN training is usually a complex task since large initial 
weights typically lead to poor local minima, while small initial 
weights lead to small gradients making the training infeasible 
with many hidden layers [19]. We trained our network using 
the usual back-propagation algorithm. However, we chose to 
add the different layers successively. During the first step, the 
network was only composed by the input layer h0, the first 
hidden layer h1, and the output layer hL+1. This initial network 
was randomly initialized then fine-tuned using back-

propagation. Then the next layer was added so that the new 
network was now composed by the input layer h0, the first two 
hidden layers h1 and h2, and the output layer hL+1. The weights 
from the input layer h0 to the fist hidden layer h1 were those 
obtained at the previous step and the other weights were 
randomly initialized. Back-propagation was then applied to 
this network for fine-tuning. This process was repeated until 
all the hidden layers were added. The input and output data 
were z-scored before being fed to the network. 

At each step the weights where randomly initialized using 
a Gaussian distribution with a 0.0001 standard deviation. The 
error criterion was the mean squared error (MSE) between 
predicted and expected values. The minimization of the error 
was done with the conjugate gradient method using a 3 lines 
search, on successive batches: at each epoch, the training data 
samples were randomly shuffled then divided into 100 blocs. 
Dividing into batches allows more efficient computation than 
when using single samples [20]. Non-linear units used the 
logistic sigmoid function as activation function. This training 
method led to good and fast convergence while classic back-
propagation could not converge with more than 2 layers. 

2.4. Artificial degradation of articulatory data 

2.4.1. Noisy data 
Because the use of a synthesizer for BCI application will 
imply noisy inputs reflecting uncontrolled fluctuations of brain 
activity, we tested the robustness of the articulatory-to-
acoustic mapping by adding artificial noise to the test input 
articulatory data (no noise was added during the training step). 
We added white noise low-pass filtered below 20 Hz (as were 
the original EMA data) and re-centered. We tested different 
signal to noise ratio (SNR) values as defined by the ratio of the 
peak-to-peak amplitude of each articulatory signal by the 
standard deviation of the filtered noise. The noise amplitude 
was adjusted across EMA signals so that all had identical 
SNR. For the subjective evaluation (listening tests, see below), 
we only considered one SNR value (SNR = 10.0). 

2.4.2. Dimensionality reduction 
In practice, accurate real-time BCI control of effectors can 
only be expected with a few degrees of freedom, typically less 
than 7. Hence, we tested to which extend it is possible to 
reduce the number of articulatory parameters, starting from the 
12 parameters of our EMA database, while preserving 
acceptable speech synthesis quality. We compared two main 
dimension reduction methods: the principal component 
analysis (PCA) and deep auto-encoders (DAE). Deep auto-
encoders are deep neural networks trained to reproduce their 
input as their output [19]. Their architecture is symmetric with 
a “bottle-neck” linear middle layer containing fewer units than 
the input layer thus forcing the network to learn a 
dimensionality reduction of the input data. Such a network can 
be spliced into two sub-networks: the encoding network, 
which reduces its input data, and the decoding network, which 
allows recovering the data from the reduced one. For more 
details, we refer the reader to [19]. DAE training was done 
using the dimensionality reduction toolbox [21], [22]. We 
tested the performance of DNN- and GMM-based speech 
synthesis with all possible reduced dimensions, from 1 to 12, 
by feeding the originally trained models with reduced-then-
recovered articulatory parameters. For the subjective 
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evaluation, we only considered 7 reduced parameters, which 
was the number of articulatory parameters retained in [7]. 

2.5. Model evaluation 

2.5.1. Generalities 
The acoustic-articulatory database was randomly shuffled and 
then divided into 5 partitions of equal size. A 5-fold cross-
validation was employed for evaluation of each model: one 
partition was used for testing and the remaining 4 for training, 
and this was repeated 5 times to test all the partitions. The 
folds used to train the DNN and the GMM were identical. The 
reduction models (PCA, DAE) were computed for each fold, 
using only the training data. This allowed obtaining mean and 
standard deviation (SD) for each evaluation. Significant 
differences between results were assessed using the Quade test 
with Conover correction [23], using recognition accuracy by 
phone for the objective evaluation (35 scores per condition) 
and recognition accuracy by participants for the subjective 
evaluation (11 scores per condition). 

2.5.2. Objective evaluation using automatic speech 
recognition based on Hidden Markov Models (HMM) 
An objective evaluation was performed using an HMM-based 
phonetic decoder trained on the spectral data of the reference 
speaker using a standard training procedure of context-
dependent triphone tied-state HMM [24]. The recognition 
accuracy (defined as Acc% = 100·(N-D-S-I)/N, where N is the 
total number of phones in the test set, S, D and I are 
respectively the number of substitutions, deletions and 
insertions) was used as a measurement of the  quality of the 
synthetic spectral trajectories at the phonetic level. This 
approach was preferred to the typical calculation of the mel-
cepstral distortion between original and synthetic spectral 
trajectories (as used in [13]) since the obtained results were 
better correlated with the human perception of the synthetic 
speech. 

2.5.3. Subjective evaluation using behavioral testing 
Eleven subjects participated to an intelligibility test. All 
participants were French native speakers with no hearing 
impairment. The presented stimuli consisted of 10 French 
vowels /a/, /i/, /u/, /o/, /œ/, /e/, /y/, /ã/, /ɛ/̃, /ɔ/̃, and 30 vowel-
consonant-vowel (VCV) pseudo words made of the 10 
consonants /p/, /t/, /k/, /f/, /s/ /ʃ/, /m/, /n/, /r/, /l/, in /a/, /i/, /u/ 
contexts. The seven following synthesis conditions were 
tested: analysis-synthesis, GMM based synthesis with and 
without noise, DNN-based synthesis with and without noise, 
and DNN-based synthesis with and without reduced 
parameters. The mel-cepstrum coefficients obtained by each 
mapping were converted to audible sounds using the MLSA 
filter [25]. Excitation signal was designed with constant pitch 
for the vowels and null pitch for the VCVs. In total, each 
participant had to identify 360 sounds that were played in 
random order. Participants were seated in quiet environment 
and instructed that they would be listening to isolated vowels 
or VCV sequences. For each utterance, they had to pick the 
corresponding vowel in the case of an isolated vowel, or the 
middle consonant in the case of a VCV sequence. They were 
told that some of the sounds were noisy and difficult to 
identify, and thus to not evaluate the sound quality but only its 
intelligibility. If the sound was not intelligible at all, they 
could report it explicitly via a specific option. Stimuli were 

presented at identical sound levels, and subjects could replay 
them as many times as necessary. No performance feedback 
was provided during the test. The recognition accuracy was 
defined as Acc%=R/N with R the number of correct answers 
for the N presented sounds of the test. 

3. Results 

3.1. Speech synthesis in absence of noise using DNN 

3.1.1. Influence of DNN hyper-parameters 
Objective evaluations were conducted for various DNN 
architectures, with different numbers of layers (1 to 4) and 
numbers of units per hidden layer (20, 50, or 100) identical 
across hidden layers. As shown in Figure 1, adding more units 
for a given layer increased recognition accuracy, while adding 
more layers first led to an increase before a stabilization or 
small degradation in accuracy. Overall, a good compromise 
was to use a DNN with 3 hidden layers of 100 units each, 
ensuring an accuracy of 71.13 ± 2.75%. 

 
Figure 1: Phone recognition accuracy according to the 
number of layers and the number of units per layer 
using DNN-based mapping (mean±SD). The thick line 
represents the recognition accuracy on original audio. 

3.1.2. Comparison to GMM 
We also conducted objective evaluations of speech synthesis 
for various numbers of mixture components in the GMM, 
from 16 to 256. The recognition accuracy increased with 
increasing number of components, stabilizing after 128. Fitting 
256 components with full covariance matrices however often 
led to ill-conditioned covariance matrices. Thus, we thereafter 
chose 128 components (ensuring an accuracy of 75.68 ± 
1.27%), consistent with the results of [13].   

We compared GMM-based and DNN-based synthesis 
using both the objective (HMM phonetic decoding) and the 
subjective (listening) tests. Consistent results were obtained, as 
shown in Figure 2. In the objective test, GMM recognition 
accuracy reached 75.68% and the DNN, 71.13%. In the 
subjective test, the GMM recognition accuracy was 66.59% 
and 69.77% for the DNN. Both GMM and DNN recognition 
accuracies were below the recognition accuracy on original 
audio (P < 10-4 for the objective evaluation and P < 0.002/0.01 
for the subjective one for GMM/DNN), which was 85.77% for 
the objective evaluation, and 87.95% for the subjective one. 
The GMM performed slightly better than the DNN in the 
objective evaluation (P < 10-3) while no significant difference 
was observed between both models in the subjective 
evaluation (P > 0.3). Importantly, this similar accuracy was 
obtained with the DNN with nearly ten times less adjustable 
parameters than with the GMM: 274,560 parameters for the 
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GMM with 128 components and full covariance matrices 
compared to 25,920 for the 3 layers DNN. 

 
Figure 2: Recognition accuracy (mean±SD) for 
objective and subjective evaluations of GMM-based 
and DNN-based mappings. 

3.2. Speech synthesis from reduced articulatory data 
Let remind that both PCA and DAE were combined with the 
GMM-based and the DNN-based mappings to test successive 
dimension reduction from 12 to 1 articulatory parameter. For 
less than 10 reduced parameters, the use of DAE led to better 
results, both for the GMM- (P < 10-4) and the DNN-based 
mappings (P = 0.01), while no significant difference was 
observed with 11 and 12 parameters (Figure 3). Using 7 or 
more DAE-reduced parameters allowed obtaining a 
recognition accuracy of above 60% both for the GMM- and 
the DNN-based mappings, while 9 or more parameters were 
needed to achieve the same accuracy when using PCA. 
Moreover, no significant difference was observed between 
GMM- and DNN-based mappings for less than 9 reduced 
parameters obtained by PCA (P > 0.8), while the GMM results 
were slightly better than the DNN for more than 3 reduced 
parameters obtained by DAE (P = 0.01). 

 
Figure 3: Phone recognition accuracy (mean±SD) with 
reduced parameters obtained both by PCA and DAE, 
and with both GMM- and DNN-based mappings. 

3.3. Speech synthesis with noisy articulatory data 
Both GMM- and DNN-based mappings were then objectively 
evaluated with noisy input data with different SNR (Figure 4). 

 
Figure 4: Phone recognition accuracy (mean±SD) on 
noisy data as a function of SNR. 

With the GMM-based mapping, a recognition accuracy above 
60% was reached with a SNR of more than 20, while the 

DNN-based mapping obtained more than 60% recognition 
accuracy with a SNR higher than 10. The DNN-based 
mapping generally obtained better recognition accuracy than 
the GMM-based mapping (P < 10-4). A subjective test was 
then conducted for GMM- and DNN-based mapping of noisy 
EMA data (SNR=10, which corresponds to 44.54% and 
58.59% of recognition accuracy for the GMM- and the DNN-
based mapping respectively, in the objective test). 

This test also included DNN-based mapping of DAE-
reduced data (7 parameters) with and without noise addition 
(Figure 5). The GMM-based mapping obtained a recognition 
accuracy of 32.27%, while the DNN-based mapping obtained 
59.32% with no parameters reduction, and 53.86% when using 
7 DAE-reduced parameters. Consistently with the objective 
evaluation, the DNN-based mapping was found to perform 
better than the GMM-based mapping in noisy condition (P<10-

4). Moreover, the DNN-based mapping with reduced and noisy 
parameters performed better than the GMM-based mapping 
with full and noisy parameters (P = 0.01). Finally, no 
significant difference in subjective accuracy of the DNN-based 
mapping with reduced parameters was observed between clean 
and noisy conditions (P > 0.2). 

 
Figure 5: Recognition accuracy (mean±SD) based on 
objective and subjective evaluations of GMM- and 
DNN-based mapping on noisy articulatory data (SNR 
= 10), and on reduced data (DAE with 7 reduced 
parameters) for the DNN-based mapping 

4. Conclusion 
In this paper we have presented an articulatory-to-acoustic 
mapping method based on a deep neural network (DNN). We 
have proposed a training process to overcome the difficulties 
generally encountered when training deep neural networks, 
which allowed good convergence. The performance of this 
mapping method was then evaluated on clean and noisy 
articulatory data, with and without reducing the dimensionality 
of these input parameters. Results were compared to the state-
of-the-art method which relies on a trajectory Gaussian 
mixture model (GMM). The two-models where objectively 
evaluated using a HMM-based speech recognition method, 
and subjectively evaluated with a listening test. Objective and 
subjective evaluations were consistent and pointed out that the 
DNN-based mapping was reaching a phone recognition 
accuracy of around 70% which is almost similar to the results 
obtained with the GMM-based mapping. It also showed that it 
was more robust to noise. We also studied the impact of 
reducing the dimension of the articulatory space on the speech 
synthesis quality, using either principal component analysis 
(PCA) or deep auto-encoders (DAEs). Results showed that 
DAEs were more appropriate than PCA, both for GMM- and 
DNN-based mappings. Finally, the DNN-based mapping has a 
very low computational cost once the network has been 
trained, and is thus compatible with real time applications such 
as BCI for speech rehabilitation. 
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