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Abstract

The paper deals with the co-design of a control policy, composed by both the state feedback and the switching control law, for discrete-
time switched linear systems. Constructive conditions are given that are necessary and sufficient for the stabilizability of systems which
are periodic stabilizable. The conditions are in form of a Linear Matrix Inequality (LMI) problem whose solution provides the switching
law and a family of state feedback gains stabilizing the system as well as a bound on the exponential decreasing rate. The effectiveness
of the proposed technique is illustrated by comparison with results from the literature.
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1 Introduction

Switched systems are characterized by a dynamics that
changes with time among a finite number of different modes
[12]. Switched systems attracted a notable research interest
due, on the one hand, to their capability of modeling com-
plex real systems, such as networked and embedded sys-
tems, and on the other hand to their dynamical properties,
non-trivial to analyse and to design [12,16].

Stability and stabilizability are central issues of the literature
on switched systems, see [16] and the survey [13]. Many re-
sults are available for the problem of stability of autonomous
switched systems with arbitrary switching law, like the joint
spectral radius analysis [11], and the necessary and suffi-
cient conditions given in [14]. The latter work in particular
assessed that the existence of polyhedral, hence convex, Lya-
punov functions is necessary and sufficient for the stability.
On the other hand convex functions are proved to be con-
servative for switched systems with switching law as con-
trol input, see [2]. In this context many results are based on
the min-switching policy, see [12], that leads to nonconvex
control Lyapunov functions that are minimum of quadratics.
Such functions are obtained as solutions to LMI conditions
in [4], to Lyapunov-Metzler BMI conditions in [9,10] and
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through an LQR iterative procedure in [16]. The latter also
proved that the existence of a minimum quadratic Lyapunov
function is necessary and sufficient for stabilizability. An-
other necessary and sufficient condition, based in set-theory,
appeared in [8]. Some of the cited conditions and novel LMI
ones are analyzed and compared in [7]. The problem of co-
designing both the switching law and the control input, is
even more involved than the problem of stabilizability of au-
tonomous switched systems. This kind of problem has been
addressed in several works. Some approaches consist in fix-
ing the complexity of the Lyapunov function candidates and
of the control policy in function of the number of modes,
as in [4,5] and [6]. Techniques based on approximating the
LQR control are presented in [17,18,1].

This paper deals with the co-design of the switching law
and the feedback control for non-autonomous switched lin-
ear systems. The results are based on the convex condi-
tions for stabilization of autonomous systems presented in
[7], that are necessary and sufficient for periodic stabilizable
systems. The problem is treated by providing an analogous
LMI condition for stabilizability that is proved to be neces-
sary and sufficient for systems that are periodic stabilizable
through co-design. The LMI condition is constructive and
its solution provides the control policy. The main limitation
of the approach lies in its complexity that depends on the
number of sequences of modes, which grows combinatori-
ally with their maximal length considered. The method is
compared with the approach presented in [17,18] and with
Lyapunov-Metzler approach.

Notation: Given n ∈ N, define Nn = { j ∈ N : 1 ≤ j ≤ n}.
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The Euclidean-norm in Rn is ‖x‖. The i-th element of a
finite set of matrices is denoted as Ai. The set of q switching
modes is I = Nq, all the possible sequences of modes of
length N is I N = ∏

N
j=1 I , and |σ |= N if σ ∈I N . Given

N ∈ N, NI = ∑
N
k=1 qk is the number of elements in I [1:N].

Given σ ∈ I N , define: Aσ = ∏
N
j=1 Aσ j = AσN · · ·Aσ1 , and

define ∏
N
j=M Aσ j = I if M > N. Given a ∈ R, the maximal

integer smaller than or equal to a is bac.

2 Preliminaries and problem formulation

Consider the discrete-time switched linear system

xk+1 = Aσk xk +Bσk uk, (1)

where xk ∈Rn and uk ∈Rm are the state and the control input
at time k ∈N, respectively; σ : N→I is the switching law
and {Ai}i∈I and {Bi}i∈I , with Ai ∈ Rn×n and Bi ∈ Rn×m

for all i ∈ I . A time-varying control policy ν : Rn×N→
I ×Rm×n, is such that ν(x,k) =

(
σ(x,k), K(x,k)

)
∈I ×

Rm×n, where K(x,k) is the state feedback gain, i.e. such that
uk(xk) = K(xk,k)xk and then the feedback law may change
at every instant.

Remark 1 As proved in [17], see Theorems 5 and 7 in
particular, the attention can be restricted without loss of
generality to static control policies of the form

ν(x) =
(
σ(x), K(x)

)
∈I ×Rm×n, (2)

such that ν(ax) = ν(x) for all x ∈ Rn and a ∈ R, and to
piecewise quadratic Lyapunov functions. Moreover K(x) be-
longs to a finite set i.e. K(x) ∈K = {κi}i∈NM , with M ∈N.

The switched system in closed loop with (2) reads

xk+1 =
(
Aσ(xk)+Bσ(xk)K(xk)

)
xk, (3)

where σ(xk) = σk. We denote with xν
k (x0) ∈Rn the state of

the system (1) at time k starting from x(0) = x0 by applying
the control policy ν . Given σ ∈I D we denote with xσ

k (x0)
the state of (3) at time k≤D starting at x0 under the switching
sequence σ . The dependence of xν

k and xσ
k on the initial

conditions will be dropped when clear from the context.

Definition 1 The system (1) is globally exponentially stabi-
lizable if there are a control policy ν(x) as in (2), c≥ 0 and
λ ∈ [0,1) such that ‖xν

k (x0)‖ ≤ cλ k‖x0‖, for all x0 ∈ Rn,
with xk state of (3).

Some recent results from [7] concerning the stabilizability
of autonomous switched linear systems xk+1 = Aσk xk, with
σk ∈I , are recalled hereafter since widely employed in the
following. A periodic switching law for the system xk+1 =
Aσk xk is given by σ(k) = ip(k) and p(k) = k−Dbk/Dc+1,

with D ∈ N and i ∈I D, which means that the sequence of
modes given by i repeats cyclically in time.

Definition 2 The system xk+1 = Aσk xk is periodic σ -
stabilizable if there exist a periodic switching law
σ :N→Nq, c≥ 0 and λ ∈ [0,1) such that ‖xσ

k (x)‖≤ cλ k‖x‖
holds for all x ∈ Rn.

For periodic σ -stabilizability a periodic, state-independent
stabilizing switching law must exists, whereas it could not
exist for generic σ -stabilizability. One of the main results
provided in [7] is a necessary and sufficient condition for
periodic σ -stabilizability in form of LMI.

Theorem 1 A periodic σ -stabilizing switching law for the
system (1) exists if and only if there exist N ∈N and η ∈RNI ,
with η ≥ 0, such that ∑i∈I [1:N] ηi = 1 and

∑
i∈I [1:N]

ηiAT
i Ai < I. (4)

In this paper, we are not interested in determining peri-
odic stabilizing switching laws but on computing a state-
dependent control policy whenever the system admits a pe-
riodic stabilizing switching sequence.

Remark 2 The condition (4) can be used to determine if
a periodic σ -stabilizing switching law exists, but such a
switching law could be very poor in terms of convergence
and very complex, as its length can be very high. In fact,
supposing that (4) is satisfied or equivalently that there ex-
ists µ ∈ [0,1) such that ∑

i∈I [1:N]

ηiAT
i Ai ≤ µI, the periodic

sequence length is bounded by pN with p such that µ pn < 1
(see the proof of Theorem 22 in [7]), which can be very big
for high values of µ . Moreover, the convergence can be very
slow (see examples in [7]).

Thus, if, on the one hand, periodic σ -stabilizability is more
conservative than generic σ -stabilizability, on the other
hand, the equivalent condition is much more computation-
ally tractable, see Section 4. Indeed, the condition in case
of periodic σ -stabilizability is an LMI in the parameter N
that might by much smaller than the periodic cycle length.
In this paper we focus on a condition analogous to the LMI
one (4) for the controlled switched system (1). The aim is to
provide an LMI problem whose solution determines a sta-
bilizing control policy (2) for periodic stabilizable systems.

3 Switched state-dependent control policy

The following lemma is functional for the main results pre-
sented in this paper. Its proof is based on the elimination (or
projection) lemma, see [3], analogously to what done in [15].
The elimination lemma claims that there exists X ∈ Rm×m
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satisfying UT XV +V T XTU +Z > 0 with Z ∈Rn×n symmet-
ric, if and only if

NT
u ZNu > 0, NT

v ZNv > 0, (5)

with Nu,Nv ∈ Rn×m such that UNu = 0 and V Nv = 0.

Lemma 1 Given Mi ∈ Rn×n, with i ∈ Np, and the nonsin-
gular matrix P ∈ Rn×n, the inequality

ηPT MT
1 . . .MT

p Mp . . .M1P < I,

with η > 0, holds if and only if there exist Gi ∈ Rn×n, with
i ∈ Np−1, such that

ηI MpGp−1 . . . 0 0 0

GT
p−1MT

p Gp−1 +GT
p−1 . . . 0 0 0

. . . . . . . . . . . . . . . . . .

0 0 . . . G2 +GT
2 M2G1 0

0 0 . . . GT
1 MT

2 G1 +GT
1 ηM1

0 0 . . . 0 ηMT
1 (PPT )−1


> 0

(6)
is satisfied.

Proof: Consider first the case p = 2 and notice that
ηPT MT

1 MT
2 M2M1P < I and ηM2M1PPT MT

1 MT
2 < I are

equivalent. Conditions ηM2M1PPT MT
1 MT

2 < I and η > 0
are equivalent to (5) with

Nu =

[
I

MT
2

]
, Nv =

[
I

0

]
, Z =

[
β I 0

0 −M1PPT MT
1

]
,

and β = η−1. Applying the elimination lemma with U =[
MT

2 − I
]

and V = [0 I] we have that ηM2M1PPT MT
1 MT

2 <
I and η > 0 are equivalent to the existence of X ∈Rn×n such
that [

β I M2X

XT MT
2 −X−XT −M1PPT MT

1

]
> 0. (7)

holds. Note that (7) implies that X +XT < 0. Pre- and post-
multiplying by diag(−I, I) and multiplying by η , one ob-
tains [

I M2G1

GT
1 MT

2 G1 +GT
1 −ηM1PPT MT

1

]
> 0

with G1 =−ηX , which is equivalent to (6).

To extend iteratively the result for the case of p> 2, consider
first p= 3. From what said above ηPT MT

1 MT
2 MT

3 M3M2M1P<
I and η > 0 are equivalent, see (7), to the existence of X
such that[

β I M3X

XT MT
3 −X−XT −M2M1PPT MT

1 M2

]
> 0. (8)

Condition (8) and η = β−1 > 0 are equivalent to (5) with

Nu =


I 0

0 I

0 MT
2

 , Nv =


I 0

0 I

0 0

 , U =
[

0 MT
2 −I

]
,

V =
[

0 0 I
]
,

Z =


β I M3X 0

XT MT
3 −X−XT 0

0 0 −M1PPT MT
1

 .
From the elimination lemma, they are also equivalent to the
existence of Y satisfying

β I M3X 0

XT MT
3 −X−XT M2Y

0 Y T MT
2 −Y −Y T −M1PPT MT

1

> 0, (9)

which corresponds to (6) with G2 =−ηX and G1 =−ηY .
Applying analogous reasonings, and using (9) as (7) for
p = 3, the result can be proven for p = 4 and so on.

3.1 Switching law and feedback control co-design

From Remark 1, the problem of co-design is equivalent to
determine a stabilizing static control policy as in (2), with
finite number of feedback gains, and a piecewise quadratic
Lyapunov function for the system (3). The first step is to
apply the result in Theorem 1 for the co-design. This would
lead to a non-static stabilizing control policy, as the control
would result in sequences of modes and gains. Then a static
control policy, as defined in Remark 1, will be determined.
Applying Theorem 1, the objective is to search for sequences
of modes and feedback gains, fulfilling the LMI condition (4)
in the context of co-design. That is, given a sequence ϑ ∈I ,
of length J, and a time instant j ∈NJ , a gain among the finite
set K can be applied, denoted as Kϑ

j and whose value has
to be designed. Then, with a slight abuse of notation, given
J ∈ N and a sequence ϑ ∈I J , we denote

Fϑ =
J

∏
j=1

Fϑ j= FϑJ . . .Fϑ1=(AϑJ+BϑJ Kϑ
J ) . . .(Aϑ1+Bϑ1K

ϑ
1 ).

(10)
Thus a set of NI = ∑

N
k=1 qk matrices Fϑ , one for every

ϑ ∈I [1:N], can be defined as in (10) that are parameterized
in the gains {Kϑ

j } j∈N|ϑ | . We focus on the control policy for
(1) of the form (2) where K(x) belongs to one of the elements
of a sequence associated to a mode in I [1:N]. Then, K(x) is
a gain among the ∑

N
k=1 kqk possible, i.e. K(x) ∈K where

K = {κi}i∈NM = {Kϑ
j ∈ Rm×n : ϑ ∈I [1:N], j ∈ N|ϑ |},

(11)
with M = ∑

N
k=1 kqk. Given a switching law ϑ : N→I and

a sequence of feedback gains Kϑ : N→ Rm×n, we denote
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with xϑ
k (x) the state at time k starting at x if the control

νk = (ϑk,Kϑ
k ) is applied at k for all k ∈ N. Analogously to

the case without control input, the concept of periodic ϑ -
stabilizability can be given for the system (1).

Definition 3 The system (1) is periodic ϑ -stabilizable if
there exist: a periodic switching law ϑ : N→I and a peri-
odic sequence Kϑ : N→Rm×n, both of cycle length D ∈N;
c ≥ 0 and λ ∈ [0,1) such that ‖xϑ

k (x)‖ ≤ cλ k‖x‖ holds for
all x ∈ Rn and k ∈ N.

Clearly periodic ϑ -stabilizability is sufficient for exponen-
tial stabilizability of (1) as in Definition 1. From Definition 3
and Theorem 1, the LMI conditions

∑
i∈I [1:N]

ηi = 1 (12)

and
∑

j∈I [1:N]

η jFT
j F j < I. (13)

are necessary and sufficient for periodic ϑ -stabilizability of
system (1). Thus, conditions (13) provides the exact char-
acterization of ϑ -stabilizability, together with (12). Before
giving a convex condition equivalent to (13), we provide a
corollary that is useful to directly apply the results of Lemma
1, that requires strictly positive values of η .

Corollary 1 The switched system (1) is periodic ϑ -
stabilizable if and only if there exist N ∈ N, the set of
feedback gains (11) and η ∈ RNI such that (12) and (13)
hold with η > 0.

Proof: Sufficiency follows trivially from Theorem 1,
since η > 0 implies η ≥ 0. Suppose now that (12) and (13)
hold with η ≥ 0, where at least one η j is zero. Condi-
tion (13) is equivalent to the existence of µ > 0 such that

∑
j∈I [1:N]

η jFT
j F j ≤ µI. Define J ⊆I [1:N] the indices such that

η j = 0 if j ∈ J, and J̄ its complement in I [1:N], and denote
with |J| and |J̄| their cardinality. Given ε > 0 we have

∑
j∈I [1:N]

η jFT
j F j = ∑

j∈J

ε

|J|
FT

j F j + ∑
j∈J̄

(η j−
ε

|J̄|
)FT

j F j

−∑
j∈J

ε

|J|
FT

j F j + ∑
j∈J̄

ε

|J̄|
FT

j F j ≤ µI.

(14)
Hence, choosing ε > 0 such that

ε

(
∑
j∈J

1
|J|

FT
j F j−∑

j∈J̄

1
|J̄|

FT
j F j

)
< (1−µ)I, (15)

and ε < |J̄|η j for all j ∈ J̄, we have that ν ∈ RNI defined
by ν j = ε/|J| if j ∈ J, and ν j = η j− ε/|J̄| if j ∈ J̄, is such

that ν > 0, ∑
j∈I [1:N]

ν j = 1 and ∑
j∈I [1:N]

ν jFT
j F j < I, from (14)

and (15).

Hence, from Corollary 1, the constraints on non-negativity
of η can be replaced with its positivity.

Proposition 1 Given N ∈ N, η ∈ RNI with η > 0, and the
set of feedback gains (11), condition (13) holds if and only if
for every j ∈I [1:N] there exist | j|−1 nonsingular matrices
G j,k ∈ Rn×n with k ∈ N| j|−1 and R j ∈ Rn×n such that R j =

RT
j > 0 and

η jI X j,| j| 0 . . . 0 0 0

XT
j,| j| Yj,| j|−1 X j,| j|−1 . . . 0 0 0

0 XT
j,| j|−1 Yj,| j|−1 . . . 0 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . Yj,2 X j,2 0

0 0 0 . . . XT
j,2 Yj,1 X j,1

0 0 0 . . . 0 XT
j,1 R j


> 0 (16)

for every j ∈I [1:N] with

X j,1 = η jF j1 ,

X j,k+1 = F jk+1 G j,k, ∀k ∈ N| j|−1,

Yj,k = G j,k +GT
j,k, ∀k ∈ N| j|−1,

(17)

and
∑

j∈I [1:N]

R j < I. (18)

Proof: Condition (13) is equivalent to the existence of
Pi ∈ Rn×n such that

(PiPT
i )−1 := I− ∑

j∈I [1:N]\i
η jFT

j F j > ηiFT
i1 . . .F

T
i|i|Fi|i| . . .Fi1 ≥ 0,

(19)
for every i ∈I [1:N], hence with Pi nonsingular. Then (19) is
equivalent to I > ηiPTFT

i1 . . .F
T
i|i|
Fi|i| . . .Fi1P and thus, from

Lemma 1, to the existence of matrices Gi,k ∈ Rn×n, with
k ∈ N| j|−1, and Ri = RT

i > 0 such that (16) holds with j = i
and (PiPT

i )−1 > Ri.

Condition (PiPT
i )−1 = I− ∑

j∈I [1:N]\i
η jFT

j F j > Ri is equivalent to

(PkPT
k )−1 := I−Ri− ∑

j∈I [1:N]\{i,k}
η jFT

j F j > ηkFT
k1
. . .FT

k|k|
Fk|k|. . .Fk1

(20)
for any k ∈ I [1:N] \ i, with Pk ∈ Rn×n nonsingular.
From what proved above, (20) is equivalent to I >
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ηkPT
k FT

k1
. . .FT

k|k|
Fk|k| . . .Fk1Pk, and then also to (16) with

j = k and (PkPT
k )−1 > Rk. Repeating the reasoning for every

j ∈I [1:N], condition (13) holds if and only if (16) and (18)
are satisfied.

The main results of the paper are stated in the following
theorems, based on Proposition 1. They provide a neces-
sary and sufficient LMI condition for the ϑ -stabilizability
of switched systems (1). Moreover, the explicit form of the
control law (2) is given.

Theorem 2 The switched system (1) is periodically ϑ -
stabilizable if and only if there exist N ∈ N; η ∈ RNI such
that η > 0 and (12) holds; and for every j ∈ I [1:N] there
are:

• | j|−1 nonsingular matrices G j,k ∈Rn×n, with k ∈N| j|−1;
• | j| matrices Z j,k ∈ Rm×n with k ∈ N| j|;
• a symmetric positive definite matrix R j ∈ Rn×n;

such that (16) and (18) hold with

X j,1 = η jA j1 +B j1Z j,1,

X j,k+1 = A jk+1G j,k +B jk+1Z j,k+1, ∀k ∈ N| j|−1,

Yj,k = G j,k +GT
j,k, ∀k ∈ N| j|−1,

(21)

and feedback gains

K j
1 = η

−1
j Z j,1,

K j
k+1 = Z j,k+1G−1

j,k , ∀k ∈ N| j|−1,
(22)

for every j ∈I [1:N].

Proof: From Proposition 1, (16)-(18) and (21) with
(22) are equivalent to (13), which, together with (12), is
necessary and sufficient for periodic ϑ -stabilizability.

Any solution of the conditions of Theorem 2, besides prov-
ing ϑ -stabilizability, provides a stabilizing control policy
and a bound on the decreasing of the Euclidean norm every
N steps at most, as summarized in the following theorem.

Theorem 3 Suppose there exist α > 1 and N ∈N; η ∈RNI

such that η > 0; matrices G j,k ∈Rn×n with k∈N| j|−1, Z j,k ∈
Rm×n with k ∈ N| j| and R j ∈ Rn×n as defined in Theorem 2
such that (16)-(18) and (21) hold and

∑
i∈I [1:N]

ηi = α. (23)

Then system (1) is periodically ϑ -stabilizable and
‖Fϑ(x)x‖2 < λ‖x‖2 holds for all x ∈ Rn, with

ϑ = ϑ(x) = arg min
j∈I [1:N]

(xTFT
j F jx), (24)

and λ =α−1/2. Given x(t) = x, the stabilizing control policy
is defined from (22) within an horizon of length |ϑ | as

ν(x,k) = (σ(x,k), K(x,k)) =
(

ϑk, Kϑ
k

)
(25)

to be applied at time t + k−1, for all k ∈ N|ϑ |.

Proof: Consider η > 0 satisfying (23) and define ν =
α−1η . Then, since it has been proved that the satisfaction
of (16)-(18) and (21) is equivalent to (13), it follows that
∑i∈I [1:N] νi = 1 and

∑
j∈I [1:N]

ν jFT
j F j < α

−1I = λ
2I

hold and then

xTFT
ϑFϑ x = ∑

j∈I [1:N]

ν jxTFT
ϑFϑ x≤ ∑

j∈I [1:N]

ν jxTFT
j F jx < λ

2xT x.

Hence applying the control related to the sequence ϑ , that
is the control (25) defined for the next |ϑ | instants, leads to
‖Fϑ(x)x‖2 < λ‖x‖2. The periodic ϑ -stabilizability follows
from Theorem 2.

From Theorem 3, the value of α , is related to λ and then
could serve for obtaining the fastest decreasing rate, for a
given N, by solving the following single LMI problem

α = sup
α,η ,G j,k,Z j,k,R j

∑
j∈I [1:N]

η j

s.t. (16)− (18)− (21),
(26)

with η ,G j,k,Z j,k,R j as defined in Theorem 2.

Remark 3 A nonconvex control Lyapunov function V (x),
decreasing at every step, and a state-dependent control pol-
icy ν(x) as in (2) can be defined as in [7] from the solution
of the LMI problem:

V (x) = min
j∈YN

(
xT

λ
−| j| FT

j F jx
)
, (27)

where YN is the set of all suffixes of the elements of I [1:N],
and the control policy is ν(x) = ( ĵ1(x), K ĵ(x)

1 ) with

ĵ(x) = arg min
j∈YN

(
xT

λ
−| j| FT

j F jx
)
. (28)

4 Comparisons

In this section we compare our approach with results from
the literature, in terms of conservatism and complexity.
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4.1 Comparison with switched LQR method

As a term of comparison for our method, we consider the
nice results presented in [17,18] that is substantially based
on the fact that a time-varying system is exponentially stabi-
lizable if and only if the infinite-horizon LQR problem leads
to a value function that is a control Lyapunov function. The
method is based on a Riccati-like equation iteratively applied
to generate an increasing set of gains and positive definite
matrices that eventually provide the stabilizing LQR control
and the related Lyapunov function. One main limitation is
that the number of matrices generated might grow exponen-
tially with the iterations, despite the criterion applied for re-
ducing the redundancy is applied to limit the phenomenon.
On the other hand, such a redundancy test would entail ad-
ditional computational burden to the algorithm, already ex-
ponentially complex. Finally, a stop condition, in form of
contraction test, must be checked at every iteration. Since
the general condition could be overly complex, an only suf-
ficient alternative, analogous to the one given in Theorem 1,
is employed in the relaxed version of the algorithm.

Comparing our result with the LQR-based ones, the most
relevant feature is the fact that in our approach the feedback
gains are design variables and are effectively computed by
solving the LMI problem. That is, roughly speaking, while
the set of gains in the LQR approach is exponentially in-
creased through the iterations until a stabilizing control pol-
icy is achieved, in our method the sets of gains that maxi-
mizes the contraction, for a given horizon, are directly ob-
tained. The benefits of this co-design approach are evident in
the example below, taken from [17,18]. Moreover, also from
the computational point of view, we think that our method
presents some benefits. Indeed, in spite of solving an expo-
nentially increasing number of Riccati equations and convex
optimization problems to reduce the redundancy, a single
LMI problem has to be solved in our approach. Furthermore,
our approach does not required a numerical search in the
parameter space to obtain a solution. Finally, also from the
point of view of the generality of the result, our approach is
at least as general as the one proposed in [17,18]. In fact, the
efficient algorithm stop condition is analogous to the LMI
one given in Theorem 1, and then affected by the same con-
servatism of our approach with respect to the general stabi-
lizability property. This means that every LQR-like solution
can be recovered as a solution of our approach.

4.2 Comparison with Lyapunov-Metzler-like conditions

The methods based on Lyapunov-Metzler conditions, as
[9,5,6], seem to provide more conservative results, as the
complexity of the Lyapunov function and control policy are
fixed in function of the modes number. The conservatism
is proved in the following example based on Example 27
in [7], used to prove analogous results for autonomous
switched systems.

Example 1 Given n = 3 and q = 2, define

A1 =


1 0 0

0 0.5 0

0 0 a

, A2 =


4 −4 0

4 4 0

0 0 a

, B1 = B2 =


0

0

1

.
Clearly the subsystem x3 is stabilized by u = Kx3 with
|a+K|< 1. The subsystem (x1, x2) is stabilizable through
an appropriate switching sequence obtained by solving the
LMI condition (4) but does not admit any solution to the
Lyapunov-Metzler condition, see [7].

From the computational point of view, if on one side the
Lyapunov-Metzler conditions are non-convex, in form of
BMI, on the other one they involve a fixed number of ma-
trices and then do not incur in the combinatorial complexity
growth that affects the method present here and in [17,18].

5 Numerical examples

Example 2 Consider Example 2 in [17], that is the 4-
dimensional system with 4 modes whose matrices are

A1 =


0.5 −1 2 3

0 −0.5 2 4

0 −1 2.5 2

0 0 0 1.5

, A2 =


−0.5 −1 2 1

0 1.5 −2 0

0 0 0.5 0

−2 −1 2 2.5

 ,

A3 =


1.5 0 0 0

1 1 0.5 −0.5

0 0.5 1 −0.5

1 0 0 0.5

, A4 =


0.5 1 0 0

0 0.5 0 0

0 0 0.5 0

0 2 −2 0.5

 ,

B1 =


1

2

3

4

, B2 =


4

3

2

1

, B3 =


4

3

2

1

, B4 =


1

2

3

4

 .
The conditions of Theorem 3 are satisfied with horizon
N = 3. Besides the inherent computational benefit of hav-
ing a stabilization condition in form of LMI with respect to
the algorithmic method presented in [17], also the control
obtained is substantially simpler and more efficient. Actu-
ally, in [17] stabilizability is proved by means of an algo-
rithm which inspects control horizons of length 7 resulting
in a piecewise quadratic function determined by 13 matri-
ces. In our case, after solving the LMI problem (26), we
obtain α = 1145.2, that implies λ = 0.0296. The values of
η j are consistently higher for two particular sequences with
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respect to the others. Indeed, the control related to the se-
quence i = {4,2,2} with gains

K{4,2,2}1 = [0.0285 0.0333 −0.0715 −0.0333],

K{4,2,2}2 = [−0.8215 −0.4668 0.9070 0.8719],

K{4,2,2}3 = [0.1333 0.0167 −0.1667 −0.2167]

(29)

leads to a Schur-Cohn matrix whose spectral radius is
0.0364. Thus, in this case the periodic sequence cyclic
in {4,2,2} guarantees exponential stability, resulting in a
much simpler control. Nevertheless, the state dependent
control policies in (25) and in Remark 3 provide much
better performances, see Figure 1 where x0 = (1, 1, 0,−1).

0 2 4 6 8
0

2

4

k
Fig. 1. Evolutions of ‖x‖2 with control (25) and min-switching of
Remark 3 in solid, periodic control (29) in dashed.

Finally, as A4 is already Schur-Cohn, with 4 eigenvalues
in 0.5, we define a new A4 multiplying it by 2.5. All the
eigenvalues of A4 are now in 1.25. The evolutions of the
Euclidean norm of the state, for x0 = (1, 1, 0,−1), under
the obtained controls are depicted in Figure 2.

0 2 4 6 8
0

2

4

6

8

k
Fig. 2. Evolutions of ‖x‖2 with control (25) in solid, periodic
control (29) in dashed; min-switching of Remark 3 in dotted line.

6 Conclusion

In this paper we presented a necessary and sufficient condi-
tion for stabilizability of periodic stabilizable discrete-time
switched linear systems by co-designing both the switching
law and the feedback gain. The condition is in form of an
LMI, whose dimension depends combinatorially on the con-
sidered horizon, and can be used to maximize the conver-
gence rate. The method is compared with results from the

literature in terms of computation, conservatism and perfor-
mance.
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