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Abstract

This paper deals with the estimation of regions of attraction (RoAs) for a cancer

dynamical model. The estimation of this type of sets is very interesting in the

field of control for cancer dynamics, since it provides the set of possible initial

health indicators, for which there exists a treatment protocol allowing to heal the

patient. Therefore, we propose a methodology to estimate the region of attraction

of a nonlinear dynamical system describing the interaction between a tumor, the

immune system and combined therapies of cancer. Then, we use the characterization

of the RoA for a given model parameters vector, in order to derive an estimation of

an outer approximation of the robust RoA under parametric uncertainties.

Estimating the region of attraction (RoA) of equilibrium points is a fundamental prob-

lem in systems engineering [6]. This set, called also the domain or the basin of attraction,

contains the initial states that can be driven to a stable equilibrium point, without violat-

ing the specified constraints. Therefore, the estimation of regions of attraction is a very

important and still open field of research [2].

In practical problems, the systems are often affected by different types of uncertain-

ties. Hence, one of the challenging problems in the control of dynamical systems is the

estimation of robust regions of attraction for nonlinear and uncertain systems. According

to [4], the Lyapunov theory for ODEs initiated the notion of invariant sets for control

problems. Deriving the exact RoA for dynamical systems is a challenging task, therefore,

researchers focus on determining Lyapunov functions, since the sublevel sets of the latter

represent the boundaries of positively invariant sets [29]. In fact, a positively invariant

set, for a given dynamical system, is such that if it contains the states at a given time,

then, there is a guarantee that it will contain the state trajectories for the future.

One of the commonly used convex sets for the estimation of invariant sets are polyhe-

drons and ellipsoids. According to [2], invariant ellipsoids have been used in the literature

in order to estimate the regions of attraction of nonlinear systems. In [4], a detailed review
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on invariant sets approaches is provided, with a specific comparison between polyhedrons

and ellipsoids, in terms of estimation accuracy and flexibility. According to [5], it is es-

tablished, in terms of RoA estimation as well as robustness analysis, that the ellipsoidal

based approaches are conservative. In contrast to ellipsoids, polyhedral sets provide less

conservative solutions, although they might be computationally expensive.

The estimation of regions of attraction for linear systems has received a specific atten-

tion in the literature. There exist many works for this class of systems, see for example

[3], [4], [5] and [31]. In contrast to linear systems, the characterization of regions of at-

traction for nonlinear systems is an open research topic. There exist some approaches,

that are based on convex difference inclusions (CDIs), allowing to estimate the RoAs for

nonlinear systems, see [1], [11], [10], [13], [12]. Furthermore, in [24], the latter methods

were extended to characterize the RoAs for nonlinear systems, subject to different types

of uncertainties.

Moreover, there are other methods based on the moment optimization framework, al-

lowing to estimate the RoAs of polynomial dynamical systems and providing a hierarchy

of semi-algebraic outer (or inner) approximations of the ROA, by solving a sequence of

linear matrix inequalities (LMIs) problems, see [16] and [15]. However, as mentioned in

[21] and [22], the moment optimization based methods are limited to low dimensional

systems and require a relatively high computational time. Therefore, extending these

approaches to uncertain systems might be challenging.

In the context of cancer treatment, the regions of attraction are interpreted as the

sets of initial health conditions (tumor volume and immune cells density for example), for

which there exists a treatment strategy such that the patient recovers, without any health

damage or side effect. Therefore, the characterization of this type of sets is essential for

the analysis of cancer related dynamical systems. Furthermore, since this class of systems

is known to be highly uncertain, it is crucial to estimate the RoA under uncertainties for

such systems.

There exist in the literature few works regarding the estimation of RoAs and robust

RoAs for cancer dynamical systems. We cite for example [7] and [30], where the authors

proposed different Lyapunov functions based approaches, to estimate the domain of at-

traction of the tumor free equilibrium point corresponding to autonomous cancer growth

models, where no therapies are considered, see also [19] and references therein. Fur-

thermore, in [25], an iterative procedure method, based on approximating the uncertain

system with CDIs, was presented to estimate the robust region of attraction of a tumor

growth model with chemotherapy. However, the model that we consider in this paper has

not been investigated in the literature to estimate its controlled region of attraction.

In this paper, we propose a readily applicable methodology that is in the same line

of sliding mode control, in order to characterize the region of attraction of a cancer dy-

namical model, using bang-bang control strategies. Furthermore, this methodology will
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be used in order to derive an estimate of the robust region of attraction, where the model

parameters are considered to be uncertain. It is worth emphasizing that this approach

does not provide the control strategies to be applied, however, it provides the set of initial

conditions, such that for every initial condition in this set, there exists a control strategy

allowing to drive the states to a benign stable equilibrium. This can also be seen as to

provide an estimate of the control invariant set corresponding to the benign stable equi-

librium.

This paper is organized as follows: In Section 1, we present the cancer dynamical

model, furthermore, we investigate the parametric space of this model and we analyze

the effects of parametric uncertainties on the model equilibrium points. In Section 2, we

present the methodology allowing to derive the RoA of the cancer benign equilibrium,

corresponding to the considered model. We use the latter approach in Section 3 in order

to derive an estimation of the robust RoA. Finally, Section 4 summarizes the work that

we present in this paper.

1 Dynamical model

We consider here the same model as in [22], describing the interaction between a tumor

and the immune system under the effects of a combined therapy:

ẋ1 = µCx1 −
µC

x∞
x21 − γXx1x2 − κXx1u1,

ẋ2 = µIx1x2 − βY x21x2 − δY x2 + κY x2u2 − ηY u1x2 + αY ,

x(0) = (x1(0), x2(0)) = x0,

(1)

where x1 and x2 denote, respectively, the number of tumor cells and the density of effector

immune cells (ECs), u1 and u2 are, respectively, the delivery profiles of a cytotoxic agent

(chemotherapy) and an immunostimulator. The initial state of system (1) is denoted by

x0.

The model that we investigate here is a modified version of the Stepanova model [28]

that has been extensively used in the literature, we cite for example [8], [17] and [18]

where optimal control approaches were proposed to schedule chemo- and immunotherapy

injection profiles. Furthermore, [26] proposed a multiple model predictive control scheme

to design chemo- and immunotherapy injection schedules. Moreover, in [27], the authors

proposed a robust multiple model predictive control scheme for this model, in order to

consider direct drug targeting pharmacokinetic uncertainties as well as system model mis-

matches. Although this model has been widely used, it has never been investigated in the

literature to estimate the controlled region of attraction of its corresponding tumor free

equilibrium.

Table 1 summarizes the definitions of the model parameters and their nominal values.

We slightly changed the values of some parameters since with the previous set of param-

eters values (used in [21] and [22] and taken from [8]), the domain of attraction for the

3



uncontrolled system (1) (for u1 = 0 and u2 = 0) was unrealistically big. This allows us

to solve a problem which is more reasonable and realistic from a practical point of view.

Furthermore, we focus on the assessment of a methodology that remains applicable for

different nominal parameters values.

Table 1: Definitions and nominal values of the parameters used in model (1).

Parameter Definition Numerical value

µC tumor growth rate 1.0078 ·107 cells/day

µI tumor stimulated 0.0029 day−1

proliferation rate

αY rate of immune 0.0827 day−1

cells influx

βY inverse threshold 0.0040

γX interaction rate 1 ·107 cells/day

δY death rate 0.1873 day−1

κX chemotherapeutic 1 ·107 cells/day

killing parameter

κY immunotherapy 1 ·107 cells/day

injection parameter

x∞ fixed carrying capacity 780 ·106 cells

ηY chemo-induced loss 1

on immune cells

Let’s denote by x = (x1, x2) and u = (u1, u2), respectively, the state and the con-

trol input vectors. The uncontrolled nominal model (1) (for u = (0, 0)) has two lo-

cally asymptotically stable equilibrium points. The macroscopic malignant equilibrium is

xm = (766.44, 0.08) and the benign one is xb = (41.45, 0.95).

In standard control problems for cancer dynamics, the objective of the treatment

consists in general in driving the state trajectories from the region of attraction of the

malignant equilibrium to the region of attraction of the benign equilibrium. This can be

seen as to switch an acute tumor to its chronic state. In this paper, we are interested

in characterizing the set of initial conditions (tumor volume and immune density) from

which the state trajectories can be driven to the safe region.

In the context of cancer treatment, the determination of the region of attraction is an

interesting problem, since it provides an information on the possibility of recovery for a

patient, given the initial measured health conditions. We mean by recovery reaching a

safe region where the tumor is considered to be harmless, and there is no need to inject

drugs. The safe region corresponds to the region of attraction of the locally asymptot-

ically stable benign equilibrium xb without therapies. This set as well as the region of
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attraction under treatment will be properly defined in the sequel.

Moreover, we will use the characterization of the domain of attraction of system (1)

to derive an estimate of the robust region of attraction when the model parameters are

considered to be uncertain and belong to a given hyperbox.

In this section, we will provide necessary and sufficient conditions for the equilibriums

of system (1) to exist, given the vector of model parameters p. We will also investigate

the parametric space and show the equilibrium points distributions. Furthermore, we will

provide an estimate of the region of attraction of the benign equilibrium xb when nominal

parameters are considered (the parameters values in Table 1).
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Figure 1: Phase portrait of (1) with the three equilibrium points.

1.1 Model equilibriums

We are interested in finding a general equation to obtain the equilibrium points of

model (1) when no control is applied (ie: u = (0, 0)). Therefore, we need to solve

the following equations:

ẋ1 =µCx1 −
µC

x∞
x1

2 − γXx1x2 = 0, (2)

ẋ2 =µI

(
x1 − βY x12

)
x2 − δY x2 + αY = 0. (3)
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The nontrivial solution of (2) is:

x1 =
x∞
µC

(µC − γXx2) . (4)

By replacing (4) in (3), we obtain that solving ẋ2 = 0 implies solving the following

polynomial equation:

−µIβY x
2
∞γ

2
X

µ2
C

x32 +

(
2µIβY x

2
∞γX − µIx∞γX
µC

)
x22 +

(
µIx∞ − µIβY x

2
∞ − δY

)
x2 + αY = 0.

(5)

We denote by a(x2) the monic polynomial corresponding to the polynomial in (5) as

follows:

a(x2) = x32+µC

(
µIx∞γX − 2µIβY x

2
∞γX

µIβXx2∞γ
2
X

)
x22+µ

2
C

(
δY + µIβY x

2
∞ − µIx∞

µIβY x2∞γ
2
X

)
x2−

µ2
CαY

µIβY x2∞γ
2
X

.

(6)

This notation will be used in the sequel in order to investigate the parametric space cor-

responding to model (1).

Considering the nominal parameters in Table 1, the polynomial (5) has three real

solutions. The state x1 corresponding to the number of tumor cells can be obtained

through (4) for each root of (5). The three equilibriums of system (1) are the benign

and the malignant ones, which are locally asymptotically stable, and the saddle point

which separates the regions of attraction of the benign and malignant equilibriums (see

Figure 1).

1.2 Estimating the domain of attraction of the benign equilib-

rium

Let’s denote by p ∈ P ⊂ Rnp

+ the vector of dimension np = 9 containing the parameters of

model (1) such that:

p = (µC , µI , αY , βY , γX , δY , κX , κY , ηY )T . (7)

The uncontrolled system (1) can be written in the following form:

ẋ = F (x, p), x(0) = x0, (8)

where x0 stands for the initial state.

Let φ(t, x0, p) be the solution of (8) evaluated at time t ≥ 0 and corresponding to

the state initial condition x0 and the parameters vector p. We denote by xpb the benign

equilibrium of system (1) for a given parameters vector p. Note that the existence of a

benign equilibrium depends on the vector of parameters p. We will provide in the sequel

necessary and sufficient conditions for the existence of such an equilibrium.
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Definition 1 The RoA Ωp
0 of the benign equilibrium of the uncontrolled system (8) for a

given parameters vector p is defined as follows:

Ωp
0 =

{
x0 ∈ R2

+ | lim
t−→∞

φ(t, x0, p) = xpb

}
. (9)

The region of attraction Ωp
0 characterizes the set of initial states that can be driven to

the benign equilibrium without any control action. This set can be seen as the safe region

previously explained, since there is a guarantee that all trajectories having as initial state

x0 ∈ Ωp
0, converge to the benign equilibrium xpb after some time, and without control.

Therefore, Ωp
0 can be used as a target set for any control strategy.

Let’s denote by pnom ∈ Rnp

+ the vector containing the nominal parameters of model (1)

(presented in Table 1), such that:

pnom = (1.0078, 0.0029, 0.0827, 0.004, 1, 0.1873, 1, 1, 1)T . (10)

As mentioned in [8], finding an analytic description for the domain of attraction of

the benign equilibrium denoted Ωpnom

0 might be challenging. However, there exist some

methods for approximating these sets, see for example [14] and [9].
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Figure 2: Phase portrait of (1) with nominal parameters pnom, estimate of the nominal

uncontrolled RoA of the benign equilibrium Ω̂pnom

0 in dashed cyan.

Definition 2 We denote by Ω̂pnom

0 an estimate of the nominal uncontrolled RoA of the

benign equilibrium denoted Ωpnom

0 .
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Note that xpnom

b is the same previously defined benign equilibrium point xb = (41.45, 0.95),

when nominal parameters are considered.

Figure 2 shows the phase portrait of system (1) with an estimation of the nominal un-

controlled region of attraction of the benign equilibrium. This set is considerably smaller

than the region of attraction of the benign equilibrium with the previous set of parameters

used in [22].

In the context of standard control, where deterministic parameters are considered, the

set shown in Figure 2 can be used as a target set for the defined control strategy, since

all the trajectories starting in this set converge to the corresponding benign equilibrium

without any control action.

1.3 Parametric space investigation

In the previous section, we presented the general equations providing the equilibriums of

system (1). The roots of the polynomial (6) can be either real or complex depending on

the parameters vector p. In this paper, we are interested in providing an estimation of the

robust region of attraction of system (1) subject to parametric uncertainties. Therefore,

it is interesting to investigate the parametric space, since there might be some inadmis-

sible parameter vectors, for which the polynomial (6) has complex roots, this case being

unrealistic in the context of cancer dynamics modeling.

In the sequel, we provide necessary and sufficient conditions for system (1) to have real

distinct equilibrium points. Furthermore, we illustrate these conditions with examples in

both cases, when the polynomial equation allowing to derive the equilibrium points of

system (1) has only real roots, as well as in the case when it has complex roots.

Theorem 1 The system (1) for a given parameters vector p has three real distinct equi-

librium points if and only if the following condition is satisfied:

H(ap) :=

 s0 s1 s2
s1 s2 s3
s2 s3 s4

 � 0 (11)

where ap stands for the coefficients vector corresponding to the polynomial a(x2) (6),

and H(ap) denotes the Hermit matrix of the polynomial a(x2). The coefficients of the
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Hermit matrix s0, s1, s2, s3 and s4 have the following expressions:

s0 = 3

s1 = µC

(
2βx∞ − 1

βY x∞γX

)

s2 =
µ2
C

µIβ2
Y x

2
∞γ

2
X

(µI − 2δY βY − 2µIβY x∞ + 2µIβ
2
Y x

2
∞)

s3 =
µ2
C

µIβ3
Y x

3
∞γ

3
X

(−µCµI + 3µCµIβY x∞ − 3µCµIβ
2
Y x

2
∞ + 8µCµIβ

3
Y x

3
∞ + 3µCβY δY

−6µCµIβ
2
Y x∞δY − 6µCµ

2
Iβ

3
Y x

3
∞ + 3αY β

2
Y x∞γX)

s4 = (1− 4βY x∞ + 4β2
Y x∞)

(
µ4
C (1− 4βY x∞ + 4β2

Y x
2
∞)

β4
Y x

4
∞γ

4
Y

− 4µ4
C (δY + µIβY x

2
∞ − µIx∞)

µIβ3
Y x∞x

4
∞γ

4
X

)

The proof of Theorem 1 is given in Appendix A. The condition (11) provided by

Theorem 1 is satisfied if and only if the eigenvalues of the Hermit matrix H(ap) are

strictly positive. Let’s denote by Λ the vector containing the eigenvalues of the Hermit

matrix H(ap).

Example 1 Considering the vector of nominal parameters pnom defined in Table (1),

we check the condition in Theorem 1 by computing the eigenvalues of the corresponding

Hermit matrix:

Λ =

 0.9543

0.7176

0.0175


we can notice that the condition of Theorem 1 is satisfied, which is directly related to the

fact that system (1) has the three real distinct equilibrium points (41.45, 0.95) , (224.64, 0.72)

and (766.44, 0.02) (see Figure 1).

Example 2 Let’s consider the following parameters:

µC = 1.1497

µI = 0.0024

δY = 0.2210

αY = 0.0739

βY = 0.0046

γX = 1.0391

x∞ = 780

In this case, we obtain that the Hermit matrix has the following eigenvalues:

Λ =

 −0.003

0.5902

6.1589
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which does not satisfy the condition in Theorem 1 since we have one negative eigenvalue.

The roots of polynomial (6) obtained for this set of parameters are the following:

x2 =

(
0.98± 0.06i

0.02

)
In this case, we have only one real equilibrium point (769.80, 0.02) corresponding to

the malignant equilibrium. Figure 3 shows the phase portrait corresponding to the set

of parameters considered in this example. We can see that this phase portrait does not

have the same characteristics as in Figure 1, where we have two locally asymptotically

stable equilibria, the benign one corresponding to an acute tumor and the malignant one

corresponding to its chronic state as well as the real saddle point.
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Figure 3: Example of the phase portrait of system (1), when its corresponding polyno-

mial (6) has two complex roots.

The condition of Theorem 1 allows us to check the admissibility of a given parameters

vector. In addition to the satisfaction of this condition, one can check the positivity of

the real equilibrium points after solving (5).

Definition 3 (Admissibility of p) We say that a vector of parameters p is admissible

if the condition of Theorem 1 is satisfied and the real distinct roots of (6) are positive.

Definition 3 will be used in the sequel in the algorithm that we suggest to estimate

the robust region of attraction of system (1).
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1.4 Equilibrium points distribution

Let’s consider that the vector of model parameters p is unknown and belong to the fol-

lowing interval:

[0.9pnom, 1.1pnom] , (12)

where pnom stand for the vector containing nominal parameters in Table 1. We can draw

the distribution of the equilibrium points of model (1), using Monte-Carlo tests corre-

sponding to random selections of the model parameters in the given interval.
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Figure 4: Distribution of equilibrium points under uncertainties, in red the benign equi-

libriums, in blue the saddle points and in green the malignant equilibriums.

Figure 4 shows the distribution of the equilibriums of system (1) for 1600 uniformally

distributed samples of model parameters in the given interval. This figure shows that the

malignant equilibrium points are considerably less dispersed than the benign ones and the

saddle points. For this choice of uncertainties interval, all the selected parameters vectors

were admissible.

The distribution of the benign equilibrium points presented in Figure 4 has been used

in [20], in order to characterize a certified set where the state trajectories converge to

their respective benign equilibriums in spite of all possible parametric uncertainties meet-

ing (12).

11



2 RoA estimation with bang-bang control

The cancer dynamical system (1) can be written as:

ẋ = F (x, u, p), x(0) = x0. (13)

We denote by Φu(T, x0, p) the solution of this system evaluated at time T ≥ 0 for

a given initial state x0 using a control strategy u (·). Let’s denote by Ωp
u the controlled

domain of attraction of system (1) with a bang-bang control strategy, for a given vector

of parameters p. We consider the following state and input constraints sets:

X =
{
x ∈ R2

+ | x2 ≥ c
}

(14)

U =
{
u ∈ R2

+ | u1, u2 ∈ {0, 1}
}

(15)

The control input constraint set U in (15) allows to consider bang-bang control strate-

gies.

Definition 4 The RoA Ωp
u of the controlled system (1) is defined as follows:

Ωp
u =

{
x0 ∈ R2

+| ∃u(·) s.t. Φu(T, x0, p) ∈ Ωp
0, x ∈ X, u ∈ U

}
. (16)

where Ωp
0 is the previously defined region of attraction of the benign equilibrium xpb of

system (1), without drugs, corresponding to the admissible parameters vector p. We de-

note by X ⊂ Rn and U ⊂ Rm the sets of admissible values corresponding the state x and

the control u, respectively.

Practically, (16) means that we set a therapy time T , then we characterize the set

of initial conditions Ωp
u such that for each initial state x0 (information about the patient

health) belonging to Ωp
u, there exists at least one control law u(·), which allows to drive

the states trajectories to the safe region Ωp
0 without violating the constraints on states

and control inputs.

Problem 1 (Estimation of the nominal controlled RoA) Given the nominal

parameters vector pnom and considering bang-bang control strategies, characterize the

region of attraction of the controlled system (1).

This region is denoted Ωpnom
u and provides the set of state initial conditions for

which there exists a bang-bang control strategy denoted u(·), such that the states at the

end of the treatment period (at time T ) belong to the region of attraction of the benign

equilibrium Ωpnom

0 (the safe region for the nominal parameters vector pnom without

control inputs). Additionally, the state trajectories as well as the control inputs have

to satisfy the constraints defined by the sets X and U.
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In this section, we present a methodology to estimate the region of attraction of

system (1). Firstly, we characterize the domain of attraction for a given admissible pa-

rameters vector p. Then, in the next section, we provide a heuristic estimate of the robust

region of attraction for model (1).

2.1 Characterizing the RoA for the nominal controlled system

Let’s consider the vector of nominal parameters pnom and bang-bang control strategies.

Since we have only two control inputs u1 and u2 corresponding to chemotherapy and

immunotherapy injections respectively, there are only four possible instantaneous injection

strategies. We inject only chemotherapy, only immunotherapy, both of them or neither

chemotherapy nor immunotherapy.

Let’s denote these injection strategies as follows:

S0,0 No drug injection u = (0, 0).

S1,0 Injection of chemotherapy u = (1, 0).

S0,1 Injection of immunotherapy u = (0, 1).

S1,1 Injection of both chemotherapy and immunotherapy u = (1, 1).

By drawing the phase portrait of the injection strategies previously listed, we can

have an information on all possible bang-bang strategies allowing to drive the states to

the safe region, without constraints violation. This can help us to derive an estimate

the set Ωpnom
u previously defined. This choice of strategies makes the constraints in (15)

directly satisfied. The satisfaction of state constraints specified by (14) can be checked

by drawing it in the phase portrait as well.

Figure 5 shows the phase portrait of system (1) using the drug injection schedules listed

above. In this figure, we can notice that all the black trajectories corresponding to a con-

tinuous injection of chemotherapy violate the minimal constraint on immune cells density.

We can notice also that the continuous injection of immunotherapy (represented by blue

trajectories) allows to enlarge the domain of attraction of the benign equilibrium. More-

over, all the magenta trajectories, corresponding to a continuous injection of both chemo-

and immunotherapy, converge to the safe region, which further enlarges the domain of

attraction of the benign equilibrium. However, we can notice that for bigger initial cancer

volumes, the magenta trajectories violate the minimal constraint on immune cells density.

Figure 5 shows all the possibilities of switching between the different strategies in or-

der to drive the states to the safe region. An interesting option is to choose the strategy

allowing to reduce the quantity of injected drugs or to minimize the hospitalization time.

We do not further investigate this idea here, since we are interested in estimating the do-

main of attraction of system (1). Therefore, the only relevant information is the existence

of at least one control strategy allowing to drive the states to the region of attraction of

the benign equilibrium.
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Figure 5: Phase portrait of system (1) with different drug injection strategies, the red

trajectories correspond to S0,0, the black ones to S1,0, the blue ones to S0,1 and the

magenta ones to S1,1, in green the minimal constraint on immune cells density, in dashed

cyan the estimated nominal uncontrolled region of attraction of the benign equilibrium.

The triangle sign denotes the beginning of a trajectory, whereas the sign + denotes its

ending.
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Since the strategy of injecting both therapies provides the biggest domain of attrac-

tion, we focus on the magenta trajectory that is tangential to the minimal constraint

x2 ≥ c. This trajectory is depicted by (1) in Figure 6, we can notice also that in this

region of the state space, the blue trajectories (with immunotherapy only) evolve above

the constraint line, before converging to the malignant equilibrium. We are interested

in characterizing the blue trajectory that is tangential to the magenta one (depicted by

(2) in Figure 6) in order to further enlarge the domain of attraction of the controlled

system (1). Note that for this specific initial state (represented in green in Figure (6)),

the strategy to consider is to use immunotherapy till the state reaches the yellow point

and then to use both chemotherapy and immunotherapy in order to satisfy the specified

constraint.
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Figure 6: The three points q1, q2 and q3 characterizing the RoA of model (1), and the

resulting RoA that is an estimate of Ωpnom
u using nominal parameters is shown in cyan

dashed line. The triangle sign denotes the beginning of a trajectory, whereas the sign +

denotes its ending.

Let’s denote the points characterizing the domain of attraction as follows:

q1 = (q11,q12) The point where the magenta trajectory is tangential to the minimal

constraint on immune cells density x2 ≥ c.

q2 = (q21,q22) The point where the blue trajectory is tangential to the magenta one.
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q3 = (q31,q32) The point where the blue trajectory intersects with the constraint line.

In the sequel, we provide a generic methodology to derive the three points character-

izing the domain of attraction of the controlled system (1).

Computing q1

System (1) can be written as :

ẋ1 =F1(x, u, p),

ẋ2 =F2(x, u, p).
(17)

In order to find q1 we have to solve F2 = 0 for x2 = c and u = (1, 1), it implies

solving the following equation:

−cµIβY x
2
1 + cµIx1 + αY − cδY + cκY − cηY = 0. (18)

Let q11 be the positive solution of (18), q1 is defined as follows:

q1 = (q11, c). (19)

Computing q2

Let’s denote the time inverse trajectory of (13) for u = (1, 1), having as final point

q1, as x2 = g(x1) and gp as the polynomial approximation of g up to some degree. In

order to find q2, we have to solve the following equations:

F (x, (0, 1), p)× F (x, (1, 1), p) = 0,

x2 = gp(x1).
(20)

Solving (20) implies solving the following equations system:


−µIβY κXx

3
1x2 +

(
µc

x∞
+ µIκX

)
x21x2 + γXηY x1x

2
2 + (κXκY − δY κX − µcηY )x1x2

+κXαY x1 = 0

x2 = gp(x1)
(21)

Finally, solving (21) provides an approximation of q2.

Computing q3
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Let x2 = h(x1) be the time inverse trajectory of (13) for u = (0, 1), having as final

point q2. We denote by x2 = hp(x1) the polynomial approximation of this trajectory.

Therefore, in order to find q3, we need to solve the following equation:

hp(x1)− c = 0. (22)

Solving (22) provides an approximation of q31 and q3 is defined as follows:

q3 = (q31, c). (23)

Note that the solutions of the equations allowing to derive the points q1, q2 and q3 de-

pend on the parameters vector p. However, one can validate the RoA structure afterwards,

by checking the following conditions:{
q11 > 0, q31 > q11
q21 > q31, q22 > c

(24)

Remark 1 The methodology allowing to derive the points q1, q2 and q3 has been tested

over 2000 scenarios, corresponding to uncertain parameters vectors, as defined in (12).

We also checked, using the conditions in (24), that all these scenarios have the same

characterization shown in Figure 6.

2.2 Algorithm for the estimation of domains of attraction

After deriving the characteristic points as explained in the previous section, the region

of attraction of the controlled system (1) is characterized by the following trajectory (see

Figure 6):

x2 = Dp(x1) =


c if x1 < q31
hp(x1) if q31 ≤ x1 ≤ q21
gp(x1) if x1 > q21

(25)

The region of attraction Ωp
u is defined as follows:

Ωp
u =

{
x ∈ R2 | x2 ≥ Dp(x1)

}
(26)

Algorithm 1 summarizes the methodology previously explained, allowing to derive the

domain of attraction of the controlled system (1) for a given vector of parameters p and

considering bang-bang control strategies.

Figure 6 shows the estimated domain of attraction of system (1) denoted Ωpnom
u , for

nominal parameters pnom, that we obtained using Algorithm 1. It also shows the tra-

jectories corresponding to S1,0,S0,1 and S1,1 for different initial states, highlighting the

fact that the state trajectories starting out of the estimated region of attraction, either

converge to the malignant equilibrium or violate the specified constraint.
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Algorithm 1 Estimation of the RoA of the controlled system (1)

Input: p

Check if p is admissible (Definition 3)

Solve (18) to obtain q1
Solve (20) to obtain q2
Solve (22) to obtain q3
Check the conditions in (24)

Derive Ωp
u using (25)–(26)

Output: Ωp
u

2.3 RoA sensitivity analysis

We showed in the previous section that the nominal domain of attraction of system (1)

can be characterized by the points q1,q2 and q3 (see Figure 6). In this section, we are

interested in investigating the sensitivity of the RoA estimation with uncertainties on the

model parameters. Therefore, we change the parameters values with some percentages,

in order to see the effect of this change on the estimation of the ROA.
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Figure 7: The sensitivity of RoA estimation with respect to the model parameters.

Figure 7 shows the nominal controlled RoA denoted Ωpnom
u in cyan dashed line. This

figure shows also the RoA of system (1) for different changes in the model parameters.
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We notice that changing the parameters δY and γX changes slightly the RoA estimation,

whereas by changing the parameter βY the RoA volume decreases drastically. The other

parameters show more or less the same sensitivity.

Remark 2 The RoAs shown in Figure 7 are derived for deterministic parameters vectors,

in the sense that we change one parameter value and derive the RoA for a fixed parameters

vector.

Note that the parameters changing signs (either + or −) have been chosen such that

the RoA volume is reduced. Furthermore, the percentage of change has been chosen such

that the parameters vector p remains admissible.

3 Heuristic estimate of the robust RoA

The characterization of the domain of attraction of a given system as explained in Prob-

lem 1 is interesting since it provides the set of initial conditions that can be driven to the

safe region. However the common assumption made for such deterministic approaches is

that the system parameters are perfectly known [6], which is not realistic for practical

problems. As previously mentioned, system parameters are generally affected by uncer-

tainties that can be described by probability distributions or belong to given intervals.

After characterizing the region of attraction of system (1) for a given parameters

vector, it is interesting to find the domain of attraction when the model parameters are

uncertain. This set is called the robust region of attraction and represents the set of initial

conditions that can be driven to the safe region in spite of all possible uncertainties. The

robust region of attraction is defined as the intersection of all the regions of attraction

governed by (1) for all possible realizations of p [29].

Definition 5 The robust region of attraction of system (13), for a given set of parameters

P, denoted ΩP
u is defined as follows:

ΩP
u =

⋂
p∈P

Ωp
u. (27)

Remark 3 Note that this definition of the robust RoA means that there exists a con-

trol u for each initial state x0 and parameters vector p. This can be seen as an outer

approximation of the real robust RoA, which is indeed bigger.

Problem 2 (Estimation of the robust controlled RoA) Given an uncertain

parameters vector p belonging to a set P, we are interested in estimating the robust

region of attraction of system (1), such that the state trajectories correspond-

ing to the initial states in this set, belong to the safe region after some time and
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do not violate the specified constraints, in spite of all possible parametric uncertainties.

It is commonly known that finding the exact robust region of attraction for a non-

linear system is a challenging task. Therefore, we aim here at providing a tighter

estimate of the robust region of attraction ΩP
u that we denote ΩR.

Let’s denote by
{
p(j)
}N
j=1

a collection of samples of the parameters vector p corre-

sponding to model (1), uniformly drawn in the following interval:

[0.9pnom, 1.1pnom] . (28)

In the previous section, a characterization of the RoA of system (1) for nominal pa-

rameters pnom denoted by the set Ωpnom
u had been provided. This procedure can be applied

in order to derive the RoA of system (1) for each parameters sample p(j), by checking the

validity of the characterization through the conditions (24).

We denote by Ωp(j)

u the RoA of the controlled system (1) considering the parameters

vector p(j) and bang-bang control strategies.

In order to characterize the robust region of attraction, we perform N Monte-Carlo

tests assuming that the samples
{
p(j)
}N
j=1

are uniformly distributed in the interval (28).

The intersection of all the sets Ωp(j)

u , estimated for each sample p(j), is defined by the

maximum of all the corresponding functions Dp(j) (defined in (25)). Thus, the estimated

robust region of attraction is the following:

ΩR = {x ∈ R2 | x2 ≥ DR(x1)}, (29)

where DR(x1) is defined as follows:

DR(x1) = max
(
Dp(1)(x1), · · · ,Dp(N)

(x1)
)
. (30)

Algorithm 2 Robust RoA estimation

Input:
{
p(j)
}N
j=1
, N

ΩR ← X
while j ≤ N do

Ωp(j)

u ← Algorithm 1
(
p(j)
)

ΩR ← ΩR ∩ Ωp(j)

u

j ← j + 1

end while

Output: ΩR

Algorithm 2 allows to derive a heuristic estimate of the robust region of attraction

of system (1), for N samples of parameters vectors, by intersecting their corresponding
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controlled regions of attraction.

Figure 8 shows the regions of attraction derived for N samples p(j), the estimated

robust region of attraction for different number of samples N , using Algorithm 2. We can

notice that the estimation of ΩR is enhanced and the robust RoA volume is reduced as

the number of samples N grows. We stopped running Algorithm 2 at N = 2000 since

for bigger values of N the estimations of the robust RoA was almost the same as for

N = 2000. Note also that the estimated robust RoA is considerably smaller than the

nominal one, even with the uncertainties rate that is only ±10%.

4 Conclusion

We presented in this paper an extensive parametric analysis for a cancer dynamical sys-

tem. This allowed us to provide necessary and sufficient conditions for the admissibility

of the model parameters vectors. Furthermore, we investigated the effects of parametric

uncertainties on the system equilibrium points, as well as on the estimation of regions of

attraction.

Therefore, we used a readily applicable methodology, allowing to characterize the do-

main of attraction of a nonlinear system describing cancer dynamics, with bang-bang

control strategies. Then, we used this approach to derive an estimation of the robust

region of attraction.

It is important to point out the fact that regions of attraction might be highly sensi-

tive to parametric uncertainties, and can be considerably reduced when considering even

small uncertainties on the model parameters. This is critical in the context of cancer

treatment, since such sets provide an information on the patients that can be healed,

using appropriate treatments.
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Figure 8: Monte-Carlo tests for the RoA estimation under ±10% of parametric uncer-

tainties, the blue bold trajectory defines the estimated robust region of attraction of

system (1) denoted ΩR, for N = 2000, the pink trajectory defines the estimated robust

RoA for N = 1000 and the orange one for N = 200, the dashed cyan trajectory is the

estimated nominal domain of attraction Ωpnom
u .
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A Proof of Theorem 1

Let’s consider the following polynomial:

a(x2) = x32+µC

(
µIx∞γX − 2µIβY x

2
∞γX

µIβXx2∞γ
2
X

)
x22+µ

2
C

(
δY + µIβY x

2
∞ − µIx∞

µIβY x2∞γ
2
X

)
x2−

µ2
CαY

µIβY x2∞γ
2
X

.

(31)

Let a2, a1 and a0 be the coefficients of the monic polynomial (31) such that:

a2 = µC

(
µIx∞γX − 2µIβY x

2
∞γX

µIβXx2∞γ
2
X

)

a1 = µ2
C

(
δY + µIβY x

2
∞ − µIx∞

µIβY x2∞γ
2
X

)

a0 = − µ2
CαY

µIβY x2∞γ
2
X

Let ap = (a2, a1, a0)
T be the coefficients vector corresponding to the polynomial a(x2).

We can define the Hermite form corresponding to (31) as follows:

H(ap) =

 s0 s1 s2
s1 s2 s3
s2 s3 s4


where s0, s1, s2, s3 and s4 are defined as follows:

s0 = 3

s1 = −a2
s2 = a22 − 2a1
s3 = −a32 + 3a1a2 − 3a0
s4 = a42 − 4a1a

2
2 + 2a21 + 4a0a2

According to Theorem 1.1 in [23], the Hermit matrix H(ap) is positive definite if and

only if the roots of a(x2) are real and distinct.
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