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Abstract 

This paper proposes a novel kind of Unknown Input Observer (UIO) called Reset Unknown Input 
Observer (R-UIO) for state and fault estimation of a class of nonlinear uncertain systems using linear 
matrix inequality (LMI) techniques. In the devised R-UIO, the states of the observer are reset to the 
after-reset value based on an optimal H ∞ 

reset law in order to decrease the L 2 norm and settling time 
of estimation error. It is shown that the utilization of such an observer can significantly improve the 
transient response of the observer. Moreover, the devised approach can be applied to both SISO and 
MIMO systems. Furthermore, the robust stability analysis of the devised R-UIO is addressed. Finally, 
the capabilities of the proposed method are demonstrated by applying it to a Continuous Stirred-Tank 
Reactor (CSTR) as a practical model. 
© 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

 

1. Introduction 

Observer design is an attractive research field due to its importance in many practical
applications such as observer-based control, fault diagnosis and fault tolerant control. In those 
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reas, the problem of simultaneous state and fault estimation is very appealing since it has
he capability of providing the required information about state and fault within one design. 

Most of the practical systems include unknown inputs such as the parameter perturbation
1] , actuator faults, and external disturbance [2] . All of the mentioned problems can be viewed
s unknown inputs (UI) in industrial process, which can degrade the performance. Therefore,
he problem of state and fault estimation of systems with UIs is very important and it is still
n open problem. One of the widely used methods to tackle this problem is unknown input
bserver (UIO) design which has attracted many attentions since the past decades especially
n the fields of observer-based control [3,4] , observer-based fault detection and isolation [2,5] .

In [6] and [7] an observer for linear systems subject to unknown inputs is developed. Be-
ides, UIO design is investigated in [8] for linear non-minimum phase systems. The existence
f a UIO is investigated in [9,10] , and the necessary and sufficient conditions for it are pre-
ented. Besides, the reduced order UIO can be designed using a systematic procedure [11,12] .
he capabilities of the UIOs for state and fault estimation in the presence of uncertainty and
isturbance are demonstrated in [13,14] and different approaches for designing an UIO have
een developed. In [15] , linear matrix inequalities are used to design a full-order nonlinear
IO for a class of nonlinear Lipschitz systems with unknown input. Moreover, a reduced
rder UIO for the one-sided nonlinear Lipschitz system is proposed in [16] . 

The performance of UIO is affected negatively by the modeling errors, parameter variations
r other uncertain factors. Due to presence of uncertainty in the model of a physical system for
esigning a UIO, it is necessary that the designed UIO is robust against the uncertain factors
nd disturbance. Considering the factors, robust UIO is designed for unknown inputs Takagi-
ugeno models [17,18] and linear parameter varying (LPV) system [19] . In [14] , an LMI
pproach is used to design robust UIO for linear systems and a class of nonlinear systems.
 robust UIO for fault detection using linear parameter varying model with uncertainties is
resented in [20] . 

On the other hand, several control strategies are developed for dynamical systems in the
ast decades. However, most of them suffer from having oscillatory transient responses [21] .
n order to mitigate this issue and overcome the fundamental limitations of linear controllers,
he idea of reset control theory can be utilized. In this theory, the states of the controller can
e reset to a proper value, named after-reset value, based on an appropriately defined reset
aw. The idea of reset control originates from the Clegg Integrator which is aimed at tackling
he drawbacks of the traditional integrators [22] . Based on this idea, the First Order Reset
lement is developed [23] . In [24] , the authors used the state-space representation rather than

ransfer functions and since then on, this control design method turns out to be an attractive
eld especially for practical applications [25,26] . 

The stability and performance of the reset control systems are investigated in [27,28] .
he existence and uniqueness of solutions based on the well-posedness of reset instants
re demonstrated in [29] and the necessary and sufficient conditions for them are provided.
oreover, reset systems stability has been used to check the global exponential stability

f sample data systems [30] . In [31] , state reset is used to stabilize switched linear singular
ystems. A similar idea is used in [32] for robust control and fault detection for these systems.
 robust reset control law for systems with Lipschitz nonlinearity is designed in [33] . In [34] ,
uadratic and exponential stability for the systems with saturation and nested saturations
re investigated. In [35] , an optimal adaptive reset control is used to enhance the transient
erformance and error bounds. A model predictive reset strategy is used to design a reset
ontrol for polytopic LPV systems, in [36] . 
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Similarly, a traditional observer can change to a reset observer by utilizing the reset mech-
anism. A reset observer is a nonlinear observer consisting of a base observer and a reset law
that resets the states of the observer when some predefined reset conditions are satisfied. In
[37] , a new type of adaptive observer is proposed by applying the reset to the observer states.
In [38] , an optimization problem is solved to obtain an optimal reset adaptive observer. In
[39] , the application of reset strategy to a proportional-integral observer for fault estimation
problem is investigated. In [40] reset unknown input observer for linear systems is designed. 
In [41] reset proportional-integral observer for time-varying dynamics is developed. 

In this paper, a class of nonlinear uncertain systems is considered and reset strategy is
extended to the UIO to form a novel sort of UIOs called Reset UIO. An optimal after-reset
value along with a proper jump sector is obtained by solving H ∞ 

optimization problem.
Furthermore, the stability analysis for the reset error dynamics is given. In addition, unlike 
most of the previous reset observers, the proposed approach can be applied to the MIMO
systems as well as SISO systems. Moreover, the problem of fault estimation using the devised
method is investigated. In this regard, an augmented system is constructed firstly and then the
R-UIO for the augmented system is designed. The efficiency of the method is demonstrated 

by exploiting a CSTR as a practical example. It has been shown that exploiting the reset
mechanism in the UIO can improve the performance of the observer in the sense of accuracy
and rapidity. 

The remainder of the paper is organized as follows: in Section 2 , a conventional approach
to design the base UIO is investigated. In Section 3 , optimal reset UIO for state estimation is
designed. In Section 4 the problem of simultaneous state and fault estimation is considered. 
In Section 5 , the application of the proposed method to a practical model is presented and the
results are compared with literature to validate the performance of the proposed estimation 

strategy. Finally, the concluding remarks are provided in Section 6 . 

2. Conventional UIO (C-UIO) 

Consider the following uncertain nonlinear system: 

˙ x = (A + �A ) x + (B + �B) u + Dv + g(x) 

y = Cx, (1) 

where x ∈ IR 

n , u ∈ IR 

m , v ∈ IR 

d and y ∈ IR 

p are the state vector, known input vector, unknown
input vector and output of the system respectively. A , B , C and D are known matrices with
appropriate dimension. Without loss of generality, it is assumed that D is of full column
rank [9] . g ( x ) is a nonlinear function and the matrices �A and �B are time-varying matrices
corresponding to uncertainty of nominal system. The following assumptions are also used 

throughout: 

Assumption 1. g ( x ) is locally Lipschitz on a domain (open and connected set) D ⊂ IR 

n if
each point of D has a neighborhood D 0 such that g(x) satisfies ∥∥g(x) − g( ̂  x ) 

∥∥ ≤ γ
∥∥x − ˆ x 

∥∥, ∀ x, ˆ x ∈ D 0 . 

Assumption 2. The vector space of the uncertainty matrices can be defined as follows: 

�1 = { �A | �A = T a �a N a , ∀ �a ∈ R 

p a ×q a s . t. �T 
a �a ≤ I } 

�2 = { �B| �B = T b �b N b , ∀ �b ∈ R 

p b ×q b s . t. �T 
b �b ≤ I } 
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or appropriate values of p a , q a ∈ N and matrices T a , T b , N a and N b . 

For the state estimation of the aforementioned system a full-order C-UIO can be defined
n a way such that the observer leads to robustness against the uncertainties. Consider the
IO dynamics as 
 

 

 

 

 

˙ z = N z + Gu + Ly + Mg( ̂  x ) 

ˆ x = z − E y 

ˆ y = C ̂  x , 

(2)

here z ∈ IR 

n is the state of this full-order observer, ˆ x ∈ IR 

n is the estimated state vector and
 , G , L , M , E are design matrices for unknown input decoupling goal and other required
erformances. For simplicity g( ̂  x ) is shown as ˆ g from now on. The parameters of the C-UIO
an be obtained using [15] : 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N = MA − K C 

G = MB 

L = K (I + CE ) − MAE 

M = I + E C 

MD = 0. 

(3)

t is assumed that rank(CD) = rank(D) and the pair ( C , MA ) is detectable. Using the last
quation in Eq. (3) , E can be obtained as 

 = −D(CD) + + Y (I − (C D)(C D) + ) , (4)

n which, (CD) + is defined as (C D) + = ((C D) T (C D)) −1 (C D) T and Y is a free tunable
arameter that can be used to improve the performance, and K is a chosen such that N is
urwitz [9] . Note that the second term in Eq. (4) is such that (I − (CD)(CD) + )(CD) = 0

nd it generalizes the special solution −D(CD) + [42] . 
Define the estimation error as 

 = x − ˆ x . 

s a result 

˙  = ˙ x − ˙ ˆ x 

= ˙ x − ˙ z + E C ̇  x 

= (I + E C) ̇  x − ˙ z = M ̇  x − ˙ z . (5)

ubstituting ˙ x and ˙ z from Eqs. (1) and (2) results in 

˙  = M[(A + �A ) x + (B + �B) u + Dv + g] − N z − Gu − LCx − M ̂  g 

= (MA + M�A − LC) x + (MB + M�B − G ) u + MDv + Mg − N z − M ̂  g . (6)

sing Eq. (3) and replacing z = ˆ x + E Cx one has 

˙  = (MA + M�A − K C − K E CE + MAE C − N E C) x + M�Bu + M(g − ˆ g ) − N ̂  x 

= [(MA − K C) + M�A + (MA − K C) E C − N E C)] x + M�Bu + M(g − ˆ g ) − N ̂  x . (7)

eplacing N = MA − K C results in 

˙  = [ N + M�A ] x + M�Bu + M(g − ˆ g ) − N ̂  x (8)
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which leads to the continuous error dynamics 

˙ e = N e + M�Ax + M�Bu + M(g − ˆ g ) . (9) 

Now it it possible to find the gain K such that the error dynamics (9) is robustly stable and
satisfies the following requirement 

sup 

�A ∈ �1 , �B∈ �2 

‖ e ‖ 2 
‖ w d ‖ 2 

< λ, (10) 

in which λ> 0 and w d = [ x T , u 

T , v T ] T . In the next section, the reset theory is used to introduce
a nonlinear observer which can reduce the L 2 norm and the settling time of the estimation
error. 

3. Reset UIO 

In this part, reset action is added to the C-UIO to improve the performance of the observer.
Thus, the R-UIO can be formulated as ⎧ ⎪ ⎨ 

⎪ ⎩ 

˙ z = N z + Gu + Ly + M ̂  g 

ˆ x = z − E y 

ˆ y = C ̂  x 

⎫ ⎪ ⎬ 

⎪ ⎭ 

if e ∈ F 

{ 

z + = (M − A R E C) z − (I − A R ) ME y 

ˆ x + = z + − E y 

} 

if e ∈ J , (11) 

in which A R is the after reset matrix, F = { e ∈ IR 

n | e T C 

T F Ce ≥ 0} is the flow set and J =
{ e ∈ IR 

n | e T C 

T F Ce ≤ 0} is the jump set and a jump happens as soon as e ∈ J . It’s worth
noting that F and A R will be obtained by solving some inequalities. 

For the discrete error dynamics one has 

e + = x − ˆ x + 

= x − z + + E y = (I + E C) x − z + (12) 

substituting z + from Eq. (11) results in 

e + = x − (M − A R E C) z + (I − A R ) ME y + E y (13) 

using z = ˆ x + E Cx implies that 

e + = x − (M − A R E C)( ̂  x + E y) + (I − A R ) ME y + E y 

simplifying the equation leads to 

e + = Me + A R E C ̂  x − A R E Cx (14) 

adding and subtracting A R e , e + can be obtained as 

e + = Me − A R (I + E C) e + A R e 

= (A R − A R M + M) e. (15) 

Therefore, defining H = A R − A R M + M, the error dynamics can be written as { ˙ e = N e + M�Ax + M�Bu + M(g − ˆ g ) if e ∈ F 

e + = H e if e ∈ J . 
(16) 
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Based on reset error dynamics the following theorem on the convergence of R-UIO can
e stated: 

heorem 1. For the system (1) and the observer (11) , if there exist symmetric matrices P > 0,
 , matrices Q, K̄ and positive scalars ε1 , ε2 , λ, γ f , τ f , τ j and 0 < γ j ≤1 such that 

min 

,Q,F,A R , ̄K ,ε 1 ,ε 2 ,γ f ,γ j ,τ f ,τ j 

λ

ubject to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	11 0 0 0 0 0 0 

0 	22 0 0 P MT a P MT b γ σP 

0 0 	33 0 0 0 0 

0 0 0 −λ2 I 0 0 0 

0 T T a M 

T P 0 0 −ε 1 I 0 0 

0 T T b M 

T P 0 0 0 −ε 2 I 0 

0 γ σP 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0, (17a)

 

γ j P + τ j F (Q − QM + P M) T 

Q − QM + P M P 

] 

≥ 0, (17b)

 

T F H + τw 

C 

T F C > 0, (17c)

n which 

11 = ε 1 N 

T 
a N a − λ2 I 

22 = P MA − K̄ C + (P MA − K̄ C) T + 2I + γ f P + τ f C 

T F C 

33 = ε 2 N 

T 
b N b − λ2 I . 

he error dynamics (16) is robustly stable and has a L 2 gain from w d to e which is smaller
han λ and the optimal gain K can be computed as K = P 

−1 K̄ . 

To prove the theorem, some useful lemmas are presented first. 

emma 1. Majoration Lemma [43] . 
Let X , Y and F ( t ) be real matrices of appropriate dimensions. Then, for any ε> 0 and

 ( t ) T F ( t ) ≤ I we have 

 F (t ) Y + Y 

T F 

T (t ) X 

T ≤ εX X 

T + ε −1 Y 

T Y . (18)

emma 2. Schur complement [44] 
Let Q ≤0, S , and R be given matrices. The following statements are equivalents: [ 

Q R 

R 

T S 

] 

≤ 0, 

 − RS 

−1 R 

T ≤ 0. (19)

emma 3. If the nonlinear function g satisfies the Assumption 1 , then the following inequality
olds: 

e T P M(g − ˆ g ) ≤ γ 2 σ 2 e T P Pe + e T e, 
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in which σ is the largest singular value of M [45] . 

Proof. Consider the Lyapunov function V = e T Pe where P = P 

T > 0. The error dynamics
(16) is robustly stable and satisfies the condition (10) if { ˙ V < −γ f V + λ2 u 

T u + λ2 x T x + λ2 v T v − e T e if e ∈ F 

V 

+ ≤ γ j V if e ∈ J . 
(20) 

Derivation of V can be obtained as follows: 

˙ 
 = ˙ e T Pe + e T P ̇  e 

= (N e + M�Ax + M�Bu + M(g − ˆ g )) T Pe 

+ e T P (N e + M�Ax + M�Bu + M(g − ˆ g )) T . (21) 

Using Eq. (3) , Assumption 2 and change of variable K̄ = P K one has 

˙ 
 = e T ((P MA − K̄ C) T + P MA − K̄ C) e + 2e T P MT a �a N a x 

+ 2e T P MT b �b N b u + 2e T P M(g − ˆ g ) . (22) 

Applying Lemmas 1 and 3 lead to 

˙ 
 ≤ e T ((P MA − K̄ C) T + P MA − K̄ C) e + ε −1 

1 e T P M T a (P M T a ) 
T e 

+ ε 1 x 
T N 

T 
a N a x + ε −1 

2 e T P MT b (P MT b ) 
T e + ε 2 u 

T N 

T 
b N b u + γ 2 σ 2 e T P Pe + e T e. (23) 

Therefore, the first condition in Eq. (20) holds if 

e T ((P MA − K̄ C) T + P MA − K̄ C) e + ε −1 
1 e T P M T a (P M T a ) 

T e 

+ ε 1 x 
T N 

T 
a N a x + ε −1 

2 e T P MT b (P MT b ) 
T e + ε 2 u 

T N 

T 
b N b u 

+ γ 2 σ 2 e T P Pe + e T e + γ f V − λ2 u 

T u − λ2 x T x − λ2 v T v + e T e < 0 (24) 

is satisfied for all e such that e T C 

T FCe ≥0. Using S-procedure [44] with a positive constant
τ f , the above condition can be written in the matrix form as 

⎡ 

⎢ ⎢ ⎣ 

x 
e 
u 

v 

⎤ 

⎥ ⎥ ⎦ 

T 
⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

	11 0 0 0 

0 	22 + �22 0 0 

0 0 	33 0 

0 0 0 −λ2 I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

x 
e 
u 

v 

⎤ 

⎥ ⎥ ⎦ 

< 0, (25) 

in which 

�22 = ε −1 
1 P M T a (M T a ) 

T P + ε −1 
2 P M T b (M T b ) 

T P + γ 2 σ 2 P P. 

Using Schur complement lemma repeatedly, the condition (25) results in ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

	11 0 0 0 0 0 0 

0 	22 0 0 P MT a P MT b γ σP 

0 0 	33 0 0 0 0 

0 0 0 −λ2 I 0 0 0 

0 T T a M 

T P 0 0 −ε 1 I 0 0 

0 T T b M 

T P 0 0 0 −ε 2 I 0 

0 γ σP 0 0 0 0 −I 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

< 0. (26) 
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imilarly, for the discrete error dynamics, one has 

 

+ − γ j V ≤ 0. (27)

sing V 

+ = e + Pe + and substituting e + from Eq. (16) result in 

H e ) T P (H e ) − γ j e 
T Pe ≤ 0 

e T (H 

T P H − γ j P ) e ≤ 0. (28)

herefore, it is inferred that 

 

T P H − γ j P ≤ 0, (29)

hen e T C 

T FCe ≤0 is satisfied, and with the aid of S-procedure [44] the condition e T C 

T FCe ≤0
an be added to (29) by using a constant τ j > 0 as follows: 

 

T P H − γ j P − τ j C 

T F C ≤ 0. (30)

sing the Schur complement lemma the inequality (30) can be rewritten as 
 

γ j P + τ j C 

T F C H 

T 

H P 

−1 

] 

≥ 0 (31)

re and post multiplying Eq. (31) by 

 

I 0 

0 P 

] 

esults in 

 

γ j P + τ j C 

T F C H 

T P 

P H P 

] 

≥ 0. (32)

eplacing H , Eq. (32) results in 

 

γ j P + τ j C 

T F C A 

T 
R P − M 

T A 

T 
R P + M 

T P 

P A R − P A R M + P M P 

] 

≥ 0. (33)

he inequality (33) is not linear since it contains multiplication of unknown parameters P
nd A R . Therefore, using the variable change Q = PA R , one gets 
 

γ j P + τ j C 

T F C (Q − QM + P M) T 

Q − QM + P M P 

] 

≥ 0. (34)

oreover, for the well-posedness of the system it is required that after a jump, the error
rajectory jumps out of the jump set i.e: 

(e + ) T F (e + ) > 0 if e T F e ≤ 0. (35)

hus, using S-procedure, the inequality 

H 

T F H + τw 

F > 0 (36)

ith the constant τw 

> 0 must holds and this completes the proof. �
emark 1. It’s worth mentioning that the inequality (36) is checked a posteriori, in practice.

t means that as H and F are obtained previously in Eqs. (17a) and (17b) , if there is τw 

such
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that the inequality (36) holds then the system is well-posed and in this case, the reset will be
applied to the system. 

Remark 2. To avoid Zeno solution, temporal regularization time can be included in reset
dynamics (11) . Including an auxiliary variable τ guarantees that the time interval between 

two successive jumps is not smaller than ρ ∈ IR 

+ . If ρ tends to infinity, no reset will occur and
if it tends to zero, the Zeno phenomenon may happen [38] . In this case, the error dynamics
(16) can be considered as follows: { ˙ e = N e + M�Ax + M�Bu + M(g − ˆ g ) 

˙ τ = 1 

}
if e ∈ F ∨ τ ≤ ρ{

e + = H e 
τ+ = 0 

}
if e ∈ J ∧ τ > ρ. (37) 

Remark 3. Considering the effect of temporal regularization, if the R-UIO hits the reset sector
and τ ≤ρ, it has to continue flowing until τ > ρ. In this case stability cannot be assured [40] .
To deal with this problem, for a very small ρ a slightly inflated flow region can be considered
[38] . 

Remark 4. The flow set F and the jump set J are implementable since the errors Ce are
available. 

4. State and fault estimation using R-UIO 

The proposed observer can be used to estimate faults. Consider the following system 

dynamics: 

˙ x = (A + �A ) x + (B + �B) u + Dv + E f f + g(x) 

y = Cx, (38) 

in which f ∈ IR 

r and E f is a known matrix with appropriate dimension. The number of output
channels is greater than or equal to the number of fault inputs i.e p ≥ r . Moreover, it is
assumed that ˙ f � 0. Therefore, the system (38) can be rewritten as follows: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

[ ˙ x 

˙ f 

] 

= 

( [ 

A E f 

0 r×n 0 r 

] 

+ 

[ 

�A 0 

0 r×n 0 r 

] ) [ 

x 

f 

] 

+ 

( [ 

B 

0 r×m 

] 

+ 

[ 

�B 

0 r×m 

] ) 

u 

+ 

[ 

D 

0 r×d 

] 

v + 

[ 

g(x) 

0 

] 

y = 

[
C 0 

][ 

x 

f 

] 

. 

(39) 

For conciseness, some new variables and matrices are denoted as follows: 

x̄ = 

[ 

x 

f 

] 

, Ā = 

[ 

A E f 

0 r×n 0 r 

] 

, B̄ = 

[ 

B 

0 r×m 

] 

, 

D̄ = 

[ 

D 

0 r×d 

] 

, C̄ = 

[
C 0 

]
, ḡ (x) = 

[ 

g(x) 

0 

] 

, 
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c  

c⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

 

i  

s  
Ā = 

[ 

�A 0 

0 0 

] 

, �B̄ = 

[
�B 

0 

]
, (40)

hen system (38) becomes: 
 ˙ x̄ = ( ̄A + �Ā ) ̄x + ( ̄B + �B̄ ) u + D̄ v + ḡ 

y = C̄ ̄x . 
(41)

ow, the system (41) is similar to the system (1) and the observer (2) should be designed
or this new augmented system. Moreover, the same procedure explained in Theorem 1 can
e applied to estimate fault and states. In this regard, the following Theorem is devised. 

emark 5. It is readily concluded that this fault estimation observer design can be extended
o a large class of typical faults, i.e. f (n) (t ) = 0. Moreover, this method can be used for
lowly time varying faults as well. 

orollary 1. For the augmented system (41) , which includes fault as an auxiliary state, the
bserver (11) can be designed, provided that the conditions in Theorem 1 are satisfied. Then,
he error dynamics for the augmented system is robustly stable and has a L 2 gain from w d 

o e which is smaller than λ. 

roof. The proof of this theorem is the same as the Theorem 1 , provided that the augmented
atrices are used. �

emark 6. The existence conditions of UIO for the augmented system should be check,
rstly. 

Moreover, for tuning the observer gain, the following lemma can be useful. 

emma 4. The eigenvalues of a given matrix N ∈ IR 

n ×n belong to the circular region D ( α,
) with center α + j0 and radius τ if and only if there exists a symmetric positive definite
atrix P ∈ IR 

n ×n such that the following condition holds: 
 

−P P (N − αI n ) 

∗ −τ 2 P 

] 

< 0. (42)

. Simulation 

Consider a well-mixed CSTR in which the following isothermal, liquid-phase, multi-
omponent chemical reaction A � B → C is being carried out [46–48] . The system model
an be described as: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙ x 1 = − (1 + Da 1 ) x 1 + 2Da 2 x 2d x 2 + Da 2 x 2 2 

˙ x 2 = Da 1 x 1 − (1 + 2Da 2 x 2d + 2Da 3 x 2d ) x 2 − (Da 2 + Da 3 ) x 2 2 + u 

˙ x 3 = 2Da 3 x 2d x 2 − x 3 + Da 3 x 2 2 

y 1 = x 3 

y 2 = x 1 , 

(43)

n which Da 1 , Da 2 , Da 3 are system parameters and x 1 d , x 2 d , x 3 d are steady-state value of the
ystem states. This dynamics can be divided into linear and nonlinear part and rewritten as
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follows: 

˙ x = 

⎡ 

⎢ ⎣ 

−(1 + Da 1 ) 2Da 2 x 2d 0 

Da 1 −(1 + 2Da 2 x 2d + 2Da 3 x 2d ) 0 

0 2Da 3 x 2d −1 

⎤ 

⎥ ⎦ 

x + 

⎡ 

⎢ ⎣ 

0 

1 

0 

⎤ 

⎥ ⎦ 

u + 

⎡ 

⎢ ⎣ 

Da 2 x 2 2 

−(Da 2 + Da 3 ) x 2 2 

Da 3 x 2 2 

⎤ 

⎥ ⎦ 

y = 

[ 

0 0 1 

1 0 0 

] 

x. (44) 

Under assumptions in [46–48] there is unmodeled first-order dynamics and also an error in
measuring the molar feed rate. Moreover, assume that there is uncertainty in system parameters
Da 1 , Da 2 , Da 3 . In addition, suppose that system is subject to external disturbance. Under such
a circumstance, the true process is described by 

˙ x = (A + �A ) x + (B + �B) u + Dv + g(x) 

y = Cx, (45) 

in which 

�A = 

⎡ 

⎢ ⎣ 

−�Da 1 2�Da 2 x 2d 0 

�Da 1 −2�Da 2 x 2d − 2�Da 3 x 2d ) 0 

0 2�Da 3 x 2d 0 

⎤ 

⎥ ⎦ 

�B = 

⎡ 

⎢ ⎣ 

0 

b 

0 

⎤ 

⎥ ⎦ 

, D = 

⎡ 

⎢ ⎣ 

1 

0 

0 

⎤ 

⎥ ⎦ 

, g(x) = 

⎡ 

⎢ ⎣ 

Da 2 

−(Da 2 + Da 3 ) 

Da 3 

⎤ 

⎥ ⎦ 

x 2 2 . (46) 

The nominal values for the various constants are Da 1 = 3 . 0, Da 2 = 0. 5 , and Da 3 = 1 . The
steady-state values of the states are x 1 d = 0. 3467 , x 2d = 0. 8796 , x 3 d = 0. 8796 and b = 0. 3 . 

Consequently, the final nominal dynamic model is found accordingly as follows: 

˙ x = 

⎡ 

⎢ ⎣ 

−4 0. 8796 0 

3 −3 . 6388 0 

0 1 . 7592 −1 

⎤ 

⎥ ⎦ 

x + 

⎡ 

⎢ ⎣ 

0 

1 

0 

⎤ 

⎥ ⎦ 

u + 

⎡ 

⎢ ⎣ 

1 

0 

0 

⎤ 

⎥ ⎦ 

v + 

⎡ 

⎢ ⎣ 

0. 5 

−1 . 5 

1 

⎤ 

⎥ ⎦ 

x 2 2 

y = 

[ 

1 0 0 

0 0 1 

] 

x. (47) 

It is supposed that there is a 10 percent variation in the system parameters from the nominal
value. Therefore, the uncertainty matrices can be described as follows: 

T a = I 3 , N a = 0. 1 

⎡ 

⎢ ⎣ 

−Da 1 2Da 2 x 2d 0 

Da 1 −2Da 2 x 2d − 2Da 3 x 2d 0 

0 2Da 3 x 2d 0 

⎤ 

⎥ ⎦ 

T b = B, N a = 0. 1 b. (48) 

Moreover, �a and �b can be chosen as sin ( t ) I 3 and sin ( t ) respectively. The input u is a step
with amplitude 1 and the disturbance is v = sin (5 t ) . 

Now, to obtain the unknown parameters, the R-UIO should be designed by solving the
inequalities (17a) and (17b) of Theorem 1 . It is worth noting that, γ f , γ j , τ f and τ j are
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a  
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t  
nknown and result in multiplication of parameters. Therefore, to solve these inequalities,
 change of variable is used to remove one of them. Consider τ j F = F̄ thus, τ f F can be
eplaced with 

τ f 

τ j 
F̄ = τ̄ f F̄ . It is the same as letting τ j = 1 and solving the inequalities. Since

n analytical solution for the optimal value of the unknown parameters can’t be obtained, a
umerical approach is used to find a suboptimal solution. 

One way to deal with the aforementioned problem is to consider a grid for γ f , γ j and
j , then the inequalities are solved at each point of the grid to obtain a feasible solution.
n alternative method is to suppose, there is no jump and uncertainty in the model firstly.
herefore only inequality (17a) should be solved to obtain the γ f and τ f . In this case, the
nknown parameters γ f and τ f can be obtained by just griding in two dimensions. Now the
f and τ f can be fixed and make a one-dimensional grid to obtain γ j and try to minimize λ.

emark 7. The matrix F should be chosen such that it is neither positive definite nor negative
efinite in order to represent a sector. 

.1. State estimation 

First, the system dynamics (1) without any fault is considered. Initial condition of the
ystem and the observer are x = [0. 3 , 0. 3 , 0. 5] T and zero respectively. Following the previ-
usly explained procedure, the parameters can be obtained as γ f = 1 . 2, γ j = 1 , τ f = 60 and
et γ = 0. 1 . Choosing 

 = 

⎡ 

⎢ ⎣ 

0. 3368 −0. 3454 

−0. 3892 1 . 1948 

−0. 4291 0. 8448 

⎤ 

⎥ ⎦ 

nd applying the Theorem 1 to the system, the unknown parameters can be obtained as: 

 = 

⎡ 

⎢ ⎣ 

1 . 1107 0. 0228 −0. 0275 

0. 0228 0. 4874 0. 0386 

−0. 0275 0. 0386 1 . 1070 

⎤ 

⎥ ⎦ 

, F = 

[ 

−0. 0178 0. 0296 

0. 0296 0. 0334 

] 

 R = 

⎡ 

⎢ ⎣ 

0. 0000 −0. 8655 0. 0003 

0. 0468 1 . 2551 −0. 0099 

0. 0000 −1 . 4822 0. 0141 

⎤ 

⎥ ⎦ 

, K = 

⎡ 

⎢ ⎣ 

1 . 3611 2. 9107 

2. 1631 4. 0027 

0. 9769 −0. 0636 

⎤ 

⎥ ⎦ 

, 

 = 

⎡ 

⎢ ⎣ 

−2. 9107 0. 5925 −1 . 6979 

−1 . 0027 −4. 3235 −1 . 7739 

0. 0636 1 . 0043 −1 . 5478 

⎤ 

⎥ ⎦ 

. 

sing the proposed observer, the state estimation and the estimation errors in both C-UIO
nd R-UIO are shown in the Fig. 1 . This Figure shows that state estimation using R-UIO can
e more accurate and faster. Moreover, it can be seen that utilizing the proposed method can
ecrease the undershoot. In addition, R-UIO shows more robust behavior and performance in
he presence of uncertainty. It means that R-UIO not only robustly estimates the states, but
lso improves the estimation in the presence of norm bounded uncertainty resulting from the
odeling and disturbances. It is worth mentioning that after the first reset in about t = 0. 15 s

he state estimation error jump toward zero suddenly. This shows the proper choice of after
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Fig. 1. State estimation and estimation error. 

 

 

 

 

reset value. As a result, it can be seen that a direct consequence of the jump in the estimations
is reduction of L 2 norm of error and settling time. Table 1 shows the L 2 norm and the settling
time (5%) of the estimation error. It can be seen that the devised R-UIO outperforms the C-
UIO and improves the results in both L 2 norm and the settling time of estimation error. The
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Table 1 
L 2 norm and Settling time comparison. 

Method R-UIO C-UIO Improvement(%) 

T stl ( s ) 0.2113 1.6222 86.9745 √ ∫ ∞ 

0 e T edt 0.2098 0.3239 35.2466 

Table 2 
Result of Monte-Carlo simulation. 

Average Total 

|| e || 2 T stl || e || 2 T stl 

7.7 5.8 63.1 68.6 

l  

R
 

p  

t  

A  

s  

i

5

 

S  

m  

f

 

C  

α  

l

Y

a

P

ast row in Table 1 presents the percentage of improvement in performance measures using
-UIO with respect to C-UIO. 

Furthermore, a statistical analysis has been done to demonstrate the effectiveness of the
roposed method. Regarding this, a Monte-Carlo simulation with the different initial condi-
ions has been run and the improvement in the performance indices are shown in Table 2 .
s can been seen, for the 63.1% of the initial conditions the L 2 norm improved using re-

et. Besides, for the 68.6% of the samples the settling time reduces. Moreover, the average
mprovement is 7.7% and 5.8%. 

.2. State and fault estimation 

Now consider the CSTR dynamics in Eq. (44) , which is in the general form of Eq. (45) .
uppose that there is an actuator fault in the system model with E f = B. Hence, the faulty
odel can be described in the general form of Eq. (38) . The fault is considered as an abrupt

ault as follows: 

f (t ) = 

{ 

1 3 ≤ t ≤ 7 

0 else. 
(49)

onstructing the augmented system and applying Theorem 1 along with the Lemma 4 with
= −3 . 5 , τ = 1 . 5 , the unknown parameters can be obtained as: γ f = 1 , γ j = 1 , τ f = 2 and

et γ = 0. 1 . Choosing 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−0. 6537 −0. 2857 

−1 . 2294 −0. 4624 

−0. 2710 −0. 4098 

−0. 9000 −0. 5035 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

nd applying the Theorem 1 to the system, the unknown parameters can be obtained as: 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

324. 5537 15 . 2064 30. 9417 5 . 1134 

15 . 2064 386 . 8132 −31 . 4134 −88 . 4059 

30. 9417 −31 . 4134 275 . 6123 −10. 5633 

5 . 1134 −88 . 4059 −10. 5633 22. 1028 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, F = 

[ 

6 . 7706 28 . 7999 

28 . 7999 −38 . 7831 

] 
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Fig. 2. State estimation and estimation error. 

Table 3 
Fault estimation L 2 norm and Settling time comparison. 

Method R-UIO C-UIO R-PIO Improvement(%) 

T stl ( s ) 1.50 2.30 2.2 34.78 √ ∫ ∞ 

0 e T edt 0.94 1.16 1.24 18.97 
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Fig. 3. Fault estimation and estimation error. 

A

N

 R = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−0. 0000 0. 1213 0. 0938 0. 3797 

1 . 0737 −1 . 1097 −0. 6701 −2. 5316 

0. 0000 −0. 2982 −0. 0908 −0. 8244 

4. 5259 −4. 7495 −2. 9348 −13 . 3870 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, K = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

4. 4974 −0. 4310 

−0. 5205 7 . 7351 

−0. 7167 5 . 0409 

−15 . 6523 32. 8381 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−4. 4974 −0. 5026 0. 7167 0 

3 . 5205 −4. 4523 −7 . 2727 1 . 0000 

0. 7167 1 . 0383 −5 . 6311 0 

15 . 6523 −0. 8858 −32. 3346 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 
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The result of state and fault estimation with the initial condition x̄ 0 = [1 , 0. 1 , 0. 23 , 0. 1] T 

can be seen in the Fig. 2 and 3 , respectively. In Fig. 2 the estimation of states subject to fault
and disturbance is presented. In this figures, the results of our method is compared with the
C-UIO and proportional-integral reset observer (R-PIO) [38] and [39] . The results show that
state estimation using R-UIO can result in smaller overshoot and faster estimation compared 

to the C-UIO and R-PIO. In addition, the Fig. 3 depicts the fault estimation and the result of
the proposed R-UIO is compared with the other methods. It can be seen that the R-UIO fault
estimation outperforms the C-UIO and R-PIO and estimates the states and fault more rapidly
and accurately. Besides, it can be deduced that despite the presence of modeling uncertainties,
R-UIO can estimate the fault and states better than the other mentioned methods which in turn
demonstrates the robust stability of the CSTR error dynamics. Just like the state estimation
in previous section, in this case, due to proper choice of reset law and after reset value,
state estimation error jumps toward zero after the first reset moment. Moreover, in Table 3 a
comparison of the R-UIO, C-UIO and R-PIO in estimating the fault is presented. It shows
that using the devised method can result in about 35% and 19% improvement in settling time
and L 2 norm of the estimation error with respect to C-UIO. 

It is worth mentioning that for reset-based approaches, the choice of the reset law and the
after reset value is the key stage. It is not always evident how to choose them. Care should
be taken to choose these parameters. 

To wrap it up, from the results, three important conclusions can be revealed: 

(a) Resetting action can improve the fault and state estimation. 
(b) R-UIO provides estimation with better transient response than the other methods. 
(c) The improvement in the fault estimation using R-UIO in comparison with the C-UIO 

is about 35% in settling time 19% in L 2 norm of the estimation error. 

6. Conclusion 

In this paper, optimal Reset Unknown Input Observer for a class of nonlinear uncertain 

systems was proposed. In this observer, the states are reset to an optimal value based on
a H ∞ 

optimization problem. The devised observer can be used to estimate fault and states
simultaneously by considering fault as an auxiliary state and constructing the augmented 

system. Robust stability of the proposed method is addressed by utilizing a CSTR model as
a practical example. It is shown that using the reset in the UIO can decrease the L 2 cost and
the settling time of the estimation error. 
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