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Yet another computation-oriented necessary and sufficient
condition for stabilizability of switched linear systems

Mirko Fiacchini

Abstract—This paper presents a computational method to test
the stabilizability of discrete-time switched linear systems. The
existence of a conic cover of the space on whose elements a
convex condition holds is proved to be necessary and sufficient
for stabilizability. An algorithm for computing a conic partition
that satisfies the new necessary and sufficient condition is
given. The algorithm, that allows also to determine bounds on
the exponential convergence rate, is proved to overcome the
conservatism of conditions equivalent to periodic stabilizability
and is applied to a four dimensional system.

Index Terms—Switched linear systems, stabilizability, convex
analysis.

I. INTRODUCTION

Switched systems are characterized by a finite set of possi-
ble dynamics, among which the system evolves [14], [21]. In
the last decades, this class of systems attracted an increasing
attention since it allows to model complex dynamics such as
networked and interconnected systems and the interaction be-
tween physical systems and digital devices. Classical issues in
automatic control, such as stability analysis and control design,
result to be rather involved even for switched linear systems,
though, yielding to the necessity of a tailored theory [17], [21].
Concerning the problem of stability analysis, several works
appeared presenting sufficient and necessary and sufficient
conditions. For instance, [18] provides stability analysis based
on a variational approach, whereas the work [3] considers
mode-dependent Lyapunov functions to provide a sufficient
condition for stability.

Concerning the problem of stabilizability of switched linear
systems, the necessity of using nonconvex or time-varying
functions have been recognized, see [1], and often employed to
reduce the conservatism in constructive methods, for instance
those based on Lyapunov-Metzler conditions [8], [9], on con-
vex conditions [6], [21], and on quadratic time-varying Lya-
punov functions [4]. Also necessary and sufficient conditions
for stabilizability appeared, [7], [21], highlighting the inherent
complexity of the problem of determining whether a switched
linear systems is stabilizable. As a matter of fact, testing
whether a necessary and sufficient condition for stabilizability
holds is equivalent to check if the unit ball is contained in the
interior of the union of a potentially arbitrarily big number
of ellipsoids, given by the ball preimages. The stabilizability
problem has been proved, indeed, to be undecidable in [13],
that addresses the problem in terms of joint spectral subradius,
see also [12].
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A strictly weaker condition, referred to as uniform conver-
gence [19], consistent [20], [21] or periodic [6] stabilizability,
has been also characterized and its relation with general
stabilizability analysed. While [19]–[21] already proved that
periodic stabilizability is only sufficient for stabilizability,
[6] provides a necessary and sufficient convex condition for
periodic stabilizability and its relation with Lyapunov-Metzler
conditions. A hint on the conservatism of conditions for
periodic stabilizability has been given in [10], expressing it
in terms of S-procedure application. Thus, although necessary
and sufficient conditions are available, their complexity led to
inspect alternative conditions, just sufficient but more com-
putationally affordable. The notable exception [13] proposes
algorithms to test necessary and sufficient conditions for
stabilizability and to compute tight bounds on the convergence
rate.

This paper aims at providing an algorithmic method to test
whether a necessary and sufficient condition for stabilizability
is satisfied for a switched linear system. The method is based
on a novel necessary and sufficient stabilizability condition,
consisting in the existence of a conic cover of the space on
whose cones a convex condition holds. For switched systems,
in fact, conditions based on homogeneous functions and de-
fined on conic partions permit to characterize global properties,
see for instance [11], [15], [16]. A major contribution of this
paper is the formulation and application of a computational
method for generating a sequence of conic covers of the state
space for which the new necessary and sufficient condition
for stabilizability is satisfied. The method allows also to
determine bounds on the exponential convergence rate for
a given switching horizon. Although no guarantee for the
termination of the procedure can be given, being the problem
itself undecidable [13], rather tight numerical results have been
obtained. In particular, the method is applied to certify the
stabilizability of a system for which the sufficient conditions
have been proved not to hold [6]. Moreover, it has been applied
to a two dimensional classical example for which tight bounds
on the convergence rate are available in the literature [13],
showing that analogous estimations are obtained. Finally, a
specific four dimensional switched system has been built for
which the convergence rate bound can be inferred but hardly
computed with alternative necessary and sufficient conditions.
The numerical method proved to be able to certify the bound
on the convergence rate even for the four dimensional system.

Notation: Given n ∈ N, define Nn = {x ∈ N : 1 ≤ x ≤ n}.
The subindex denotes, with slight abuse of notation, both the
i-th row of a matrix (or a vector) and the i-th element of
a countable set of elements. Given Ω ⊆ Rn, int(Ω) is the
interior of Ω. Given P ∈ Rn×n with P > 0, define E (P) ={

x ∈ Rn : xT Px≤ 1
}

. The q modes of the switched systems
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are denoted by I , that is I = Nq, then I k = ∏
k
j=1 I

are all the possible sequences of modes of length k and
I [N] =

⋃N
k=1 I k, the sequences of modes of length up to N.

Given N ∈N, the number of elements i∈I [N] is N̄ = ∑
N
k=1 qk.

Given i ∈ I [N] define Ai = AiN . . .Ai1 and Bi = {x ∈ Rn :
xTAT

i Aix ≤ 1}, with B unit ball: B = {x ∈ Rn : xT x ≤ 1}.
Define J = {−1,1} and given β ∈ Jn, define the matrix
T (β )∈Rn×n as T (β )= diag(β ). The simplex in Rn is denoted
as ∆n, that is ∆n = {λ ∈ Rn : λ ≥ 0, ∑

n
i=1 λi = 1}. The sets

{Γi}i∈Np are a cover of Rn if
⋃

i∈Np Γi = Rn.

II. PROBLEM STATEMENT

Consider the switched linear system

xk+1 = Aσ(k)xk, (1)

where xk ∈ Rn is the state at time k ∈ N, σ : N→ I is the
switching law and {Ai}i∈I , with Ai ∈Rn×n for all i ∈I , the
modes transition matrices. Denote with xσ

k (x) the state of (1)
at time k for a switching law σ(·) and an initial condition
x. The objective is to provide a constructive condition for
stabilizability, defined below for the case under analysis.

Definition 1: The system (1) is globally exponentially sta-
bilizable if there are c≥ 0 and λ ∈ [0,1) and, for all x ∈ Rn,
there exists a switching law σ : N→I , such that

‖xσ
k (x)‖ ≤ cλ

k‖x‖, ∀k ∈ N. (2)

Since asymptotic and exponential stabilizability are equiv-
alent for this class of systems, there is no loss of generality
in considering exponential stabilizability. Necessary and suf-
ficient conditions exist for system (1) to be stabilizable, given
first in [21] and in [7] in a set-theoretic version, recalled here.

Theorem 1 ([7]): The switched system (1) is stabilizable if
and only if there exists N ∈ N such that

B ⊆ int
( ⋃

i∈I [N]

Bi

)
. (3)

These results claim substantially that system (1) is stabiliz-
able if and only if a state-dependent switching law exists such
that the Euclidean norm of the state can be reduced within the
horizon of length N. The main problem, that is the objective of
the present study, is that checking whether (3) holds might be
hardly manageable, for nontrivial cases. Indeed, the problem
has been proved to be inherently undecidable, [13].

Other conditions, that are more computationally affordable
but just sufficient, have been given in the literature. A first
condition is the one based on Lyapunov-Metzler inequalities,
[8], [9], posed in terms of bilinear matrix inequalities. An-
other sufficient condition for stabilizability, in form of convex
optimization problem, is given in [6] and recalled hereafter.

Theorem 2 ([6]): The switched system (1) is stabilizable if
there exist N ∈ N and η ∈ RN̄ such that η ∈ ∆N̄ and

∑
i∈I [N]

ηiAT
i Ai < I. (4)

Condition (4) has been proved in [6] to be equivalent to
periodic stabilizability, also referred to as uniform convergence
[19] or consistent stabilizability [20], [21], and less conserva-
tive than the Lyapunov-Metzler condition. Moreover, it has

been proved in [19], [21] that periodic stabilizability is only
sufficient, not necessary for stabilizability. This means that
switched linear systems exist such that condition (3) is satisfied
with an appropriate N ∈N whereas (4) cannot hold, for every
N ∈N, nor Lyapunov-Metzler conditions can be satisfied, see
the Example 17 in [6] that will be considered in this paper. A
hint on the source of conservatism of the condition for periodic
stabilizability is given in [10], where condition (4) is proved
to be obtainable by resorting to the S-procedure.

The objective of this work is to provide a computational
method for obtaining a test for stabilizability which is less
conservative than the sufficient ones, in the line of [13], and
to show its efficiency even in four dimensions.

III. NECESSARY AND SUFFICIENT
CONDITIONS FOR STABILIZABILITY

A useful result, whose proof is in [6], is recalled.
Lemma 1 ([6]): Given Pi ≥ 0, i∈Nm, the following equality

holds ⋃
π∈∆m

E

(
∑

i∈Nm

πiPi

)
=
⋃

i∈Nm

E (Pi).

A first novel necessary and sufficient condition for stabi-
lizability is presented below. Based on this condition, another
one, more computation oriented, is given afterward.

Theorem 3: The switched system (1) is stabilizable if and
only if there exists N ∈ N and, for every x ∈ Rn, there is
η(x) ∈ RN̄ such that η(x) ∈ ∆N̄ and

xT

(
∑

i∈I [N]

ηi(x)AT
i Ai

)
x < xT x. (5)

Proof: To prove sufficiency, suppose η(x)∈∆N̄ exists for
every x ∈ Rn such that (5) holds. Condition (5) is equivalent
to the fact that if x is in B then it also belongs to the interior
of the set

E

(
∑

i∈I [N]

ηi(x)AT
i Ai

)
= {z ∈ Rn: zT

(
∑

i∈I [N]

ηi(x)AT
i Ai

)
z≤ 1}.

(6)
Denoting Λ = {η(x) : x ∈ Rn}, that is a subset of ∆N̄ , and
from Lemma 1, it follows that

B ⊆
⋃

x∈Rn

int

(
E

(
∑

i∈I [N]

ηi(x)AT
i Ai

))

=
⋃

η∈Λ

int

(
E

(
∑

i∈I [N]

ηiAT
i Ai

))
⊆

⋃
η∈∆N̄

int

(
E

(
∑

i∈I [N]

ηiAT
i Ai

))

⊆ int

 ⋃
η∈∆N̄

E

(
∑

i∈I [N]

ηiAT
i Ai

)= int
( ⋃

i∈I [N]

Bi

)
,

and then (3) holds. For necessity, suppose that (3) is satisfied.
Then every x ∈B, i.e. such that xT x≤ 1, belongs also to the
interior of

⋃
i∈I [N] Bi which implies, from Lemma 1 and (6),

that η(x) ∈ ∆N̄ exists such that

xT

(
∑

i∈I [N]

ηi(x)AT
i Ai

)
x < 1.
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Hence, (5) holds.
Theorem 3 substantially claims that the existence of η(x)∈

∆N̄ such that (5) is satisfied, for every x∈Rn, is necessary and
sufficient for the stabilizability of the switched linear system.
On the other hand, the determination of such η(x) defined on
the whole Rn might be computationally intractable. Note that
Theorem 3 could have been alternatively proved by noticing
that (5) is equivalent to the existence, for every x∈Rn different
from the origin, of i(x)∈I [N], such that ‖Ai(x)x‖2 < ‖x‖2, for
appropriate N ∈ N, and then also equivalent to (2).

Remark 1: The sufficient condition (4) can be seen as the
particular case of (5) with η = η(x) for all x ∈ Rn.

The alternative computation-oriented necessary and suffi-
cient condition can now be given.

Theorem 4: The switched system (1) is stabilizable if and
only if there exist: N ∈ N; a conic cover {C ( j)} j∈Np of Rn;
and {µ( j)} j∈Np with µ( j) ∈ ∆N̄ such that

xT

(
∑

i∈I [N]

µ
( j)
i AT

i Ai

)
x < xT x, ∀x ∈ C ( j). (7)

Proof: Sufficiency follows directly from Theorem 3 with
ηi(x) = µ

( j)
i for all i ∈I [N], j ∈ Np, and x ∈ C ( j). To prove

necessity, suppose the system is stabilizable, that is equivalent
to satisfaction of (3) for N ∈ N. Then ρ > 0 exists such that

1√
1−ρ

B ⊆ int
( ⋃

i∈I [N]

Bi

)
. (8)

Condition (8) implies that for every x∈Rn there exists η(x)∈
RN̄ such that

xT P(x)x <−ρxT x, (9)

with
P(x) = ∑

i∈I [N]

ηi(x)AT
i Ai− I, (10)

from Theorem 3. The aim is to prove that (9) implies the
existence of the conic covering of Rn and µ( j) for every cone
such that (7) holds. From homogeneity, only x∈ ∂B, i.e. with
‖x‖2 = 1, are considered in the following. Given x ∈ ∂B, the
function defined for y ∈ Rn as

fx(y) = (x+ y)T P(x)(x+ y)− xT P(x)x

is continuous in y and such that fx(0) = 0, and thus is smaller
than ρ for y in a neighborhood of the origin. Then for every
x ∈ ∂B, there exists ε(x) positive such that fx(y)< ρ for all
y∈ ε(x)B. This implies that, taking ε∗=minx∈∂B ε(x), which
exists and is positive, then

(x+ y)T P(x)(x+ y) = fx(y)+ xT P(x)x < 0, ∀y ∈ ε
∗B

for all x ∈ ∂B, from (9). Hence, for all x on the boundary of
the unit ball, the condition

zT

(
∑

i∈I [N]

ηi(x)AT
i Ai

)
z < zT z,

holds for all z such that ‖x− z‖2 ≤ ε∗, and also for z in the
cone generated by x+ εB, i.e.

Cx = {y ∈Rn : ∃z ∈Rn,∃λ ∈Rs.t.‖x− z‖2 ≤ ε
∗, y = λ z, λ ≥ 0}

(11)

from homogeneity. Finally, defining: a grid of x( j) ∈ ∂B, with
j ∈Np, such that for all x ∈ ∂B there is x( j) such that ‖x( j)−
x‖2≤ ε∗; the conic covering {Cx( j)} j∈Np from (11); and µ( j) =

η(x(i)), condition (7) holds.
Theorem 4 means that the existence of a fine enough conic

cover of the space such that (7) holds is a necessary and
sufficient condition for stabilizability. Moreover, condition (7)
boils down to a linear condition if the conic sets C ( j) are
defined as the negative sublevel sets of quadratic forms, as
will be illustrated below. More details on the computational
implication will be given in the following section.

Note that, being the condition given in Theorem 4 necessary
and sufficient for stabilizability, it is equivalent to the other
ones, [7], [21], and strictly less conservative than sufficient
conditions, for instance those based on convex conditions [6],
[21], on Lyapunov-Mezler ones [8], [9] and on time-varying
Lyapunov functions [4], see [6] for a relation between some of
them. Moreover, the satisfaction of the condition in Theorem 4,
as for the equivalent ones, implies that the classical min-switch
control strategies stabilize the switched system.

IV. CONIC PARTITION AND
NONNEGATIVE QUADRATIC FORMS

The first issue is how to compute a set of quadratic forms
determining a cover of the whole space, on whose cones
condition (7) has to be tested. That is, the design of a set
of matrices {M j} j∈Np such that⋃

j∈Np

{x ∈ Rn : xT M jx≥ 0}= Rn. (12)

Moreover, it might be necessary to iteratively generate finer
covers of the state space.

The presented method is based on generating covers of the
state space composed by the closed convex cones determined
by a basis matrix. Hence, for every cone, a quadratic form
that is nonnegative on the cone is defined. Finally a method
to generate finer covers of the state space, by replacing a cone
with a conic cover of it, is given.

A. Initial conic partition generation

Any basis of the state space is the linear transformation of
the standard basis of Rn, denoted {ei}i∈Nn . Indeed, clearly,
the elements of any given basis {bi}i∈Nn with bi ∈ Rn are
Bei = [b1 b2 . . . bn]ei = bi, for all i ∈ Nn. Moreover, given a
nonsingular matrix B ∈ Rn×n the set

C(B) = {x ∈ Rn| ∃λ ∈ Rn : Bλ = x, λ ≥ 0} (13)

is a closed convex cone. Then given the basis {bi}i∈Rn of
Rn, the closed convex cones C(BT (β )) defined for all β ∈ Jn,
are such that

⋃
β∈In C(BT (β )) = Rn. Thus, every nonsingular

matrix B defines a conic partition of Rn, that will be used in
the algorithm as initial partition.

B. Nonnegative quadratic form

Given β ∈ Jn and the cone C(BT (β )), a quadratic form that
is nonnegative on C(BT (β )) must be defined. Given β ∈ Jn,
denote V = BT (β ) in this section, to ease to notation.
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Lemma 2: Given {vi}i∈Nn basis of Rn and V = [v1 v2 . . . vn],
if M(V ) ∈ Rn×n symmetric satisfies

vT
i M(V )v j ≥ 0, ∀i, j ∈ Nn s.t. i≤ j (14)

then xT M(V )x≥ 0 for all x ∈C(V ).
Proof: By definition of the convex cone C(V ), for every

x∈C(V ) there exists λ ∈Rn with λ ≥ 0 such that x=∑
n
i=1 λivi.

Then xT M(V )x is given by a finite sum of terms λiλ jviM(V )v j,
that are nonnegative from (14). Hence xT M(V )x ≥ 0 for all
x ∈C(V ).

Lemma 2 can be used to determine a quadratic form that is
nonnegative on the cone generated by every {vi}i∈Nn basis
of Rn. Recall that M(V ) might not be positive definite to
determine nontrivial cones.

Proposition 1: Given {vi}i∈Nn basis of Rn and V =
[v1 v2 . . . vn] the following inclusion holds

C(V )∪C(−V )⊆ {x ∈ Rn : xT M(V )x≥ 0} (15)

for all M(V ) satisfying (14).
Proof: The fact that C(V ) ⊆ {x ∈ Rn : xT M(V )x ≥ 0}

follows directly from Lemma 2. Moreover, if M(V ) satisfies
the conditions in (14), than it also satisfies them for {−vi}i∈Nn ,
which implies that also C(−V )⊆ {x∈Rn : xT M(V )x≥ 0}.

An implication of Proposition 1 is that some of the sets
in the cover

⋃
β∈In C(BT (β )) could be disregarded from the

analysis, since redundant.

C. Finer partition generation

As it will be clearer from the following section, a method is
necessary to split a closed convex cone C(V ) in smaller cones
whose union contains C(V ). In particular, given the nonsin-
gular matrix V , a first method is provided for determining n
nonsingular matrices U j, with j ∈ Nn such that

C(V ) =
⋃

j∈Nn

C(U j). (16)

The simpler approach proposed consists basically in using the
barycenter vector v̄(V ) = 1/n ∑ j∈Nn v j to split the cone:

U j = [v1 . . . v j−1 v̄(V ) v j+1 . . . vn] ∀ j ∈ Nn. (17)

As v̄(V ) belongs to the convex hull of {vi}i∈Nn and matrices
U j are nonsingular, for every j ∈ Nn, then their columns are
basis of Rn and satisfy (16). This means that, given a conic
partition of Rn, another partition of Rn is obtained by replacing
the cone C(V ) with the cones C(U j) as in (17).

Alternatively, a cone can be splitted along the longer edge
of the set co({v j} j∈Nn). This consists in defining

(i∗, j∗)(V ) ∈ arg max
(i, j)∈N2

n

‖vi− v j‖,

v∗(V ) = 0.5(vi∗ + v j∗)
(18)

to split the cone in two

Ui∗ = [v1 . . . vi∗−1 v∗(V ) vi∗+1 . . . vn],
U j∗ = [v1 . . . v j∗−1 v∗(V ) v j∗+1 . . . vn].

(19)

Also in this case matrices Ui∗ and U j∗ are nonsingular and
satisfy C(V ) = C(Ui∗)∪C(U j∗). Moreover, the maximal dis-
tances between the vectors v j determining a partition would
converge to zero by iterating the splitting procedure.

V. LOCAL CONTRACTION CONSTRAINT AND ALGORITHM

Now that a conic partition is given and a quadratic form
that is nonnegative on every cone can be determined, the
contraction conditions can be posed over every cone. Suppose
that a set of basis V = {V ( j)} j∈Np determining the cover of Rn

as
⋃

j∈Np C(V ( j)) has been obtained as illustrated above, i.e.
starting with an initial cover and then refining it if necessary.
Also the following set of cones⋃

j∈Np

{x ∈ Rn : xT M(V ( j))x≥ 0}

is a cover of Rn, from Proposition 1.
Proposition 2: Given {vi}i∈Nn basis of Rn and V =

[v1 v2 . . . vn], the condition (7) is satisfied with C ( j) =
C(V )∪C(−V ) and µ( j) = µ(V ) if

∑
i∈I [N]

µi(V )AT
i Ai− I +M(V )< 0, (20)

holds with M(V ) satisfying (14).
Proof: From Proposition 1, condition (7) with C ( j) =

C(V )∪C(−V ) and µ( j) = µ(V ) holds if

xT

(
∑

i∈I [N]

µi(V )AT
i Ai

)
x < xT x, ∀x s.t. xT M(V )x≥ 0 (21)

is satisfied, and then also if (20) holds, from S-procedure [2].
Thus, condition (20) implies satisfaction of (7) with µ( j) =
µ(V ) and C ( j) =C(V )∪C(−V ).

The interest of this result lies in the fact that (20) is more
suitable than (7) from the computational point of view.

Finally, a sketch of algorithm is given for testing whether
the condition in Theorem 4 is satisfied and hence if the system
(1) is stabilizable, see Algorithm 1. If Algorithm 1 terminates,
then the system is stabilizable.

Algorithm 1 Testing stabilizability condition in Theorem 4.
Input: Horizon N ∈ N, matrices {Ai}i∈I [N] , basis matrix B.

1: V = {BT (β ) : β ∈ Jn}; . Initial conic partition
2: while V 6= /0 do
3: extract V from V ;
4: compute α(V ) such that

α(V ) = min
α,µ(V ),M(V )

α

s.t. ∑
i∈I [N]

µi(V )AT
i Ai +M(V )≤ αI

µ(V )≥ 0, ∑
i∈I [N]

µi(V ) = 1, M(V ) = M(V )T

vT
i M(V )v j ≥ 0, ∀i≤ j,

5: if α(V )≥ 1 then
6: add Ui∗ and U j∗ to V ; . Partition refinement
7: end if
8: end while

Remark 2: The conditions presented in this paper as well
as the Algorithm 1 can be adapted to determine, besides
the property of stabilizability, bounds on the exponential
convergence rate λ , sometimes referred to as stabilization
radius [13]. It is sufficient, indeed, to multiply all the matrices
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Fig. 1. Set B, black, ellipsoidal preimages B1,B2 and B3, in red, and basis
vectors of {V ( j)} j∈N8 , in thin lines.

by 1/λ in the stabilizability conditions. If the condition holds,
then the system has a convergence rate bounded above by λ ,
see Examples 2 and 3 below.

A convex problem, in LMI form, has to be solved at every
iteration. On the other hand, there is no guarantee, in general,
of finite termination of Algorithm 1, as the existence of a conic
partition cannot be ensured unless the system is stabilizable.
This is reasonable since the problem is undecidable by its
nature. Moreover, the number of elements in an eventual
conic partition satisfying the necessary and sufficient condition
could be arbitrarily big. Nonetheless, as illustrated in the
next section, the application of Algorithm 1 to examples
from the literature and to a four dimensional system shows
the efficiency of the algorithm in testing stabilizability and
computing tight bounds on the exponential convergence rate.

VI. NUMERICAL EXAMPLES

Three examples will be considered to illustrate the results
and the application of the algorithm. The set of matrices M(V ),
determining the conic cover, and the parameters α(V ) and
µ(V ) resulting from the application of Algorithm 1 for each
example are available at [5], in form of matlab data files,
together with simple scripts to verify the conic covering of
the space and the stabilizability condition (20) satisfaction.

Example 1: Consider Example 17 in [6], employed to prove
that condition (4) is just sufficient for stabilizability. The
system is given by three modes with matrices

A1 = AR(0), A2 = AR
(

2π

3

)
, A3 = AR

(
−2π

3

)
,

where

A =

[
0.6 0
0 0.6−1

]
, R(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
.

The system is proved in [6] to be stabilizable since the
necessary and sufficient condition (3) is satisfied with N = 1.

Fig. 2. Set B, black, ellipsoidal preimages Bi for i ∈I [9], in red, and basis
vectors of {V ( j)} j∈N23 , in black lines.

Then, the Euclidean norm decreases at every step, but (4) does
not hold, for any N ∈ N. This implies also that Lyapunov-
Metzler conditions cannot validate stabilizability either.

Algorithm 1 with N = 1 and the identity as initial basis
matrix, i.e. B = I, has been applied to this example, validating
the stabilizability with a final cover of 8 cones {V ( j)} j∈N8 ,
depicted in Figure 1. Figure 1 represents also the sets B and its
preimages B1,B2 and B3 that graphically validate condition
(3) with N = 1. Note that from Proposition 1, it is sufficient
to generate a cover of half of the space R2.

Example 2: The second switched system, with modes

A1 = R
(

π

4

)
, A2 =

[
2 0
0 1/2

]
(22)

is based on an example from [19] and used in [13] to illustrate
methods for computing bounds of the stabilizability radius.
These methods, based on conditions evaluated on a grid of the
unit circle in R2, hence on a one dimensional space, provides
two bound estimations, of 0.886 and 0.88.

To infer the value of the convergence rate λ , consider the
system whose matrices are given by Ā1 = λ−1A1 and Ā2 =
λ−1A2. For N = 9 and λ = 0.8855 the set B and the preimages
Bi for all I [9], whose number is N̄ = 1022, are drawn, see
Figure 2. From geometric inspection it can be proved that B
is contained in the union of ellipsoids and λ = 0.8855 seems
a rather tight bound for N = 9, see the Figure 3

Algorithm 1 is then applied with B = I, validating the con-
dition of stabilizability with convergence rate of λ = 0.8855
by testing the convex condition over 23 cones covering the
half space, also depicted in Figure 2.

Comparing this result with those obtained in [13] it is worth
noting that, besides providing a tighter bound with respect to
one proposed, the method presented here provides guarantee
of stabilizability, that cannot be ensured in general when
evaluating conditions on a grid of points. Another benefit is
the fact that, as the proposed method does not resort to a grid
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Fig. 3. Zoom of set B, black, ellipsoidal preimages Bi for i ∈I [9], in red,
and basis vectors of {V ( j)} j∈N23 .

of the space, it can be applied to higher dimensional systems,
as illustrated in the next example. For this, the algorithm has
also been applied to this example with N = 5, leading to the
validation of a bound of λ = 0.96 with 10 cones.

Example 3: This example is specifically built such that a
tight estimate of the convergence rate is known but other
methods for its sharp estimation, based on the space gridding,
might be not applicable due to the space dimension. To
illustrate the possibility of applying the proposed method
in higher dimension, in fact, a system is considered that is
composed by two subsystems equal to the one of Example 2.
Any method based on gridding the space is hardly applicable
in R4. Moreover, an accurate estimation of the convergence
rate is known by construction, and then the precision of
the estimation obtained with Algorithm 1 can be objectively
evaluated. Consider the four dimensional system with 4 modes

Â1 =

[
λ−1A1 0

0 δ I

]
, Â2 =

[
λ−1A2 0

0 δ I

]
,

Â3 =

[
δ I 0
0 λ−1A1

]
, Â4 =

[
δ I 0
0 λ−1A2

]
,

with λ the known estimation of the convergence rate, see
below, and A1 and A2 as in (22). Parameter δ is posed equal to
0.999, to guarantee a decreasing of the function xT x within the
horizon N of the four dimensional system. The objective is to
check whether Algorithm 1 is able to validate the convergence
rate for the four dimensional system.

Since N = 9, with q= 4, leads to more than a half million of
sequences, the smaller horizon of N = 5 has been employed.
Note that N = 5 gives N̄ = 1364 switching elements in I [5].
Since the bound of λ = 0.96 has been validated in the previous
example for the single subsystem, it must hold also for the four
dimensional system. The objective is to test whether the tight
bound λ = 0.96 for N = 5 can be validated also in this case.

Indeed, the application of Algorithm 1, with a randomly
generated non-singular matrix B, provides a validation of
the bound λ = 0.96 for the four dimensional system, the

semidefinite conditions (20) holding in each of the 1827 cones
composing the generated cover of R4.

VII. CONCLUSIONS

In this paper a novel necessary and sufficient condition
for stabilizability has been proposed. The condition consists
in the existence of an appropriate conic cover of the space
and a convex condition on its elements. This condition led
to a procedure for iteratively generating a sequence of conic
covers and linear problems allowing to test the stabilizability
of systems for which no periodic stabilizability can hold. The
method has been also applied to estimate the convergence rate
for switched linear systems, even in dimension four.
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