
React to the Worst: Lightweight and
proactive protection of location privacy

Emilio Molina, Mirko Fiacchini, Sophie Cerf, and Bogdan Robu

Abstract— This work presents a novel optimal control
method for privacy protection of mobility data. Protection
is based on data obfuscation, consisting in sending to
the geolocated service a finely tuned fake location. The
objective is twofold, keeping privacy values at an accept-
able level and guaranteeing a reasonable utility loss, with a
lightweight algorithm able to run on mobile devices. The
proposed method consists of an offline modeling stage,
based on privacy worst-case anticipation, and a fast algo-
rithm executed online. In the offline stage, the algorithm
computes the average amount of allowed utility loss neces-
sary to maintain the privacy value of the following h steps
above a given lower bound. For this purpose, the worst
possible scenario over the future steps is computed and
compared with the privacy function of the solution obtained
by an MPC method. The online stage uses the information
computed offline to solve an optimization problem whose
decision variable is the location to transmit and whose
objective is to maintain the privacy value above a minimal
level, by avoiding large utility losses. The method is val-
idated on an instance of a database of real records and
compared with a state-of-the-art competitor.

Index Terms— Control applications, optimal control, op-
timization, predictive control for linear systems.

I. INTRODUCTION

M
ASSIVE flows of data are constantly generated by

connected devices. Among those, location data are

notably sensitive, as they can reveal the identity of anonymous

users [1], their homes and workplaces, favorite venues, and

even social relationships, sexual orientation, or religion [2].

Leveraging of the shared information is needed to preserve

privacy while ensuring the utility of geolocated services

(navigation, recommendations, etc.) [3]. Mechanisms realizing

privacy protection can be: (i) based on theoretical privacy

definitions [4], [5], hardly usable in practice due to limited

utility performance [6]; (ii) an optimal defense against an

attack [7], therefore with limited robustness to different attacks

and user profiles [8]. Most approaches are computed offline

and require the knowledge of the entire mobility dataset, hence

trust in a third-party [9]. The limitation of the literature relies

on the practicality of protection mechanisms, to offer scalable

and lightweight protection for individual users.
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This work tackles the privacy protection challenge with a

dynamic system’s perspective. Privacy control with a reac-

tive PI controller [10] allows for protection with negligible

computing overhead; however, with limited precision and

slow reaction. Model Predictive Control significantly improves

privacy performances [11], but requires the knowledge of

future locations and has a high computing cost. The objective

of this work is to achieve a lightweight protection able to

prevent the privacy levels to be lower than a reference value.

More precisely, the objective is to keep acceptable values of

privacy, higher than a given bound, by using worst-case pre-

dicted information to anticipate a violation of this constraint,

without solving online any nonconvex optimization problem.

To achieve this objective, the transmitted locations are used as

control variables.

This work presents a scheme divided in two phases. The first

phase, performed offline, learns the obfuscation needed on the

actual location, at each step, to prevent the violation of a given

bound on the privacy values, for keeping it at acceptable levels.

This phase uses historical data and the MPC method proposed

in [11]. The second phase is performed online: based on the

information obtained in the first phase, an optimal obfuscated

location is computed using the analytical solution of the

optimization problem. Calculations in this phase are fast and

lightweight, allowing its implementation on mobile devices.

Compared to previous work [11], this approach does not need

all-knowing prediction of future locations, as it is based on

worst-case anticipation. Additionally, it is lightweight, hence

feasible in practice, while the previous MPC solution requires

computationally demanding solvers. Moreover, the proposed

scheme permits to preserve a minimal privacy level with a

high probability, property not present in [11].

Notation: : We denote by lk = (x(k), y(k)) ∈ R
2 the

actual location of a user at time τk, and l̄k = (x(k), y(k)) ∈
R

2 the obfuscated location transmitted at time τk to a third-

party service. For a fixed finite duration T > 0 and a time 0 ≤
T ≤ τk we denote with N the number of locations transmitted

in [τk−T, τk], with {τk−N+1, τk−N+2, . . . , τk−1, τk} ⊂ [τk−
T, τk] the respective transmission times.

II. PROBLEM STATEMENT

With the aim of preventing any external agent to infer

sensitive locations to protect user privacy, we consider the

problem of obfuscation of user mobility data by transmitting

modified locations l̄k. The main objective is to maintain the

privacy level p(t) above a threshold p with a reduced amount



of utility loss q(t) (quality of service). Moreover, to obtain

an anticipative effect, the optimization objective considers the

privacy and the utility loss over a horizon of h future locations.

Some definitions concerning the privacy preservation prob-

lem are introduced. At time t, the privacy, as function in [9],

is:

p(k) =
1

N

k
∑

j=k+1−N

‖l̄j − c(k)‖2, (1)

where c(k) ∈ R
2 is the centroid of N locations l̄1, . . . , l̄N

transmitted in [t− T, t], computed as:

c(k) = (xc(k), yc(k)) =
1

N

k
∑

j=k+1−N

l̄j . (2)

where lN = l(t). The privacy function p(k) measures the

spatial spread of the data transmitted within the horizon N .

Low values of p(k) represent significant stops of a user and

then points of interest to be obfuscated. Note that this function

is differentiable and then well adapted to use in mathematical

optimization.1

The utility loss function at time τk is defined as the distance

between the actual location lk and the transmitted obfuscated

location l̄k, that is :

q(k) = ‖lk − l̄k‖. (3)

The bigger distance, the higher the service degradation.

Since the aim of this work is to guarantee a certain minimal

level of privacy with the minimal possible utility loss within a

future horizon, the problem is posed in terms of a dynamical

system whose state is the vector of locations transmitted within

the past interval, as in [11], recalled hereafter. Consider a

time interval, discretized in M points {τk}
M
k=1, over which

the future privacy evolution is evaluated.

The actual location at time τk is (x(k), y(k)) and, since at

any time transmission might or might not have occurred, a

binary variable n(k) is defined, taking value 1 if the location

at time τk is transmitted and 0 otherwise. The state z(k) =
(x(k),y(k),n(k)) ∈ R

N × R
N × {0, 1}N acts as a buffer,

storing the N transmission values in the time window [τk −
T, τk]. Vectors x and y are the location states, and the vector n

is the state of transmission occurrences. The transition system

is defined as:

z(k + 1) = A · z(k) + B · u(k) (4)

where

A =





A 0 0
0 A 0
0 0 A



 , B =





b 0 0
0 b 0
0 0 b





with u(k) = (x(k + 1), y(k + 1), n(k + 1)) and

1An alternative expression of the privacy is p(k) =
1

N

k∑

j=k+1−N

‖l̄j −

c(k)‖, not differentiable at the origin, though.

A =















0 1 0 . . . 0
0 0 1 . . . 0

...
. . .

...

0 0 0 . . . 1
0 0 0 . . . 0















∈ R
N×N , b =















0
0
...

0
1















∈ R
N

Note that as solution of this system we obtain:

xi(k) = x(k + i−N),

yi(k) = y(k + i−N),

ni(k) = n(k + i−N)

where i correspond to the ith coordinate of vectors x,y and

n.

Using this notation, the centroid can be expressed as

xc(z) =

N
∑

i=1

xi · ni

N
∑

i=1

ni

, yc(z) =

N
∑

i=1

yi · ni

N
∑

i=1

ni

(5)

and then the privacy function

p(k) =

N
∑

i=1

((xi(k)− xc(k))
2 + (yi(k)− yc(k))

2) · ni(k)

N
∑

i=1

ni(k)

.

(6)

Thus, we solve the following non-convex optimization prob-

lem:

min
D, (δxi,δyi)hi=0

D2

p(z̃(k + i)) ≥ p i ∈ {0, .., h},
z̃(k + i) = Az̃(k + i− 1) + Bū(k + i− 1), i ∈ {1, .., h},

ū(k + i− 1) =





x(k + i) + δxi

y(k + i) + δyi
n(k + i)



 , i ∈ {1, .., h},

δx2
i + δy2i = q2(k) ≤ D2, i ∈ {0, .., h},

z̃(k) = z̄h(k),
(7)

where x and y denote the actual locations and z̄ the transmit-

ted, obfuscated position. The variable D corresponds to the

utility loss upper bound which is minimized. Variables δxi

and δyi represent the spatial perturbation to be applied to the

actual positions. Finally, z̄ and ū are auxiliaries variables of

the optimization problem, related to z and u in (4). See [11]

for more details.

III. PRELIMINARIES

The aim of this work is to propose a lightweight method

to maintain the privacy values above a given bound in the

following h steps by using a minimal utility loss, without the

need of solving online any optimization problem.

We introduce two optimization problems that will be the

key ingredient of our method:

1) since the future values of the actual location are not

available at time k, the prediction should be performed



by considering the worst-case scenario, i.e. the trajectory

leading to the minimal values of the privacy function. The

worst case location is given by the solution of

min
l̄N∈R2

1

N

N
∑

k=1

∥

∥

∥

∥

∥

l̄k −

∑N
j=1 l̄j

N

∥

∥

∥

∥

∥

2

; (8)

2) since no optimization problem has to be solved online, an

explicit solution is required for the problem of computing

the obfuscated location that maximizes the privacy:

max
l̄N∈R2

1

N

N
∑

k=1

∥

∥

∥

∥

∥

l̄k −

∑N
j=1 l̄j

N

∥

∥

∥

∥

∥

2

(9)

s.t. ‖l̄N − lN‖2 ≤ D2

for a given the value of D.

Both issues, whose solutions are addressed hereafter, are the

basis of the proposed algorithm presented in the subsequent

section.

A. Privacy Worst-Case Scenario

In this section, an explicit expression for the solution of (8)

is provided.

Proposition 1: The only solution of problem (8) is:

l̄∗N =
1

N − 1

N−1
∑

k=1

l̄k. (10)

Proof: Note that the objective function is strictly convex

and smooth, so, it has a unique minimum, and we can obtain

it equaling its gradient to 0.

Writing l̄k = (x̄k, ȳk), then the function to minimize is

1

N

N
∑

k=1

(

x̄k −

∑N
j=1 x̄j

N

)2

+

(

ȳk −

∑N
j=1 x̄j

N

)2

whose derivative with respect to xN is:

∂p2

∂xN

=−
2

N2

N−1
∑

k=1

(

x̄k −

∑N
j=1 x̄j

N

)

+
2(N − 1)

N2

(

x̄N −

∑N
j=1 x̄j

N

)

=−
2

N2

N−1
∑

k=1

x̄k +
2(N − 1)

N2
x̄N . (11)

The function (11) is null when x̄N =
1

N − 1

N−1
∑

k=1

x̄k. We

prove analogously ȳN =
1

N − 1

N−1
∑

k=1

ȳk.

From Proposition 1, it can be inferred that the worst future

location in terms of privacy is the centroid of the previous N−
1 transmitted ones since it makes the privacy level decrease

the most, given by

l̄∗N =

N−1
∑

i=1

(xi,yi) · ni

N−1
∑

i=1

ni

, (12)

in terms of the transition system state.

B. Optimal Obfuscated location

Concerning item 2 above, since problem (9) is non-convex,

it may admit many local solutions. Moreover, since we are

maximizing a strictly convex function over a compact set,

then the maximum value is reached at the boundary of the

set, implying that its solutions satisfy ‖l̄N − lN‖2 = D2.

The following proposition characterizes the solutions to the

problem (9).

Proposition 2: Given l̄∗N as in (10) and denoting by S the

solution set of (9), the following claim holds:

i) If lN = l̄∗N , i.e, if the actual location at time t is equal to

the centroid of the previous N − 1 transmitted locations,

then the solution set of (9) is

S = {l̄N ∈ R
2 : ‖l̄N − lN‖2 = D2},

and the optimal privacy value is:

1

N

N−1
∑

k=1

‖l̄k − lN‖2 +D2N − 1

N2
(13)

ii) Otherwise, S has just two elements:

S =

{

lN +D
l̄∗N − lN
∥

∥l̄∗N − lN
∥

∥

, lN −D
l̄∗N − lN
∥

∥l̄∗N − lN
∥

∥

}

(14)

Proof: Without loss of generality we can assume lN = 0,

then the condition in i) corresponds to l̄∗N = 0. We will prove

that for ‖l̄N‖2 = D2 the objective function in (9) is constant.

1

N

N
∑

k=1

∥

∥

∥

∥

∥

l̄k −

∑N
j=1 l̄j

N

∥

∥

∥

∥

∥

2

=
1

N

N
∑

k=1

∥

∥

∥

∥

l̄k −
l̄N

N

∥

∥

∥

∥

2

=
1

N

N
∑

k=1

[

∥

∥l̄k
∥

∥

2
− 2

〈

l̄k,
l̄N

N

〉

+

∥

∥

∥

∥

l̄N

N

∥

∥

∥

∥

2
]

=
1

N

N−1
∑

k=1

∥

∥l̄k
∥

∥

2
+

‖l̄N‖2

N
+

‖l̄N‖2

N2
− 2

〈

N
∑

k=1

l̄k,
l̄N

N2

〉

=
1

N

N−1
∑

k=1

∥

∥l̄k
∥

∥

2
+

‖l̄N‖2

N
+

‖l̄N‖2

N2
− 2

〈

l̄N ,
l̄N

N2

〉

=
1

N

N−1
∑

k=1

∥

∥l̄k
∥

∥

2
+

D2

N
−

D2

N2

We obtain then expression (13). Moreover, as the solution of

problem (9) is reached when ‖l̄N‖2 = D2, therefore every

point in this circumference is an optimal solution.

Consider now the case l̄∗N 6= 0, and recall the notation

l̄N = (x̄N , ȳN ). Thanks to Karush-Kuhn-Tucker theorem,

there exists µ ≥ 0 such that

−
∂p2

∂xN

+ 2µx̄N = 0, (15)

−
∂p2

∂yN
+ 2µȳN = 0 (16)



Using the equation (15) and (11), it follows

2

N2

N−1
∑

k=1

x̄k −
2(N − 1)

N2
x̄N + 2µx̄N = 0

and then

x̄N =
−1

N2µ− (N − 1)

N−1
∑

k=1

x̄k. (17)

Similarly, we obtain

ȳN =
−1

N2µ− (N − 1)

N−1
∑

k=1

ȳk (18)

And from ‖l̄N‖2 = x2
N + y2N = D2 we get:

1

N2µ− (N − 1)
= ±

D
√

(

∑N−1
k=1 x̄k

)2

+
(

∑N−1
k=1 ȳk

)2

Replacing in equations (17) and (18), we obtain

±D

N−1
∑

k=1

l̄k

∥

∥

∥

∥

∥

N−1
∑

k=1

l̄k

∥

∥

∥

∥

∥

= ±D
l̄∗N
∥

∥l̄∗N
∥

∥

.

To recover (13) and (14), when lN 6= 0, just consider the

change of coordinates l̃k = l̄k − lN
The method proposed in the following section exploits

Propositions 1 and 2, that, based on explicit solutions, con-

siderably improve the online execution times, with no need of

optimization solvers.

IV. FAST MPC-BASED OBFUSCATION

The proposed method is composed of two stages, first an

offline data-based structure computation and then its online

implementation. The offline stage consists of learning the

value of the utility loss bound, D in (9), necessary to have

a privacy level higher than a reference value p in the next h

steps, being p ≥ 0 and h ∈ N two parameters of the method.

In addition, the value N used to compute the privacy values

will be fixed for both offline and online instances.

In the online implementation, the information learned in

the first stage is used to solve problem (9). In this stage the

objective is the same, i.e. to prevent the drop of the privacy

value below p but using faster algorithms. In the prediction,

the worst possible evolution, given by the solution of problem

(8), is considered, to react to the most adverse scenario for the

privacy. In the following, both stages are illustrated.

A. Privacy Gain Computation Stage

Given a privacy bound p and the horizon h, and an interval

{τk}
M
k=1 we train the model as follows. Based on the transition

system in (4), for an index k ∈ {1, . . . ,M − h}, and

the actual location (x(k), y(k)), the points (x1(k), y1(k)),
(x2(k), y2(k)), . . . , (xh(k), yh(k)) correspond to future loca-

tions leading to the minimal value of privacy. These locations

are iteratively computed from 1 to h using (12) and the

previous N − 1 actual locations. We denote by pwc(k) the

privacy computed using (6) and the h predicted locations along

with (x(k), y(k)) and its N −h− 1 previous actual locations.

Consider a set of d upper bounds of the utility loss

{D1, . . . , Dd} ⊆ [0, Dmax] where Dmax is the maximum

value allowed for the utility loss. The procedure in the offline

stage is as follows.

Given Dj with j ∈ {1, . . . , d}, the proposed method

iterates over k ∈ {1, . . . ,M − h}. When n(k) = 1 we

compute (x1(k), y1(k)) to (xh(k), yh(k)) and then pwc(k).
Then, we solve an MPC instance using as predicted loca-

tions (x1(k), y1(k)) to (xh(k), yh(k)) and Dj as the upper

bound for the utility loss (the particular MPC method used

corresponds to the one presented in section 3.2 in [11]). We

obtain (x̄(k), ȳ(k)), (x̄1(k), ȳ1(k)),. . . , (x̄h(k), ȳh(k)) obfus-

cated locations. We use those points along with N − h − 1
previous actual locations to compute the resulting privacy at

point (x̄h(k), ȳh(k)) that we call pMPC(k). We finish the

iteration saving the value ∆pDj (k) = pMPC(k)−pwc(k) ≥ 0
and updating the transition system using the actual location .

The value ∆pDj (k) is the gain in the privacy value at k+h

obtained if the MPC-based optimized obfuscation is used with

the worst case as predicted real trajectory. At the end of the

iteration process, we can then derive statistical information

as the maximal or average gain. In this work the average is

considered, but other statistical information could be used in

future work. Using the average gain computed for every Dj ,

we build a piece-wise linear function fh : [0, Dmax] → [0,∞)
using linear interpolation. The value fh(D) represents the

compared difference after h steps between the privacy obtained

in the worst case and the privacy got using an MPC method,

with a bound in the utility loss equal to D. We assume

fh(0) = 0. This function is the structure used to implement

the method in the online stage. The pseudocode of this stage

is in Algorithm 1.

B. Transmission Stage

Suppose we apply the online stage from a time t0 until a

time tF . Let tk > t0 be a time at which a new location has

to be transmitted. Recall that (x(k), y(k)) and (x̄(k), ȳ(k))
are the actual and the transmitted locations, respectively.

To determine the obfuscated location to be transmitted, the

method consists of these steps:

1) Compute the worst case locations in the following h

steps, i.e., (x1(k), y1(k)) to (xh(k), yh(k)). Along with

the transmitted locations (x̄(k − (N + 1 − h)), ȳ(k −
(N + 1− h)), . . . , (x̄(k − 1), ȳ(k − 1)) compute pwc(k)
and ∆p = pwc(k)− p.

2) If ∆p ≥ 0, then in the following h steps, the privacy

values will be over the lower bound, even in the worst

scenario, and thus the location obfuscation is not neces-

sary. The actual location is transmitted, i.e.

(x̄(k), ȳ(k)) = (x(k), y(k)).

3) If ∆p < 0, the function fh is used to compute D(k) =
f−1
h (−∆p) when −∆p ≤ fh(Dmax) and D(k) = Dmax

in the other case. This value represents the utility loss






