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Abstract

In this paper a constructive method to determine and compute probabilistic reachable and invariant sets for linear discrete-time systems,
excited by a stochastic disturbance, is presented. The samples of the disturbance signal are not assumed to be uncorrelated, only bounds
on the mean and the covariance matrices are supposed to be known. This allows to consider nonlinear stochastic systems approximations
and the effect of nonlinear filters on the disturbance. The correlation bound concept is introduced and employed to determine probabilistic
reachable sets and probabilistic invariant sets. Constructive methods for their computation, based on convex optimization, are given.
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1 Introduction

Stochastic reachability analysis, aiming at computing or esti-
mating the state evolution of dynamical systems affected by
disturbances, gained importance for stochastic control and
prediction. A first class of approaches is based on the es-
timation of the state distribution through polynomial chaos
expansions, [1, 3, 20, 24, 30]. The main limitation of these
methods is their applicability to low dimensional distur-
bances, for instance in the case of time-invariant stochastic
parametric uncertainties and uncertain initial conditions. A
cumulant-based approach is presented in [29] to approxi-
mate the state distributions for systems with bounded zono-
topic noises. Also methods based on the generalized moment
problem [13,19] have been recently applied to address opti-
mal control problems in presence of stochastic uncertainties
in the parameters and the initial conditions, see [22,23]. An-
other class of approaches are the sampling-based methods,
like Monte Carlo and scenario-based ones, [2, 8, 11, 16, 27],
that consist in generating sampled realizations of the possi-
bly correlated uncertainty to infer statistical information of
the state evolution or desired property of the trajectories.
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The recent interest in the characterization and computa-
tion of probabilistic reachable sets and probabilistic invari-
ant sets is also due to the growing popularity of stochastic
Model Predictive Control (SMPC), see [21]. Indeed, as in the
case of deterministic and robust predictive techniques, sev-
eral desirable features can be ensured also in the stochastic
context by appropriately employing reachable and invariant
sets to ensure probabilistic guarantees, for instance, of con-
straints satisfaction, recursive feasibility and stability prop-
erties. The stochastic tube-based approaches, for example,
make a wide use of probabilistic invariant or reachable sets
to pose deterministic constraints in the nominal prediction
such that chance constraints are satisfied, see [9, 15]. Also
in [10], probabilistic invariant sets are employed to handle
probabilistic state constraints and a method for computing
probabilistic invariant ellipsoids is presented.

Concerning the computation of reachable and invariant sets
for deterministic systems and for robust control, i.e. in the
worst-case disturbance context, several well-established re-
sults are present in the literature, for linear [6,18] and non-
linear systems [12]. In the recent years, some results have
been appearing also on probabilistic reachable and invari-
ant sets. The work [17] is completely devoted to the prob-
lem of computing probabilistic invariant sets and ultimate
bounds for linear systems affected by additive stochastic dis-
turbances. Also the paper [14] presents a characterization of
probabilistic sets based on the invariance property in the ro-
bust context, whereas [16] employs scenario-based methods
to design them.
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In most of the works concerning probabilistic reachable and
invariant sets computation and SMPC, however, the stochas-
tic disturbance is modelled by an independent sequence of
random variables. The assumption of independence in time,
and thus uncorrelation, between disturbances, though, is of-
ten unrealistic, especially when a linear systems with addi-
tive perturbations is employed to model a nonlinear system
where the disturbance is modelled by the output of a non-
linear filter. The commonly used approach to get rid of the
correlation consists in modelling the correlated disturbance
as a white noise filtered by a linear system, i.e. the ARMA
model for instance. This approach, though, is not always
able to remove the noise correlation, unless the disturbance
is effectively given by i.i.d. signals feeding linear filters,
which might be not the case in reality. More generally, re-
quiring constant mean and constant covariance matrices of
the disturbance, and their exact knowledge, is an often too
restrictive assumption, in practice, when dealing with real
systems and real data.

In this paper, we consider the problem of characterizing and
computing, via convex optimization, outer bounds of prob-
abilistic reachable sets and probabilistic invariant ellipsoids
for linear systems excited by disturbances whose realiza-
tions are correlated in time. Only bounds on the mean and
covariance matrices are required to be known, even station-
arity is not necessary. Based on these bounds, the called cor-
relation bound is defined and then employed to determine
constructive conditions for computing probabilistic reach-
able and invariant ellipsoidal sets. The method, resulting in
convex optimization problems, is then illustrated through a
numerical example, for which the covariance matrices can-
not be computed, but bounds exist.

Notation: The set of integers and natural numbers are
denoted with Z and N, respectively. Given A ∈ Rn×n,
{λi(A)}n

i=1 denote the n eigenvalues of A; ρ(A) the

spectral radius of A; σmin(A) = min
i=1,...,n

√
λi(A>A) and

σmax(A) =max
i=1,...,n

√
λi(A>A) = ‖A‖2. The set of symmetric

matrices in Rn×n is denoted Sn. With Γ � 0 (Γ � 0) it is
denoted that Γ is a definite (semi-definite) positive matrix.
If Γ� 0 then Γ

1
2 is the matrix satisfying Γ

1
2 Γ

1
2 = Γ. For all

Γ� 0 and r≥ 0 define E (Γ,r) = {x= Γ
1/2z∈Rn : z>z≤ r};

if moreover Γ � 0, then E (Γ,r) = {x ∈ Rn : x>Γ
−1x ≤ r}.

Given two sets Y,Z ⊆ Rn, their Minkowski set addition
is Y + Z = {y + z ∈ Rn : y ∈ Y, z ∈ Z}, their difference
is Y − Z = {x ∈ Rn : x+ Z ⊆ Y}. The Gaussian (or nor-
mal) distribution with mean µ and covariance Σ is denoted
N (µ,Σ), the χ squared cumulative distribution function of
order n is denoted χ

2
n (x). Given a random vector x, E{x}

denotes its expected value.

2 Correlation bound

Consider first the nonlinear system xk+1 = f (xk,dk), where
xk ∈Rn is the state and dk represents time-varying uncertain
parameters and disturbances. A common way of approxi-
mating the nonlinear dynamics is by means of a model of
the form xk+1 = Axk +wk where wk is an additive terms ac-
counting for the cumulative effects of the modelling errors
and the past values of dk. In this context it is unrealistic to
assume that wk is not correlated with the previous values w j,
with j ≤ k, especially if j is close to k. Even an assumption
on stationarity of wk is often hardly justifiable since, due to
the possibly nonlinear nature of f (·, ·), the statistical prop-
erties of wk depend also on the current state xk and therefore
might be time varying. To better deal with these issues, the
case of additive uncertainty wk that is correlated in time and
not necessarily stationary is considered.

Consider the discrete-time system

xk+1 = Axk +wk, (1)

where xk ∈ Rn is the state and wk ∈ Rn an additive distur-
bance given by a sequence of random variables that are sup-
posed to be correlated in time.

In this paper, the only assumptions on the disturbance wk
is that its time-dependent mean is bounded, a bound on
E{wkw>k } exists, and the covariance between wi and w j ex-
ponentially vanishes with | j− i|.

Assumption 1 There exist m,b,γ ∈ R, with γ ∈ [0,1), such
that the sequence wk satisfies:

µ
>
k µk ≤ m, ∀k ∈ N, (2)

‖cov(wi,w j)‖2
2 ≤ bγ

j−i, ∀i≤ j, (3)

with E{wk}= µk and cov(wi,w j)=E{(wi−µi)(w j−µ j)
>}.

Note that no assumption on {wk}k∈N is posed other than
the existence of bounds on the mean and the covariance
matrices. Neither weak stationarity is required, as both the
mean and the covariance matrices are allowed to be functions
of time. This aspect might be crucial in practice, as no exact
knowledge of the matrices nor guarantee of stationarity are
often available.

Proposition 1 If Assumption 1 is satisfied, then non-
negative α,β ,γ ∈ R and Γ̃ ∈ Sn exist, with γ ∈ [0,1) and
Γ̃� 0, such that

Γk,k � Γ̃, ∀k ∈ N, (4)

Γi, jΓ̃
−1

Γ
>
i, j � (α +βγ

j−i)Γ̃, ∀i≤ j, (5)

hold, with Γi, j = E{wiw>j }, for all i, j ∈ N.
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Proof: From Assumption 1, it follows that cov(wk,wk)�
‖cov(wk,wk)‖2I �

√
bI and µkµ

>
k � mI, and then

Γk,k = E{wkw>k }= cov(wk,wk)+µkµ
>
k � (

√
b+m)I,

which means that (4) holds with Γ̃ = (
√

b+m)I. From As-
sumption 1, and since ACB>+BCA> � ACA>+BCB> for
every A,B and C of appropriate dimensions and C � 0, it
follows

Γi, jΓ̃
−1

Γ
>
i, j = cov(wi,w j)Γ̃

−1cov(wi,w j)
>+µiµ

>
j Γ̃
−1

µ jµ
>
i

+ cov(wi,w j)Γ̃
−1

µ jµ
>
i +µiµ

>
j Γ̃
−1cov(wi,w j)

>

� 2
(

cov(wi,w j)Γ̃
−1cov(wi,w j)

>+µiµ
>
j Γ̃
−1

µ jµ
>
i

)
� 2σmax(Γ̃

−1)
(

cov(wi,w j)cov(wi,w j)
>+µiµ

>
j µ jµ

>
i

)
� 2σmax(Γ̃

−1)
(

m2 +bγ
j−i
)

I � 2
σmax(Γ̃

−1)

σmin(Γ̃)

(
m2 +bγ

j−i
)

Γ̃

= 2σ
2
max(Γ̃

−1)
(

m2 +bγ
j−i
)

Γ̃

since σmax(Γ̃
−1) = 1/σmin(Γ̃) from Γ̃� 0, and then (5) holds

with α = 2σ
2
max(Γ̃

−1)m2 and β = 2σ
2
max(Γ̃

−1)b.

Note that, although the existence of bounds (2) and (3) on the
mean and covariance matrices is the only posed assumption,
it is not necessary to know them. The results of this paper
only require, in fact, the knowledge of bounds (4) and (5),
that can be estimated from data.

The following definition of correlation bound encloses the
key concept that permits to characterize and compute prob-
abilistic reachable and invariant sets for linear systems af-
fected by correlated disturbance.

Definition 1 (Correlation bound) The random sequence
{wk}k∈Z is said to have a correlation bound Γw for matrix
A if the recursion zk+1 = Azk +wk with z0 = 0, satisfies

AE{zkw>k }+E{wkz>k }A>+E{wkw>k } � Γw, (6)

or, equivalently

E{zk+1z>k+1} � AE{zkz>k }A>+Γw, (7)

for all k ≥ 0.

It will be proved in the next section that, if the matrix A in
(1) is Schur, i.e. ρ(A)< 1, and Assumption 1 holds, then a
correlation bound exists.

2.1 Computation of a correlation bound

As it will be shown in the subsequent sections, a correla-
tion bound permits to determine sequences of probabilistic

reachable sets and probabilistic invariant sets. For this, it is
necessary to provide a condition and a method to obtain a
correlation bound. Such a condition is presented in the fol-
lowing proposition.

Proposition 2 Given the system (1) with ρ(A) < 1, let
{wk}k∈Z ∈ Rn be a random sequence such that conditions
(4) and (5) hold with Γ̃ � 0, α ≥ 0, β ≥ 0 and γ ∈ (0, 1).
Given η ∈ [ρ(A)2, 1), consider ϕ ≥ 1 and S ∈ Sn satisfying

S� Γ̃� ϕS, ASA> � ηS. (8)

Then for every p ∈ (η , 1), the matrix

Γw =
(

αϕ
η

p−η
+βϕ

γη

p− γη
+

p
1− p

+1
)

Γ̃ (9)

is a correlation bound for the sequence {wk}k∈Z and ma-
trix A.

Proof: Note first that ϕ and S satisfying (8) exist for ev-
ery η ∈ [ρ(A)2, 1). From the definition of correlation bound

and the equality zk =
k−1

∑
i=0

Ak−1−iwi, matrix Γw must satisfy

AE{(
k−1

∑
i=0

Ak−1−iwi)w>k }+E{wk(
k−1

∑
i=0

Ak−1−iwi)
>}A>

+E{wkw>k } � Γw

for all k ∈ N. From condition (5) and

0�

(
A j−iΓi, jΓ̃

− 1
2

p
j−i
2

− p
j−i
2 Γ̃

1
2

)(
A j−iΓi, jΓ̃

− 1
2

p
j−i
2

− p
j−i
2 Γ̃

1
2

)>
= p−( j−i)A j−i

Γi, jΓ̃
−1

Γ
>
i, j(A

j−i)>+p j−i
Γ̃−A j−i

Γi, j−Γ
>
i, j(A

j−i)>

for every i, j ∈ N with i≤ j and p 6= 0, it follows that

A j−i
Γi, j +Γ

>
i, j(A

j−i)>

� (α p−( j−i)+β (γ p−1) j−i)A j−i
Γ̃(A j−i)>+ p j−i

Γ̃.

Therefore, for every k ∈ N it holds

AE{(
k−1

∑
i=0

Ak−1−iwi)w>k }+E{wk(
k−1

∑
i=0

Ak−1−iwi)
>}A>

+E{wkw>k }�
k−1

∑
i=0

Ak−iE{wiw>k }+
k−1

∑
i=0

E{wkw>i }(Ak−i)>+ Γ̃

=
( k−1

∑
i=0

Ak−i
Γi,k +Γ

>
i,k(A

k−i)>
)
+ Γ̃

�
( k−1

∑
i=0

(α p−(k−i)+β (γ p−1)k−i)Ak−i
Γ̃(Ak−i)>+pk−i

Γ̃

)
+Γ̃.
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From (8), it follows that

A j
Γ̃(A j)> � ϕA jS(A j)> � ϕη

jS� ϕη
j
Γ̃ (10)

for all j ∈ N, and then

AE{(
k−1

∑
i=0

Ak−1−iwi)w>k }+E{wk(
k−1

∑
i=0

Ak−1−iwi)
>}A>+E{wkw>k }

�
k−1

∑
i=0

αϕ(η p−1)k−i
Γ̃+

k−1

∑
i=0

βϕ(γη p−1)k−i
Γ̃+

k−1

∑
i=0

pk−i
Γ̃+ Γ̃

=
( k

∑
j=1

αϕ(η p−1) j +
k

∑
j=1

βϕ(γη p−1) j +
k

∑
j=1

p j
)

Γ̃+ Γ̃

=
(

αϕ(η p−1)
1− (η p−1)k

1−η p−1 +βϕ(γη p−1)
1− (γη p−1)k

1− γη p−1

+ p
1− pk

1− p

)
Γ̃+ Γ̃. (11)

Two possibilities exist, η can be either positive or zero. If
η > 0 then 0 < γη < η < p < 1, and all the terms in the
summation in (11) are positive and monotonically increasing
with k. If η = 0 the first two terms in (11) are null and the
third one, i.e. p(1− pk)/(1− p), is positive and monotoni-
cally increasing with k, since 0 = η < p < 1. In both cases
the supremum is finite and attained for k→ +∞ and then
condition (9) implies that Γw is a correlation bound for A.

Note that, as formally stated in the following corollary,
Propositions 1 and 2 imply that, if ρ(A)< 1, then Assump-
tion 1 ensures the existence of a correlation bound.

Corollary 1 If Assumption 1 holds and matrix A in (1) is
such that ρ(A)< 1, then the random sequence {wk}k∈Z has
a correlation bound for matrix A.

Proof: The result follows from Propositions 1 and 2.

The result of Proposition 2 is used hereafter to design an
optimization-based procedure to compute the tightest corre-
lation bound. To obtain the sharpest bound, the parameter
multiplying Γ̃ in (9) has to be minimized. Note first that such
parameter is monotonically increasing with ϕ and η , for
ϕ ≥ 1 and η ∈ [ρ(A)2,1). Nevertheless, the minimizing pair
ϕ and η is not evident, even for a given p, due to the con-
straint (8). One possibility is to grid the interval [ρ(A)2,1)
of η and then obtain, for every value of η on the grid, the
optimal ϕ and p. To do so, one should first fix η and then
solve the semidefinite programming problem

(ϕ∗, S∗) =min
ϕ,S

ϕ

s.t. S� Γ̃� ϕS

ASA> � ηS.

Note now that the parameter multiplying Γ̃ in (9) is a convex
function of p. In fact, a/(p−a) is zero if a= 0 and it is finite,

convex and decreasing for p ∈ (a,+∞) if a > 0, whereas
p/(1− p) is finite, convex and increasing for p ∈ (−∞,1).
Then, the minimum of the function multiplying Γ̃ exists and
is unique in (η ,1). This means that, once ϕ and η are fixed,
the value of p that minimizes the parameter multiplying Γ̃

in (9) can be computed by solving the following convex
optimization problem in a scalar variable:

p∗(η ,ϕ) =min
p

αϕ
η

p−η
+βϕ

γη

p− γη
+

p
1− p

s.t. η < p < 1.

Finally, Γw can be computed by using in (9) the minimal
value of the parameter multiplying Γ̃ over the optimal ones
obtained for the different η on the grid.

Remark 1 Note that γ could also be bigger than or equal
to 1: this would lead to an (although non realistic) increas-
ingly correlated disturbance. The limit would exist provided
that η is smaller than the inverse of γ , for all p ∈ (γη ,1).
The case of γ = 1 is realistic, for instance for the case of
constant disturbances, and can modelled by the constant
term α .

The dependence of the bound (9) on the parameter ϕ can be
removed by avoiding using the bound S� ϕΓ̃ as in (10). The
corollary below, providing a potentially less conservative
correlation bound, follows straightforwardly.

Corollary 2 Under the hypothesis of Proposition 2, for ev-
ery p ∈ (η ,1), the matrix

Γw =
(

αϕη

p−η
+

βϕγη

p− γη

)
S+
( p

1− p
+1
)

Γ̃ (12)

is a correlation bound for matrix A.

Condition (12) provides a further degree of freedom, i.e. the
matrix S, that can be used to improve the bound.

3 Probabilistic reachable and invariant sets

Based on the correlation bound, conditions for computing
probabilistic reachable and invariant sets are presented. First,
two properties are given that are functional to the purpose.

Property 1 For every r > 0 and every Γ̃,Σ ∈ Sn such that
Γ̃� 0 and Σ� 0, it holds

E (AΓ̃A>+Σ,r)⊆ AE (Γ̃,r)+E (Σ,r). (13)

Proof: Notice first that AΓ̃A>+Σ� 0 and then

E (AΓ̃A>+Σ,r) = {x ∈ Rn : x>(AΓ̃A>+Σ)−1x≤ r}
AE (Γ̃,r)+E (Σ,r) = {x = AΓ̃

1/2y+Σ
1/2w ∈ Rn :

y>y≤ r, w>w≤ r}. (14)
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For a given x ∈ E (AΓ̃A>+Σ,r), the vectors y and w defined

y = Γ̃
1/2A>(AΓ̃A>+Σ)−1x, w = Σ

1/2(AΓ̃A>+Σ)−1x
(15)

are such that

AΓ̃
1/2y+Σ

1/2w=AΓ̃A>(AΓ̃A>+Σ)−1x+Σ(AΓ̃A>+Σ)−1x= x.

Moreover,

y>y = x>(AΓ̃A>+Σ)−1AΓ̃A>(AΓ̃A>+Σ)−1x

≤ x>(AΓ̃A>+Σ)−1x≤ r

since AΓ̃A> � AΓ̃A>+Σ and x ∈ E (AΓ̃A>+Σ,r). Analo-
gously

w>w = x>(AΓ̃A>+Σ)−1
Σ(AΓ̃A>+Σ)−1x

≤ x>(AΓ̃A>+Σ)−1x≤ r

from Σ� AΓ̃A>+Σ. Hence, given x ∈ E (AΓ̃A>+Σ,r), two
vectors y and w exist, as defined in (15), such that x =

AΓ̃
1/2y+Σ

1/2w and y>y≤ r and w>w≤ r, which means that
x ∈ AE (Γ̃,r)+E (Σ,r), from (14). Thus (13) is proven.

The result in Property 1 is used in the following one to char-
acterize bounds on the covariance matrices and probabilities
of the system trajectory.

Property 2 Suppose that the random sequence {wk}k∈N has
a correlation bound Γw � 0 for matrix A with ρ(A) < 1.
Given r > 0, consider the system zk+1 =Azk+wk with z0 = 0
and the recursion

Γk+1 = AΓkA>+Γw (16)

with Γ0 = 0 ∈ Rn×n. Then,

(i) E{zkz>k } � Γk, ∀k ≥ 0,
(ii) Pr{zk ∈ E (Γk,r)} ≥ 1− n

r
, ∀k ≥ 1,

(iii) E (Γk,r)⊆ E (Γk+1,r)⊆ AE (Γk,r)+E (Γw,r), ∀k ≥ 1.

Proof: The claims are proved successively.

(i) Suppose that E{zkz>k } � Γk with Γk recursively defined
through (16). Then

E{zk+1z>k+1}= E{Azkz>k A>+Azkw>k+wkz>k A>+wkw>k }
= AE{zkz>k }A>+AE{zkw>k }+E{wkz>k }A>+E{wkw>k }
� AE{zkz>k }A>+Γw � AΓkA>+Γw = Γk+1,

where the first inequality follows from the definition of
correlation bound.

(ii) This result is based on the Chebyshev inequality, [25,28].
From Markov’s inequality, [4, 5], a nonnegative random
variable x with expected value µ , satisfies Pr{x > r} ≤
µ/r for all r > 0. From Γw � 0, it follows that Γk � 0
and Γ

−1
k � 0 for all k≥ 1 and then there exists Dk ∈Rn×n

such that Γ
−1
k = D>k Dk for all k ≥ 1. Thus

E{z>k Γ
−1
k zk}= E{z>k D>k Dkzk}= E{tr{z>k D>k Dkzk}}

= E{tr{Dkzkz>k D>k }}= tr{DkE{zkz>k }D>k }
≤ tr{DkΓkD>k }= tr{ΓkD>k Dk}= tr{I}= n

and then, by applying the Markov’s inequality, one gets
Pr{z>k Γ

−1
k zk > r} ≤ n/r and hence Pr{z>k Γ

−1
k zk ≤ r} ≥

1−n/r, for all k ≥ 1.

(iii) From the definition of Γk, it follows Γk =
k−1

∑
i=0

Ai
Γw(Ai)>

for k ≥ 1 and then

Γk+1=Ak
Γw(Ak)>+

k−1

∑
i=0

Ai
Γw(Ai)>=Ak

Γw(Ak)>+Γk � Γk.

This implies Γ
−1
k+1�Γ

−1
k and hence, E (Γk,r)⊆E (Γk+1,r)

for all k ≥ 1. The inclusion E (Γk+1,r) ⊆ AE (Γk,r) +
E (Γw,r) follows by applying Property 1 with the defini-
tion of Γk+1 as in (16).

3.1 Probabilistic reachable sets

The simplest confidence regions are ellipsoids, that have
been widely used in the context of MPC, see, for example, [9,
15]. The definition of probabilistic reachable sets is recalled.

Definition 2 (Probabilistic reachable set) It is said that
Ωk ⊆Rn with k ∈N is a sequence of probabilistic reachable
sets for system (1), with violation level ε ∈ [0,1], if x0 ∈Ω0
implies Pr{xk ∈Ωk} ≥ 1− ε for all k ≥ 1.

A condition for a sequence of sets to be a probabilistic reach-
able sets is presented, in terms of correlation bound. The
analogous result for uncorrelated disturbance can be found
in [14].

Proposition 3 Suppose that the random sequence {wk}k∈N
has a correlation bound Γw � 0 for matrix A with ρ(A)< 1.
Given r > 0, consider the system (1) and the recursion (16)
with x0 = 0 ∈ Rn, Γ0 = 0 ∈ Rn×n. Then the sets defined as

Rk+1 = ARk +E (Γw,r), (17)

for all k ∈N, and R0 = {0} are probabilistic reachable sets
with violation level n/r for every r > 0.

Proof: It will be firstly proved that E (Γk,r) ⊆ Rk,
for all k ≥ 1. Note first that Γ1 = AΓ0A>+Γw = Γw and

5



R1 = AR0+E (Γw,r). Thus, E (Γ1,r) = E (Γw,r) =R1 and
hence the claim is satisfied for k = 1. It suffice now to prove
that E (Γk,r) ⊆ Rk implies E (Γk+1,r) ⊆ Rk+1. Supposing
E (Γk,r)⊆Rk implies

E (Γk+1,r)⊆AE (Γk,r)+E (Γw,r)⊆ARk+E (Γw,r)=Rk+1,

where the first inclusion follows from (iii) of Property 2.
From this and the second claim of Property 2, it follows

Pr{xk ∈Rk} ≥ Pr{xk ∈ E (Γk,r)} ≥ 1− n
r
, (18)

which implies that Rk with k∈N is a sequence of probability
reachable sets with violation level n/r.

Note that, from (18) it follows that also sets E (Γk,r) are
probabilistic reachable sets with violation level n/r, which
are less conservative than Rk and simply determined by
iteration (16). If, nonetheless, sets Rk and E (Γk,r) require
to be computed for every k ∈ N, a sequence of reachable
sets determined by a unique matrix is given below.

Proposition 4 Suppose that the random sequence {wk}k∈Z
has a correlation bound Γw � 0 for matrix A. If W ∈ Sn is
such that W � 0 and

AWA> � λ
2W, (19)

Γw � (1−λ )2W, (20)

with λ ∈ [0,1), then Ωk = E (W,r(1−λ
k)2) is a sequence of

probabilistic reachable sets with violation probability n/r.
If, moreover, wk is a Gaussian process with null mean, then
E (W,r(1−λ

k)2) is a reachable set with violation probabil-
ity 1−χ

2
n (r).

Proof: It is first proved by induction that

E{xkx>k } � (1−λ
k)2 W (21)

for all k ∈ N, if x0 = 0 ∈ Ω0. The bound holds for k = 0
since x0 = 0. Supposing that (21) holds for k ∈N, and from
Definition 1, it follows

E{xk+1x>k+1}
(7)
� AE{xkx>k }A>+Γw

(21)
� (1−λ

k)2 AWA>+Γw
(19),(20)
� ((1−λ

k)2
λ

2 +(1−λ )2)W �
(
(1−λ

k+1)2

+2(1−λ )λ (λ k−1)
)

W � (1−λ
k+1)2 W,

since the last inequality holds for all λ ∈ [0,1). Note, as a
consequence, that

E{xkx>k } � lim
k→∞

E{xkx>k } �W (22)

for all k ∈ N. From the Chebyshev inequality (see, for ex-
ample, proof of claim (ii) of Property 2) and (21), it follows

Pr{xk ∈ E (W,r(1−λ
k)2)}= Pr{x>k W−1xk ≤ r(1−λ

k)2}

= Pr{x>k
(
(1−λ

k)2 W
)−1xk ≤ r} ≥ 1− n

r
. (23)

The results for wk Gaussian process follow from the def-
inition of the χ squared cumulative distribution, that is
Pr{y>y≤ r}= χ

2
n (r) for y∼N (0, I) and r > 0, see [4, 5].

In fact, xk is a Gaussian random variable, being the finite
linear combination of terms of a Gaussian process, that is
xk ∼ N (0,Xk) with Xk � 0. Denoting the rank of Xk as
q, there exist Mk ∈ Rn×q and a random variable yk ∈ Rq

such that Mkyk = xk and yk ∼N (0, I), for all k ∈ N. From
Xk = E{xkx>k } = MkM>k � (1− λ

k)2W , that is equivalent
to M>k ((1− λ

k)2W )−1Mk � I from Schur complement, it
follows that x>k ((1−λ

k)2W )−1xk ≤ y>k yk. Hence

Pr{xk ∈ E (W,r(1−λ
k)2)}= Pr{x>k

(
(1−λ

k)2W
)−1xk ≤ r}

≥ Pr{y>k yk ≤ r}= χ
2
q (r)≥ χ

2
n (r),

and then Pr{xk ∈ E (W,r(1−λ
k)2)} ≥ 1− (1−χ

2
n (r)).

Notice that, for every λ ∈ [ρ(A),1), the convex conditions
(19) and (20) admit solutions and, for any matrix W satis-
fying them, the sets E (W,r(1−λ

k)2) form a sequence of
probabilistic reachable sets with violation probability n/r or
(1− χ

2
n (r)), in the Gaussian process case. Thus, condition

(19) and (20) can be used in a convex optimization prob-
lem aiming at maximizing or minimizing a measure of the
reachable sets, their volume for instance.

3.2 Probabilistic invariant sets

The concept of probabilistic invariant sets, as defined and
used in [14, 17], is recalled.

Definition 3 (Probabilistic invariant set) The set Ω ⊆ Rn

is a probabilistic invariant set for the system (1), with vio-
lation level ε ∈ [0,1], if x0 ∈Ω implies Pr{xk ∈Ω} ≥ 1− ε

for all k ≥ 1.

A first condition for a set to be probabilistic invariant, anal-
ogous to that proved in [14] for uncorrelated disturbances,
is given below.

Property 3 Suppose that the random sequence {wk}k∈N has
a correlation bound Γw � 0 for matrix A. If W ∈ Sn and
r > 0 are such that W � 0 and

AE (W,1)+E (Γw,r)⊆ E (W,1), (24)

then E (W,1) is a probabilistic invariant set with violation
probability n/r. If, moreover, wk is a Gaussian process with
null mean, then E (W,1) is a probabilistic invariant set with
violation probability 1−χ

2
n (r).
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Proof: By definition, it is sufficient to show that x0 ∈
E (W,1) implies Pr{xk ∈ E (W,1)} ≥ 1−n/r, for all k ≥ 0.
The state xk can be written as the sum of a nominal term x̄k
and a random vector zk that depends on the past realizations
of the uncertainty. That is, xk = x̄k + zk, where {x̄k}k≥0 and
{zk}k≥0 are given by the recursions

x̄k+1 = Ax̄k, zk+1 = Azk +wk, (25)

for all k≥ 0, with x̄0 = x0 and z0 = 0. Below it is first proved
that x0 ∈ E (W,1) and (24) imply

x̄k +Rk ⊆ E (W,1), ∀k ≥ 0, (26)

with Rk as in (17). Since R0 = {0}, the inclusion is trivially
satisfied for k = 0. Supposing that x̄k +Rk ⊆ E (W,1) yields

x̄k+1 +Rk+1 = Ax̄k +(ARk +E (Γw,r))
= A(x̄k +Rk)+E (Γw,r)
⊆ AE (W,1)+E (Γw,r)⊆ E (W,1),

and then (26) holds. Condition (26) implies

Pr{xk∈E (W,1)}=Pr{x̄k+zk∈E (W,1)}≥Pr{zk∈Rk}≥1−n
r

for all k ≥ 0, where the last inequality follows from Propo-
sition 3. The case of Gaussian process follows from the def-
inition of the χ squared cumulative distribution, see also the
proof of Proposition 4.

Property 3 implies that the existence of a correlation bound
provides a condition for probabilistic invariance that has the
same structure as the one corresponding to robust invariance.
In the case of ellipsoidal invariant sets, (24) results in a
bilinear condition, see [7], that can be solved, for instance,
by gridding the space of the Lagrange multiplier and solving
an LMI for every value as illustrated below. Nevertheless,
as shown afterward, gridding can be avoided by choosing
the multiplier in [ρ(A),1).

Proposition 5 Suppose that the random sequence {wk}k∈Z
has a correlation bound Γw � 0 for matrix A. If W ∈ Sn is
such that W � 0 and[

A>W−1A− τW−1 A>W−1

W−1A W−1− (1− τ)Γ−1
w /r

]
� 0 (27)

with τ ∈ [0,1), then E (W,1) is a probabilistic invariant set
with violation probability n/r. If, moreover, wk is a Gaus-
sian process with null mean, then E (W,1) is a probabilistic
invariant set with violation probability 1−χ

2
n (r).

Proof: Because of Property 3, it suffices to prove that
(27) is equivalent to (24). From Theorem 4.2 in [26], see

also [14], condition (24) is equivalent to the existence of
non-negative τ1 and τ2 such that[

A>W−1A− τ1W−1 A>W−1

W−1A W−1− τ2Γ
−1
w /r

]
� 0 (28)

and 1−τ1−τ2 ≥ 0 hold, the latter implying τ1 ∈ [0,1], τ2 ∈
[0,1] and τ1+τ2 ≤ 1. Note first that there is no conservatism
in posing τ2 = 1− τ1 in spite of τ2 ≤ 1− τ1 since if (28)
holds for τ2 < 1− τ1, then it holds also for τ2 = 1− τ1.
This implies that posing τ1 = τ and τ2 = 1− τ introduces
no conservatism. Moreover, since W � 0 then τ cannot be
1. Hence (24) is equivalent to (27) with τ ∈ [0,1).

Although (27) is a non-convex condition, that can be solved
with respect to W−1 by gridding τ in [0,1), this can be
avoided by choosing τ ∈ [ρ(A),1), as proved below.

Property 4 Suppose that the random sequence {wk}k∈N has
a correlation bound Γw � 0 for matrix A. Condition (27)
admits a solution W for every τ ∈ [ρ(A),1).

Proof: From τ ∈ [ρ(A),1), there exits W ∈ Sn such that
(1− τ)−2

Γwr �W and AWA> � τ
2W hold, and then:

(1− τ)AWA>+ τΓwr �
(
(1− τ)τ2 + τ(1− τ)2)W

= τ(1− τ)W.

This implies that τW −AWA> � 0 and also(
W −AWA>/τ

)−1
� (1− τ)Γ−1

w /r

that is equivalent, from the inversion lemma, to

− (1− τ)Γ−1
w /r+

(
W−1

+(W−1A(τ W−1−A>W−1A)−1A>W−1)� 0

and then also to (27) from the Schur complement.

From Property 4 it follows that for every τ ∈ [ρ(A),1), the
set of matrices W satisfying condition (27), convex in W−1,
is non-empty. Moreover, any W in this set provides the
probabilistic invariant set E (W,1) with violation level n/r
or 1− χ

2
n (r), in the Gaussian process case. The constraint

τ ∈ [ρ(A),1) restricts, though, the set of feasible solutions
and then, if one aims at obtaining the minimal probabilistic
invariant ellipsoids, gridding τ in [0, 1) might be necessary.

4 Numerical examples

Consider the system (1) with

A =

[
0.25 0

0.1 0.3

]
.
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To validate the presented results, it is necessary to generate
a random sequence satisfying the bounds (4) and (5). In
particular, an example is given for which the value of the
covariance matrices cannot be computed, but bounds of the
type (4) and (5) can be determined.

Consider the i.i.d. random sequence vk with Gaussian dis-
tribution N (0,V ), for all k ∈ N, and the switched system
with m ∈ N modes

wk+1 = Hσk wk +Fvk (29)

where σ : N→ Nm is the mode selection signal, assumed
arbitrary. Note that {wk}k∈N is a Gaussian process, since
every linear combination of its terms has Gaussian distribu-
tion, being a linear combination of elements of vk, that are
i.i.d. with Gaussian distribution. Moreover {wk}k∈N has null
mean since vk has null mean.

Denote with wk the state given by (29) with w0 = 0 and
switching sequence σ (the dependence of wk on σ is left
implicit); with σ[i, j] the subsequence of modes given by the
realization of σ from instants i and j with i < j, and define
Hσ[i, j] = ∏

j
k=i Hσk . Suppose there exist Γ� 0 and γ ∈ [0,1)

such that

HiΓH>i +FV F> � Γ, ∀i ∈ Nm, (30)

HiΓH>i � γΓ, ∀i ∈ Nm. (31)

It can be recursively proved that E{wkw>k } � Γ. In fact,
the condition holds for k = 0, from w0 = 0. Suppose that
E{wkw>k } � Γ holds for a given k ∈N and since E{vkw>k }=
0, then

E{wk+1w>k+1}= E{Hσk wkw>k H>σk
+Fvkw>k H>σk

+Hσk wkv>k F>

+Fvkv>k F>}= Hσk E{wkw>k }H>σk
+FE{vkv>k }F>

� Hσk ΓH>σk
+FV F>

(30)
� Γ,

for every σk ∈Nm, which means that E{wk+1w>k+1}� Γ. For
every i, j ∈ N with i 6= j, define Γ

(σ)
i, j = E{wiw>j } and note

that

Γ
(σ)
k+1,k = E{wk+1w>k }= E{(Hσk wk +Fvk)w>k }
= E{Hσk wkw>k }+E{Fvkw>k }= Hσk E{wkw>k }

for all k ∈ N, and then, from E{wkw>k } � Γ, it follows

Γ
(σ)
k+1,kΓ

−1
Γ
(σ)>
k+1,k = Hσk E{wkw>k }Γ−1E{wkw>k }H>σk

� Hσk E{wkw>k }H>σk
� Hσk ΓH>σk

(31)
� γΓ

for every σk ∈ Nm. Hence

Γ
(σk)
k+1,kΓ

−1
Γ
(σk)>
k+1,k � γΓ, ∀σk ∈ Nm.

Following analogous considerations it can be proved that

Γ
(σ)
j,i Γ

−1
Γ
(σ)>
j,i �Hσ[i, j]ΓH

>
σ[i, j]
� γ

j−i
Γ, ∀σ[i, j] ∈ N j−i

m

for all i, j ∈ N such that i < j. Thus conditions (4) and (5)
hold with Γ̃ = Γ and γ solution of (30)-(31), Γ j,i = Γ

(σ)
j,i ,

α = 0 and β = 1. Note that these bounds hold for every
possible realization of the switching sequence σk.

An i.i.d. random sequence with distribution N (0,V ), with
V = diag(1.5, 0.26), has been used to feed system (29) with

H1=

[
0.17 0.02

0.07 0.14

]
, H2=

[
0.15 0.025

0.1 −0.25

]
, F=

[
0.25 0.025

0.1 −0.35

]

and σk unknown function of time with value in {1,2}. The
switched system generates a Gaussian process wk with null
mean satisfying the covariance matrix bounds (4) and (5)
and the correlation bound (7), with

Γ̃ =

[
0.0098 0.0018

0.0018 0.0343

]
, Γw =

[
0.0113 0.0020

0.0020 0.0397

]

α = 0, β = 1 and γ = 0.0395, and Γw computed using (12).

Different values of violation probability pv have been tested,
in particular pv = 0.1,0.2,0.3,0.4,0.5. For every pv, the val-
ues of r such that χ

2
2 (r) = 1− pv has been determined and

the matrix W solving (27) with minimal trace has been com-
puted to obtain E (W,1) probabilistic invariant. Then, for ev-
ery pv, N = 1000 initial states x0 have been uniformly gen-
erated on the boundary of E (W,1) and assumed indepen-
dent on wk. For each x0, a sequence wk has been generated
through (29) and applied. For every k = 1, . . . ,100, the set
of states xk and the number of violation dk of the constraint
xk ∈ E (W,1) have been computed. The frequencies of vio-
lation dk/N, for every pv and k = 1, . . . ,100, are depicted in
Fig. 1, that shows that the bound is always satisfied.

0 20 40 60 80 100
0

0.2

0.4

k

v k
/N

Fig. 1. Frequency of violations dk/N of xk ∈ E (W,1) for
k = 1, . . . ,100, with α = 0 and β = 1, obtained for violation prob-
ability of: 50% in black; 40% in red; 30% in cyan; 20% in ma-
genta; 10% in blue.

5 Conclusions

This paper presented methods, based on convex optimiza-
tion, to compute probabilistic reachable and invariant sets
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for linear systems fed by a stochastic disturbance correlated
in time. From the knowledge of bounds on the mean and the
covariance matrices, the characterization of the correlation
bound is given and then employed for obtaining the reach-
able and invariant sets.
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