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Mean Square Exponential Stabilization of Sampled-Data
Systems Subject to Actuator Nonlinearities,

Random Sampling, and Packet Dropouts
Daniel Denardi Huff , Mirko Fiacchini , and João Manoel Gomes da Silva Jr

Abstract—This work deals with the mean square exponential
stabilization of sampled-data linear systems subject to sector-
bounded actuator nonlinearities and to aperiodic sampling inter-
vals, which are assumed to be Erlang-distributed random vari-
ables. The possibility of packet dropouts is also taken into account
and modeled by a Bernoulli process. Linear matrix inequality (LMI)
conditions are proposed to design a stabilizing state-feedback con-
troller for the system. Moreover, it is shown that the method leads
to necessary and sufficient stabilization conditions in the absence
of actuator nonlinearities. The results are derived using the frame-
work of piecewise deterministic Markov processes, a subclass of
stochastic hybrid systems.

Index Terms—Piecewise deterministic Markov processes, ran-
dom sampling, sampled-data control, sector-bounded nonlineari-
ties.

I. INTRODUCTION

Sampled-data control is present whenever a continuous-time system
is controlled by a digital device [1]. These control loops are often
implemented through a network, where communication protocols are
used for the transmission of data [2]. While the use of a shared network
has some advantages, like flexibility and simplicity of maintenance,
there are also some drawbacks [2]. Among them, the presence of
uncertainties in the sampling interval of the system, i.e., aperiodic
sampling, which directly affects the closed-loop performance [3].

The stability analysis and control design for sampled-data systems
subject to aperiodic sampling have been the subject of many recent
studies (see the survey [4] and the references therein). These works
consider different approaches and tools to tackle the problem, such
as the time-delay approach [5], the use of looped-functionals [6], and
discrete-time approaches [7], [8], [9], [10], [11].
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The aforementioned references present, as a common feature, a
nonstochastic framework, where hard bounds are imposed for the
time-varying sampling interval. However, since this assumption may
not be realistic, some recent works have considered the case where
the sampling interval is a random variable with possibly unbounded
support [12], [13], [14], [15], [16]. In particular, the authors in [13],
[14], [15], and [16] proposed conditions for the stabilization (in a
stochastic sense) of the discrete-time model that describes the behavior
of the system state at the sampling instants. However, although closely
related, the stability of this discrete-time model is not equivalent to the
stability of the corresponding (continuous-time) sampled-data system,
as remarked, for instance, in [17, Pg. 610].

Thus, the aim of the present work is to propose a control design
method which guarantees the stabilization (in the mean square sense)
of the continuous-time system. As in [14], it is assumed that the random
sampling intervals have an Erlang distribution, which includes the
exponential distribution (considered, for instance, in [12] and [18])
as a particular case. Moreover, the possibility of packet dropouts is
explicitly considered and modeled, as in [15], through a Bernoulli
distribution. Unlike our previous work [18], which dealt only with the
exponential distribution and the linear case, we also consider that the
sampled-data system is subject to actuator nonlinearities which satisfy
a sector condition. This includes, for instance, saturation, deadzone,
and quantization.

To derive our results, we use, as in [19] for instance, the framework
of Piecewise Deterministic Markov Processes (PDMPs) [20], which
can be viewed as a subclass of stochastic hybrid systems (SHSs) [21].
The proposed Lyapunov-based stabilization conditions are posed in
terms of LMIs and can, therefore, be easily solved in practice using off-
the-shelf semidefinite programming solvers. Moreover, we show that
the proposed approach leads to necessary and sufficient stabilization
conditions in the linear case, i.e., without actuator nonlinearities.

The rest of this article is organized as follows. Section II presents
basic definitions and proposes an equivalent SHS representation for the
closed-loop sampled-data system. Section III presents the main results
related to the control design method. The extension of the results to
consider phase-type distributions is discussed in Section IV. Section V
shows a numerical example. Finally, Section VI concludes this article.

Notation: P [·] denotes probability, and E[·] expectation. X ∼ Y
means that the random variables X and Y have the same distribution,
and X ∼ �(ν, λ) means that X has the Erlang distribution of degree
ν and rate λ. N+ = N \ {0}, R+ = (0,∞) and Nm = {i ∈ N : 1 ≤
i ≤ m}. For f : R → Rn, f(t−) � limτ �→t,τ<t f(τ) if the limit exists.
Given matricesA andB,Diag(A,B) is a block diagonal matrix formed
by them. If A is square, λmax(A) (λmin(A)) is the maximal (minimal)
real part of the eigenvalues of A. The symbol � denotes a symmetric
block when applied as an entry of a matrix and � (	) defines positive
(semi)-definiteness of a symmetric matrix. In ∈ Rn×n is the identity
matrix. ‖ · ‖ denotes the induced two-norm of a matrix or the Euclidean
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norm of a vector. Given a matrix A ∈ Rm×n, A(i) is its ith row and
AT its transpose. We sometimes identify a matrix A ∈ Rm×n with the
corresponding linear operator A : Rn → Rm. Given f : R → R and
finite scalars d and d̄, f ∈ sec[d, d̄] means that the graph of f(·) lies
inside the sector formed by the lines g1(x) = dx and g2(x) = d̄x, with
d̄ ≥ d.

II. PROBLEM FORMULATION

Consider the continuous-time plant described by the following linear
model:

ẋp(t) = Apxp(t) +Bpu(t) (1)

where xp ∈ Rnp and u ∈ Rm are the state and the input of the plant,
respectively. Matrices Ap and Bp have appropriate dimensions and
are constant. The control input is updated at the sampling instants tj
and kept constant (by means of a zero-order-hold) for all t ∈ [tj , tj+1)
according to the law

u(t) = u(tj), for t ∈ [tj , tj+1)

u(tj) =

{
φ(Kpxp(t

−
j ) +Kuu(t

−
j )), if no packet dropout

u(t−j ), otherwise
(2)

where Kp and Ku are matrices of appropriate dimensions and φ :
Rm → Rm denotes an actuator nonlinearity (e.g., saturation, deadzone,
quantization, etc.). Note in (2) that u(t) is updated at time tj only if
the corresponding packet of measurement data from the sensors is not
lost due to some misbehavior of the network, otherwise the controller
maintains the current input until the next sampling instant tj+1. It is
assumed that φ is a measurable (though not necessarily continuous)
function. It is also decentralized, i.e.,

φ(ζ) = [φ1(ζ(1))φ2(ζ(2)) . . . φm(ζ(m))], ζ ∈ Rm (3)

and is elementwise sector bounded (see Notation), that is

φi(·) ∈ sec[di, d̄i], ∀i ∈ Nm. (4)

Note that (2) is based not only on the sampled value of the state xp

but also on the value of the last control input applied to the plant,
where the use of the term Kuu(t

−
j ) has already showed its benefits

in a nonstochastic framework [11]. The probability of packet dropout
is modeled by a Bernoulli process {αj}j∈N+

(i.e., a sequence of
i.i.d. Bernoulli random variables) with P [αj = 0] = μ0 ∈ (0, 1) and
P [αj = 1] = μ1 � 1− μ0, whereαj = 0means that a packet dropout
occurs at the sampling instant tj . The events of packet dropout for each
tj are mutually independent between them.

By convention t0 = 0 and the difference between two successive
sampling instants—the sampling interval—is denoted by δj � tj+1 −
tj . It is assumed that {δj}j∈N is a sequence of independent and iden-
tically distributed (i.i.d.) random variables with the Erlang distribution
(see details, for instance, in [22, pp. 87–89]) of degree ν ∈ N+ and
rate λ ∈ R+, i.e., δj ∼ �(ν, λ). The corresponding probability density
function is given by [22, p. 87]

fδ(s) �
λνsν−1e−λs

(ν − 1)!
, s ≥ 0. (5)

The Erlang distribution has been used to model the stochastic behavior
of networked control systems under random sampling in [14]. As
illustrated in Fig. 1, it allows to model an event whose probability
density function is concentrated around a value, which may represent a
nominal constant sampling interval (or period) δ in the ideal case, where
there is no uncertainties on δk induced by the network. In particular, note

Fig. 1. Probability density function (5) of the Erlang distribution for
different values of the parameters ν and λ.

that the mean and the variance of the sampling interval δj ∼ �(ν, λ)
are, respectively, ν/λ and ν/λ2. Moreover, the exponential distribution,
considered for instance in [12] and [18], corresponds to the particular
case in which ν = 1, as it can be seen from (5). Fig. 1 shows the shape
of fδ(s) for different values of ν and λ.

It will be convenient to define D � Diag(d1, . . . , dm), D �
Diag(d1, . . . , dm), D � D −D, and φ̄(ζ) � φ(ζ)−Dζ. From these
definitions and (4), the ith component of the nonlinearity φ̄ belongs
to the sector sec[0, di − di]. In other words, φ̄ satisfies the following
sector condition, adapted from [23, Lemma 1.4].

Lemma 1: Given a diagonal matrix T ∈ Rm×m, T 	 0

φ̄T (ζ)T (Dζ − φ̄(ζ)) ≥ 0, ∀ζ ∈ Rm. (6)

�
Consider now x � [xT

p uT ]T ∈ Rn, n � np +m. The dynamics
(1) and (2) can be described by the following impulsive system (see
also [11]):

ẋ(t) = Acx(t), ∀t ≥ 0, t = tj , ∀j ∈ N+ (7a)

x(tj) =

{
g(x(t−j )), ifαj = 1,

x(t−j ), ifαj = 0,
∀j ∈ N+ (7b)

g(x) � Adx+Brφ̄(Kx) (7c)

where x(0) = x0 ∈ Rn, Ad � Ar +BrDK and

Ac �
[
Ap Bp

0 0

]
∈ Rn×n, Ar �

[
Inp 0

0 0

]
∈ Rn×n,

Br �
[
0

Im

]
∈ Rn×m, K �

[
Kp Ku

]
∈ Rm×n.

Definition 1: The equilibrium point x = 0 of (7) is mean exponen-
tially stable (MES) if there exist constants c, γ > 0 such that for every
initial condition x0 ∈ Rn

E[‖x(t)‖2] ≤ ce−γt‖x0‖2, ∀t ≥ 0 (8)

where γ > 0 will be referred to as a decay rate of the trajectories of the
system. �
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Fig. 2. Graphical representation of the SHS (10).

From Markov’s inequality P [‖x(t)‖ > r] ≤ E[‖x(t)‖2]
r2

[20, p. 12],
the decay rate corresponds to a measure of how fast the probability of
‖x(t)‖ being large decays with time.

The problem we focus on in this work can now be stated.
Problem 1 (Mean square exponential stabilization): Given the pa-

rameters of the Erlang and of the Bernoulli distributions (i.e., ν, λ, and
μ0), provide convex conditions for the design of the feedback gain K
such that the resulting closed-loop system (7) is MES. �

A. Equivalent SHS Representation

Next, we present an SHS representation for (7), where we use the
fact that an Erlang-distributed random variable X ∼ �(ν, λ) of degree
ν is statistically equivalent to the sum of ν mutually independent
exponentially distributed random variables Xi ∼ �(1, λ), i.e., (cf. [24,
Exercise 23.2]):

X ∼
ν∑

i=1

Xi. (9)

This feature, that has also been used in [25] to deal with semi-Markov
jump linear systems with Erlang-distributed dwell times, will be impor-
tant to derive convex conditions for the stabilization of the closed-loop
system.

Consider (q, x) ∈ Nν × Rn and a sequence {θk}k∈N+
with the

same distribution of {αj}j∈N+
. The proposed SHS model, illustrated

in Fig. 2, is given by

(q̇(t), ẋ(t)) = (0, Acx(t)), ∀t ≥ 0, t = rk, ∀k ∈ N+ (10a)

(q(rk), x(rk)) = Ψ(q(r−k ), x(r
−
k ), θk), ∀k ∈ N+ (10b)

Ψ(q, x, θ) �

⎧⎨
⎩
(q + 1, x), if q < ν
(1, g(x)), if (q, θ) = (ν, 1)
(1, x), if (q, θ) = (ν, 0)

(10c)

where {rk}k∈N is the sequence of reset (or jump) times, with r0 = 0,
and (q0, x0) � (q(0), x(0)). Note from (10b) that there is a one-to-one
relationship between rk and θk, even if the value of Ψ(q, x, θ) does
not depend on θ for q < ν. Moreover, {ρk}k∈N � {rk+1 − rk}k∈N is
considered to be a sequence of i.i.d. random variables withρk ∼ �(1, λ)
exponentially distributed, i.e., the counting process

Nt � sup{k ∈ N : rk ≤ t} (11)

is a Poisson process [20, p. 37], [22, p. 378] of rate λ > 0. Since ρk has
the exponential distribution [22, p. 88]:

P [ρk ≤ s] = 1− e−λs, ∀k ∈ N, ∀s ≥ 0. (12)

The sampling instants tj of (7) are represented by the transition
of (10) from q = ν to q = 1 while the other jumps of (10), which do

not affect x(t), allow to express the behavior of system (7) through
exponentially distributed random variables ρk ∼ �(1, λ). Indeed, we
claim that x(t) in (7) is statistically equivalent to x(t) in (10) if q0 = 1.
To understand why, let us denote by {t̄j}j∈N the sequence of times at
which the transitions from q = ν to q = 1 of (10) take place. Then,
it suffices to notice that, if q0 = 1, {t̄j}j∈N , given in this case by
{t̄j}j∈N = {rνk}k∈N , has the same distribution of {tj}j∈N in (7).
This is a direct consequence of the discussion at the beginning of this
subsection and of the way these sequences are defined

{t̄j+1 − t̄j}j∈N = {rν(k+1) − rνk}k∈N

=

⎧⎨
⎩

ν(k+1)−1∑
i=νk

ρi

⎫⎬
⎭

k∈N

∼︸︷︷︸
(9)

{δj}j∈N = {tj+1 − tj}j∈N .

These facts allow to address Problem 1 considering model (10),
which involves the exponential distribution, as detailed in the next
section.

Remark 1: Note that model (10) is slightly more general than (7),
since the time elapsed until the first transition from q = ν to q = 1 can
have any one of the distributions t̄1 ∼ �(ν̂, λ), ν̂ ∈ Nν , depending on
the initial condition of q(t). �

III. MEAN SQUARE EXPONENTIAL STABILIZATION

The main results of the work are presented next. Section III-A consid-
ers the nonlinear case and Section III-B shows that in the linear case, i.e.,
when φ(Kpxp +Kuu) = Kpxp +Kuu, the proposed stabilization
conditions are nonconservative, i.e., they are necessary and sufficient.

A. General Case

According to the definitions in [20, Sec. 24], system (10) belongs to
the class of PDMPs (which is a subclass of SHSs, cf. [21, Table 1]),
where the state space is given by E � Nν × Rn and the boundary set
Γ � ∅ is empty. Moreover, see [20, Sec. 24]:
1) The flow map is given by Φq(t, x) = eActx for all q.
2) The jump rate λ : E → R≥0 is constant, i.e., λ(q, x) ≡ λ, where λ

is the rate of the Poisson process Nt.
3) The transition measure Q is defined using (10b) and (10c).
4) Assumption 24.4 of [20], which regards the expectation of the

counting process Nt, is indeed satisfied since Nt is a Poisson
process, and thus, E[Nt] = λt < ∞ [22, p. 378].

Given a function V (q, x), these facts allow to establish the following
result, which is closely related to [26, Th. 2].

Theorem 1: Consider system (10) and a continuously differentiable
function V : E → R such that

E

⎡
⎣∑

rk≤T

|V (q(rk), x(rk))− V (q(r−k ), x(r
−
k ))|
⎤
⎦ < ∞ (13)

∀T ≥ 0, ∀(q0, x0) ∈ E, where q(r−0 ) = q(r0) = q0 by convention
and similarly for x(r−0 ). Then, for t ≥ 0 and for all (q0, x0) ∈ E

E[V (q(t), x(t))] = V (q0, x0) + E

[∫ t

0

UV (q(s), x(s))ds

]
(14)

where

UV (q, x) � ∂V (q, x)

∂x
Acx+ λ (QV (q, x)− V (q, x)) , (15)

QV (q, x) �
{
V (q + 1, x), if q < ν,
μ1V (1, g(x)) + μ0V (1, x), if q = ν.

(16)
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�
Proof: The result follows from [20, Th. 26.14] and [20, Remark

26.16], which guarantee, under condition (13), that [20, eq. 14.17]
holds [which corresponds to (14)]. �

Relation (14) is known as the Dynkin’s formula [20, p. 33] and can
be intuitively interpreted as a stochastic version of the fundamental
theorem of calculus. The first term of the right-hand side of (15) is just
the usual time derivative of V (q, x) along the trajectories of ẋ(t) =
Acx(t) while the second term accounts for the jumps at the reset times.
Note also that one of the transitions of (10) (the jump from q = ν to
q = 1) is stochastic and depends on a Bernoulli random variable (that
is why there are two terms in (16)).

Now we are ready to state our main stabilization result, whose proof
is in Appendix A.

Theorem 2: If there exist a scalar γ > 0, a matrix Y ∈ Rm×n, pos-
itive definite matrices Wq ∈ Rn×n, ∀q ∈ Nν , and a diagonal positive
definite matrix S ∈ Rm×m such that[

AcWq +WqA
T
c + (γ − λ)Wq �

Wq −Wq+1

λ

]
� 0, ∀q < ν,

(17a)⎡
⎢⎢⎢⎣
AcWν +WνA

T
c + (γ − λ)Wν � � �

DY −2S � �

ArWν +BrDY BrS −W1
λμ1

�

Wν 0 0 −W1
λμ0

⎤
⎥⎥⎥⎦ � 0

(17b)

then, for K = YW−1
ν , system (7) is MES with decay rate γ. �

The proof of Theorem 2, based in Theorem 1, considers a Lyapunov
function of the form V (q, x) = xTPqx for the SHS (10). This choice
is not arbitrary but motivated by the fact that it leads to nonconservative
(i.e., necessary and sufficient) stabilization conditions in the linear case,
as we will show next.

Remark 2: Until now we have considered thatμ0 ∈ (0, 1). Ifμ0 = 0
(i.e., zero probability of packet dropouts), then LMI (17b) is replaced
by ⎡

⎢⎣AcWν +WνA
T
c + (γ − λ)Wν � �

DY −2S �

ArWν +BrDY BrS −W1
λ

⎤
⎥⎦ � 0. (18)

�
Remark 3: From the upper left blocks of the matrices in (17), we

conclude that (17) can be satisfied only if 2λ̄(Ac) < λ, where λ̄(Ac)
denotes the largest real part of the eigenvalues of Ac. This observation
is in accordance with [17, condition (5)], which provides a necessary
condition for the mean exponential stability of impulsive renewal
systems in the linear case. �

B. Linear Case

Consider the case where φ(ζ) = ζ and (7c) reduces to

g(x) = Adx = (Ar +BrK)x. (19)

The following theorem provides necessary and sufficient conditions for
the mean square exponential stabilization of the closed-loop system in
this case.

Theorem 3: There exists a gainK such that the system (7) with g(x)
given by (19) is MES if and only if there exist a matrix Y ∈ Rm×n and

positive definite matrices WL
q ∈ Rn×n, ∀q ∈ Nν , such that[

AcW
L
q +WL

q AT
c − λWL

q �

WL
q −WL

q+1

λ

]
≺ 0, ∀q < ν (20a)

⎡
⎢⎢⎣
AcW

L
ν +WL

ν AT
c − λWL

ν � �

ArW
L
ν +BrY −WL

1
λμ1

�

WL
ν 0 −WL

1
λμ0

⎤
⎥⎥⎦ ≺ 0 (20b)

with K = Y (WL
ν )−1. �

Proof: See Appendix B. �
Remark 4: As in Theorem 2, it is possible to guarantee a specific

decay rate γL > 0 in (8) replacing (20) by[
AcW

L
q +WL

q AT
c + (γL − λ)WL

q �

WL
q −WL

q+1

λ

]
� 0, ∀q < ν, (21a)

⎡
⎢⎢⎣
AcW

L
ν +WL

ν AT
c + (γL − λ)WL

ν � �

ArW
L
ν +BrY −WL

1
λμ1

�

WL
ν 0 −WL

1
λμ0

⎤
⎥⎥⎦ � 0. (21b)

�
Remark 5: If μ0 = 0 and ν = 1 (i.e., zero probability of packet

dropouts and exponentially distributed sampling intervals), constraints
(20) reduce, after application of the Schur’s complement and denoting
P = (WL

1 )−1, to

PAc +AT
c P + λ(AT

d PAd − P ) ≺ 0

which is a known necessary and sufficient condition for the mean square
exponential stability of system (7) with g(x) given by (19) when the
sampling intervals have the exponential distribution (see [12, Th. 5.1]
or [19, Th. 7]). �

IV. EXTENSION TO PHASE-TYPE DISTRIBUTIONS

Phase-type distributions, considered for instance in [27] in the con-
text of aperiodic sampled-data control, can accurately approximate any
given probability distribution on (0,∞) [28, Th. 4.2, Ch. 3]. It turns
out that they are closely related to the Erlang distribution, which is
actually a particular case of them. The cumulative distribution function
of a random variable Y with the phase-type distribution of order p,
parametrized byΣ ∈ Rp×p and σ ∈ R1×p, is given by [28, Ch. 3, p. 83]

P [Y ≤ y] = F (y) = 1− σeΣy1

where 1 = [1 . . . 1]T . As explained in [28, Ch. 3, pp. 82–83], Y can
be defined in terms of a continuous-time Markov chain, where the time
elapsed until the next state transition has the exponential distribution
with an intensity/rate that depends on the states involved in the tran-
sition. More precisely, Y can be defined in terms of a Markov chain
with a finite state space {1, 2, . . . , p+ 1}, with one absorbing state
(labeled here p+ 1) and p transient states (labeled from 1 to p). The
corresponding transition rate matrix Λ ∈ R(p+1)×(p+1) has the form

Λ =

[
Σ −Σ1

0 0

]
.

The variableY can then be interpreted as the time that the state of the
Markov chain takes to reach the absorbing state p+ 1 after initialized
at time zero with initial state probability distribution [σ 0]T .

Notice now that the state q(t) of the SHS model (10) can also be
interpreted in terms of a continuous-time Markov chain, with state space
{1, . . . , ν}. This (cyclic) Markov chain is used to emulate a sampling
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interval δj with the Erlang distribution. However, with the appropriate
modifications in (10), it would also be possible to emulate a sampling
interval with a phase-type distribution, resulting in a more complex
chain and more complex expressions in (15) and (16). This fact leads
to believe that it is possible to extend the results of the present work to
this type of distribution.

V. NUMERICAL EXAMPLE

Consider the system matrices

Ap =

⎡
⎢⎢⎢⎣

0 1 0 0

−330.46 −12.15 −2.44 0

0 0 0 1

−812.61 −29.87 −30.10 0

⎤
⎥⎥⎥⎦ , Bp =

⎡
⎢⎢⎢⎣

0

2.71762

0

6.68268

⎤
⎥⎥⎥⎦

taken from a cart–spring–pendulum system, which has been fully
described in [29] and has also been used in [30] and [23, Example
8.3], for instance. The state is given by xp = [p ṗ β β̇]

T
, where

p(t) is the linear position of the cart and β(t) is the angular position
of the pendulum. The control input u(t) is the voltage applied to the
armature of the DC motor of the cart, which is limited in amplitude
by the value ±5V . Since u(t) is constrained in magnitude, it can
be modeled by using the standard saturation nonlinearity sat(·), i.e.,
φ(·) = sat(·) in (2). In this case, the sector condition (4) is verified
with D = Im and D = 0 [23].

Consider the parameters ν = 3 and λ = 10 to model the stochastic
sampling effects. The corresponding Erlang distribution is depicted in
Fig. 1. Note that it allows to model a stochastic sampling interval whose
probability density function is concentrated around 0.2 approximately.
Consider also the parameters μ0 = 0.05 and μ1 = 0.95, which means
that the probability of packet dropout at each sampling instant is of 5%.

The feedback matrix K = [Kp Ku] will be computed such that the
closed-loop system composed by (1) and (2) is MES. Moreover, as a
second control objective, the gain K will be designed to maximize
the decay rate of the trajectories of the linear model composed by
(1) and (2) with φ(·) replaced by the identity function, which cor-
responds to the behavior of the nonlinear closed-loop system when
the control input does not saturate. Combining the results of Theo-
rems 2 and 3 and Remark 4, the following optimization problem is
proposed:

max
γL,Y,S,Wq ,WL

q

γL

subject to : (17), (21),
S � 0 (diagonal),
Wq � 0,WL

q � 0, ∀q ∈ Nν ,
Wν = WL

ν

(22)

where γ > 0 in (17) is fixed a priori. Then, the resulting feedback
gain is given by K = Y (Wν)

−1 = Y (WL
ν )−1. Note that the use of a

common Lyapunov matrix Wν = WL
ν allows to construct an optimiza-

tion problem with LMI constraints for each fixed value of γL. More
precisely, (22) corresponds to a generalized eigenvalue problem [31,
Sec. 2.2.3] and can be solved using bisection on γL and a semidefinite
programming algorithm. The results in this example were obtained
using the solver SeDuMi [32] and the parser YALMIP [33].

Solving (22) with γ = 0.01, one obtains γL = 0.0225 and

K =
[
12.87 0.24 −0.21 0.032 −0.00076

]
(23)

which makes the closed-loop system composed by (1) and (2) MES.
Fig. 3 shows several trajectories of the closed-loop system in the sub-
space of [p(t)β(t)]T for different initial conditions (depicted by blue

Fig. 3. Trajectories of the closed-loop system composed by (1) and (2)
with φ(·) = sat(·) and K given by (23) in the subspace of [p(t)β(t)]T ,
where the initial conditions are depicted by blue circles and the state at
the sampling instants tj by black ones.

Fig. 4. Response of the states p(t) and β(t) of the closed-loop system
composed by (1) and (2) with φ(·) = sat(·) and K given by (23), where
the values at the sampling instants tj are depicted by black circles.

circles, with ṗ(0) = 0 and β̇(0) = 0) and different realizations of the
sequences {δj}j∈N and {αj}j∈N+

, where the black circles represent
the sampling instants. As it can be seen, the trajectories converge to
the origin. Moreover, Fig. 4 presents the states p(t) and β(t) as a
function of time for a single realization of the sequences {δj}j∈N and
{αj}j∈N+

.

VI. CONCLUSION

In this work, LMI conditions are proposed for the mean square
exponential stabilization of randomly sampled linear systems subject
to control input nonlinearities and packet dropouts, where the sampling
intervals are considered to be Erlang-distributed random variables (as
in [14]) and the possibility of packet dropouts is modeled through a
Bernoulli distribution (as in [15]). Unlike [13], [14], [15], and[16],
which focus on the discrete-time trajectories of the system, our method
formally guarantees the exponential stabilization of the continuous-time
system. Moreover, the proposed stabilization conditions are necessary
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and sufficient in the linear case, i.e., in the absence of actuator nonlin-
earities.

As a future work, it would be interesting to consider other (and more
general) distribution functions for the sampling interval of the system.
In particular, as discussed in Section IV, it is in principle possible to
extend the results for phase-type distributions, which are closely related
to the Erlang distribution and allow to approximate arbitrarily well any
probability distribution on (0,∞) [28, Th. 4.2]. The problem of fitting a
phase-type distribution to a given probability distribution is addressed,
for instance, in [34] via a maximum likelihood approach.

Another idea consists in dealing with the case where only local
stabilization (in a probabilistic sense) around the origin is possible.
Moreover, the use of observer-based control laws could also be a topic
of future research. Some works propose, for instance, the use of a
continuous-discrete state observer for aperiodic sampled-data systems
(e.g., [35], [36]). It would be interesting to apply this idea in a stochastic
framework.

APPENDIX A
PROOF OF THEOREM 2

We will show that (q(t), x(t)) given by (10) with K = YW−1
ν

satisfies (8) for all initial conditions (q0, x0), where c > 0 will be
appropriately chosen and γ > 0 is given by the statement of the theo-
rem. Then, property (8) will also hold for system (7), according to the
reasoning in Section II-A, implying that (7) is MES. A time-varying
function W (q, x, t) will be considered, where, since (q(t), x(t)) is a
PDMP, (q(t), x(t), t) is also a PDMP [20, p. 84]. Thus, for a function
of the form

W (q, x, t) = eγtV (q, x) (24)

the Dynkin’s formula analogous to (14) holds with (cf. [20, p. 84])

UW (q, x, t) = eγt(γV (q, x) + UV (q, x)) (25)

as long as (13) is satisfied (with V (·) replaced by W (·)). Let us now
show that (13) indeed holds for W (q, x, t) given by (24) with

V (q, x) � xTPqx (26)

where Pq � W−1
q � 0, ∀q ∈ Nν . Define Projx Ψ as the projection of

the (Nν × Rn)-valued function Ψ onto Rn and denote by Ψk(·) the
map x �→ Projx Ψ((q(r−k ), x), θk), ∀k ≥ 1. Note that x(t) in (10) can
be expressed by

x(t) = eAc(t−rNt
) ◦ΨNt ◦ eAc(rNt

−rNt−1) ◦ · · ·
· · · ◦Ψ2 ◦ eAc(r2−r1) ◦Ψ1 ◦ eAcr1x0 (27)

where Nt, defined in (11), counts the number of resets until time t and
◦ denotes the composition of functions. Let

c1 � ‖Ac‖,
c2 � max{1, ‖Ad‖+ ‖Br‖‖D‖‖K‖}
c̄ � max

q∈Nν

‖Pq‖

and note from (7c), (10c) and the sector condition (6) satisfied by
φ̄ that ‖Projx Ψ(q, x, θ)‖ ≤ c2‖x‖, ∀(q, x, θ) ∈ E × {0, 1}. Then,
from (27), one concludes that ‖x(t)‖ ≤ cNt

2 ec1t‖x0‖. Moreover, for
k ≥ 1

‖x(rk)‖ ≤ ck2e
c1rk‖x0‖,

‖x(r−k )‖ ≤ ck−1
2 ec1rk‖x0‖ ≤ ck2e

c1rk‖x0‖. (28)

Thus, given T ∈ R+ and (q0, x0) ∈ E, one has

E

⎡
⎣∑

rk≤T

|W (q(rk), x(rk), rk)−W (q(r−k ), x(r
−
k ), rk)|

⎤
⎦

≤ E

⎡
⎣∑

rk≤T

eγrk
(
xT (rk)Pq(rk)x(rk) + xT (r−k )Pq(r−

k
)x(r

−
k )
)⎤⎦

≤︸︷︷︸
(28)

E

⎡
⎣∑

rk≤T

eγrk2c̄(ck2e
c1rk‖x0‖)2

⎤
⎦

≤ E

⎡
⎣∑

rk≤T

eγT 2c̄(ck2e
c1 T ‖x0‖)2

⎤
⎦

= eT (γ+2c1)2c̄‖x0‖2E

[
NT∑
k=0

c2k
2

]
� CE

[
NT∑
k=0

c2k
2

]

= C
∞∑

j=0

(
P [NT = j]

j∑
k=0

c2k
2

)
= C

∞∑
k=0

⎛
⎝c2k

2

∞∑
j=k

P [NT = j]

⎞
⎠

= C
∞∑

k=0

(
c2k
2 P [NT ≥ k]

)
= C

∞∑
k=0

(
c2k
2 P [rk ≤ T ]

)
< ∞

where the order of summation was changed in the third-to-last equality,
and the last inequality follows from [37, Th. 3.3.1]. Consequently, (13)
holds, as we wanted to show, and Theorem 1 can indeed be applied to
W (q, x, t) defined by (24) and (26), in which case

UV (q, x) = 2xTPqAcx+ λ
(
xTPq+1x− xTPqx

)
, if q < ν (29a)

UV (q, x)=2xTPνAcx+λ
(
μ1 g

T (x)P1g(x)+μ0x
TP1x−xTPνx

)
,

if q = ν. (29b)

Next, inequalities (17) will be used to show that

UW (q, x, t) ≤ 0, ∀(q, x, t) ∈ Nν × Rn × R≥0. (30)

Left and right multiplying (17b) by Diag(Pν , T, In, In) (where T �
S−1) and then applying the Schur’s complement, one gets[

PνAc +AT
c Pν + (γ − λ)Pν �

TDK −2T

]

+

[
Ad Br

In 0

]T [
λμ1P1 0

0 λμ0P1

][
Ad Br

In 0

]
� 0.

Then, left and right multiplying the relation above by [xT φ̄T (Kx)]
and its transpose, respectively, applying Lemma 1 and combining the
resulting inequality to (7c), (25), and (29b), one concludes that (30)
holds for all (q, x, t) ∈ {ν} × Rn × R≥0. In a similar manner, it is
possible to left and right multiply LMI (17a) by Diag(Pq, In) and,
then, to apply the Schur’s complement. Finally, using (29a), it follows
that (30) holds for all (q, x, t) ∈ Nν−1 × Rn × R≥0.

Thus, applying Theorem 1 and relation (30), one has, for t ≥ 0

E[W (q(t), x(t), t)] = W (q0, x0, 0) + E

[∫ t

0

UW (q(s), x(s), s)ds

]
≤ W (q0, x0, 0), ∀(q0, x0) ∈ E. (31)
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Substituting (24) and (26) in (31), one then gets, for t ≥ 0

eγtE[xT (t)Pq(t)x(t)] ≤ xT
0 Pq0x0, ∀(q0, x0) ∈ E.

At last, defining c � minq∈Nν λmin(Pq) > 0 and c � c̄/c, we conclude
after some algebraic manipulations that E[‖x(t)‖2] ≤ ce−γt‖x0‖2 for
all initial conditions, i.e., (8) holds, as we wanted to show.

APPENDIX B
PROOF OF THEOREM 3

The proof of the sufficiency part of the result is analogous to the
one of Theorem 2 mutatis mutandis and will be omitted. Next, we
prove the necessity part. In view of the arguments in Section II-A, we
consider system (10) in the proof, i.e., we show that constraints (20)
can be satisfied for appropriately chosen matrices Y and WL

q , q ∈ Nν ,
if system (10) satisfies (8) for some feedback gain K ∈ Rm×n and for
all initial conditions.

Consider a function V : E → R≥0 defined by

V (q0, x0) � E(q0,x0)

[∫ ∞

0

‖x(s)‖2ds

]
(32)

where E(q0,x0) emphasizes that the initial condition considered is
(q(0), x(0)) = (q0, x0) with probability one (the subscript will be
omitted from now on). From (8), V (q0, x0) is indeed well defined (i.e.,
it is finite). More precisely, interchanging expectation with integral
operations, one has

V (q0, x0) =

∫ ∞

0

E
[‖x(s)‖2] ds ≤

∫ ∞

0

ce−γs‖x0‖2ds

= c‖x0‖2/γ < ∞.

Let us show that V (q0, x0) = xT
0 Pq0x0 for appropriately chosen ma-

trices Pq, q ∈ Nν . Note that in the linear case, the solution x(t) of (10)
depends linearly on x0. In other words, (27) reduces to an expression
of the form

x(t) = Φ(t, q0)x0

where the (random) transition matrix of the system Φ(t, q0) depends
on the initial condition q0, as explicitly shown in the notation. Thus,
substituting the relation above in (32), one obtains

V (q0, x0) = xT
0

(∫ ∞

0

E[ΦT (s, q0)Φ(s, q0)]ds

)
x0 � xT

0 Pq0x0.

(33)
Let us prove that Pq = PT

q is positive definite for all q ∈ Nν . Consider
again (32) and note that

V (q0, x0) = E

[∫ ∞

0

‖x(s)‖2ds

]
≥ E

[∫ r1

0

‖x(s)‖2ds

]

= E

[∫ r1

0

‖eAcsx0‖2ds

]
≥ ‖x0‖2E

[∫ r1

0

e−2‖Ac‖sds

]

where we used the fact that x(t) = eActx0 before the first reset time
r1 of (10), and the lower bound for ‖x(t)‖ comes from [38, Exercise
3.17]. Fix now a constant (deterministic) value r̄ > 0 and observe that

V (q0, x0) ≥ ‖x0‖2E

[∫ r1

0

e−2‖Ac‖sds

]

= ‖x0‖2
(

E

[∫ r1

0

e−2‖Ac‖sds
∣∣∣r1 > r̄

]
P [r1 > r̄]

+ E

[∫ r1

0

e−2‖Ac‖sds
∣∣∣r1 ≤ r̄

]
P [r1 ≤ r̄]

)

≥ ‖x0‖2E

[∫ r1

0

e−2‖Ac‖sds
∣∣∣r1 > r̄

]
P [r1 > r̄]

≥ ‖x0‖2E

[∫ r̄

0

e−2‖Ac‖sds
∣∣∣r1 > r̄

]
P [r1 > r̄].

As r1 = ρ0 by definition, from (12) it follows that P [r1 > r̄] =
P [ρ0 > r̄] = e−λr̄ , which implies that

V (q0, x0) ≥ ‖x0‖2
∫ r̄

0

e−2‖Ac‖sdse−λr̄ = L‖x0‖2 (34)

withL � e−λr̄
∫ r̄

0
e−2‖Ac‖sds > 0. Comparing (34) and (33), it follows

that Pq � 0, ∀q ∈ Nν , as claimed.
Note now from (33), (19) and definitions (15) and (16) that

UV (q, x) = xTMqx, ∀(q, x) ∈ E (35)

where we replaced (q0, x0) by (q, x) and

Mq �
{

2PqAc + λ(Pq+1 − Pq), if q < ν,
2PνAc + λ(μ1A

T
d P1Ad + μ0P1 − Pν), if q = ν.

(36)

Applying [20, Th. 32.2] to (32), we also know that

UV (q, x) = −‖x‖2, ∀(q, x) ∈ E. (37)

Combining (35)–(37), one has

PqAc +AT
c Pq + λ(Pq+1 − Pq) = −In ≺ 0, ∀q < ν

PνAc +AT
c Pν + λ(μ1A

T
d P1Ad + μ0P1 − Pν) = −In ≺ 0.

From (19) and the Schur’s complement, the inequalities above are
equivalent to (20) with WL

q � P−1
q , ∀q ∈ Nν , and Y � KWL

ν , which
ends the proof.
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