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A B S T R A C T

In this paper, a new method to estimate the states and the parameters of the anesthesia process is proposed
and compared to a Moving Horizon Estimator (MHE) approach. The proposed method makes use of multiple
extended Kalman filters (MEKF) where each EKF uses a different set of system parameters whose selection is
based on a predictive performance criterion. In view of usage in a closed loop, the comparison between the
two methods is based on a metric quantifying the capability of the estimators to predict the future behavior of
the system. The metric is also used as a performance measure for tuning the hyperparameters of the estimators.
While the results on simulated data are similar, the MEKF method outperforms MHE on clinical data. Tests
show that the MEKF method can better predict the future trajectory of the system during the whole induction,
on average for all the patients but also for the worst scenario.
1. Introduction

The field of anesthesia, an indispensable facet of modern medicine,
has undergone remarkable advancements over the years. Its primary
objective is to render patients insensible to pain during surgery or
other medical procedures, ensuring their comfort and well-being. Anes-
thesiologists, equipped with an array of powerful pharmacological
agents, have the task of inducing hypnosis (lack of consciousness),
analgesia (lack of pain), and muscle relaxation in addition to ensuring
the stability of hemodynamic and respiratory variables.

The control of drugs administered during these procedures is fun-
damental for the success of anesthesia. Achieving the delicate balance
between ensuring patient safety and maintaining precise control over
the depth of anesthesia is a paramount challenge. With the advent of
quick-acting intravenous drugs like propofol and remifentanil, and the
use of EEG-based hypnotic indicators such as the bispectral index (BIS),
researchers have been exploring the possibility of automating the drug
delivery process [1,2].

Since the beginning of the century, many closed-loop methods have
been proposed to control drug rates during general anesthesia. As
some of them have been tested in clinical trials, metastudies agree
on the benefits of such methods compared to manual control [3,4].
Nevertheless, some issues are still to be appropriately addressed before
such methods can be used in clinical routine [5]. In fact, the huge
uncertainties due to the intra- and inter-patient variability along with
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the high level of reliability required for this application are still relevant
challenges.

Control methods often rely on a model of the patient’s response
to the drugs, either for tuning the controller, e.g. PID methods [6],
or to be directly employed in the controller, e.g. MPC methods [7].
For intravenous drugs such as propofol and remifentanil, compartment
models are used to describe the pharmacokinetics (PK) of drugs and
surface models are used to describe the pharmacodynamics (PD) of the
drugs [8]. The PK-PD model is often used to predict the effect of the
drugs on the patient. Such a model takes the drug rates as inputs and
the BIS (bispectral index) value as output. The BIS is an indicator of
hypnosis which varies between 0 and 100 where 100 means a fully
awake state while 0 stands for a flat EEG. A desired BIS value during
general anesthesia is in the interval [40, 60]. The main issue affecting
the existing models is the uncertainties associated with the models,
in [9] the more recent models are associated with a median absolute
predictive error of 20%. To tackle this issue, models specific to clinical
situations have been proposed, in [10] to model drug trapping in long-
term anesthesia and in [11] to model the effect of blood loss on the
PK-PD model for instance. However, those models are still subject to
uncertainties and cannot capture the diversity of events happening
during surgical procedures.

Online parameter identification, on the other hand, could be a
solution to individualize the model for each patient. If this solution is
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often used in control applications, some requirements are specific to
its application to general anesthesia. In fact, the identification must be
fast enough to allow the controller to compute the optimal drug dose. It
should also be robust enough to ensure patient safety. Online parameter
identification has already been studied, in particular for estimating
the PD parameters, as they are the most sensitive parameters of the
system [12]. In [13,14] the parameters of the PD models are identified
periodically by solving a least square optimization problem for the
propofol to BIS system. In [15] the parameters of a reduced propofol–
remifentanil to BIS system are estimated. Recently, in [16], a Moving
Horizon Estimator was proposed to estimate both the states and the
PD parameters of propofol–remifentanil to BIS system. However, when
using this method in closed-loop, it appears that this approach does not
converge fast enough to ensure safe regulation of anesthesia during the
first minutes of the procedure.

The aim of this paper is to propose a method to estimate both
system states and parameters in order to be able to predict the future
trajectory of the system. As those estimators are intended to be used in
a predictive control context for regulating the output value, the main
objective is the identification of a model able to predict the future
evolution of the output, rather than the real value of the states, not
accessible in practice. To do so, an approach based on multiple Kalman
filters is proposed and compared to a Moving Horizon Estimator. The
different Kalman filters use different values of the PD parameters to
estimate the states of the system. Choosing one Kalman filter results in
practice in choosing a set of PD parameters and states. This discrete
approach to the estimation problem for the PD parameters has been
motivated by the poor observability of the system, which leads to slow
convergence of the parameter estimates in standard estimation meth-
ods. The switching between the Kalman filters is based on the method
analogous to the one proposed in [17]. The method is compared to the
Moving Horizon Estimator, first using data obtained by simulating the
uncertain model using known distributions of the parameters in both
the PK and the PD models, and then using real data from the VitalDB
dataset [18].

This paper is organized as follows. Section 2 recalls the standard PK-
PD model of anesthesia and discusses the observability of the extended
system. Section 3 explains the details of the proposed method and the
metrics used to evaluate the performance. The results on simulated
data are presented in Section 4 and those on clinical data in Section 5.
Finally, some conclusions are presented in Section 6.

2. Anesthesia model

Drug models involved in anesthesia dynamics are usually composed
of two parts: the Pharmacokinetic (PK) and the Pharmacodynamic (PD).
The PK model describes the dynamics of the drug concentrations in the
patient’s body, whereas the PD represents the link between the drug
concentrations and their physiological effects.

2.1. Compartments pharmacokinetic model

For pharmacokinetic (PK) models of both drugs, propofol and
remifentanil, a common approach is to use a four compartment model.
This model divides the body into three physical compartments: blood,
muscles, and fat; and a virtual effect site, as illustrated in Fig. 1.
The compartment model results in a linear system represented by the
following equations:
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where 𝑥1, 𝑥2, 𝑥3, and 𝑥4 represent respectively the drug concentrations
in blood, muscle, fat, and effect-site. The coefficients can be determined
2

from Eq. (2) below, except for 𝑘𝑒 which is not related to a physical
meaning:

𝑘10 =
𝐶𝑙1
𝑉1

, 𝑘12 =
𝐶𝑙2
𝑉1

, 𝑘13 =
𝐶𝑙3
𝑉1

, 𝑘21 =
𝐶𝑙2
𝑉2

, 𝑘31 =
𝐶𝑙3
𝑉3

(2)

with 𝑉𝑖 and 𝐶𝑙𝑖 (𝑖 = 1, 2, 3) respectively the volume and the clearance
rates of each compartment, which can be computed from a population-
based model as in [19,20]. The input 𝑢 is the drug infusion rate. Next,
the notation 𝑥𝑝 and 𝑥𝑟 for the states of the compartment model for
propofol and remifentanil is used. Also, 𝐴𝑝, 𝐵𝑝, 𝐴𝑟, and 𝐵𝑟 are the state
and input matrices of both drugs. Finally, both compartment models
can be described by the decoupled system:
(
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)

=
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𝐴𝑝 04×4
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+
(
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04×1 𝐵𝑟

)(

𝑢𝑝
𝑢𝑟

)

. (3)

.2. Pharmacodynamic model

The impact of the drug concentrations on the bispectral index (BIS)
s typically modeled by a Hill function. Due to the synergy between
ropofol and remifentanil, the effect can be modeled as a response
urface model [21]:

(𝑡) = 𝐵𝐼𝑆(𝑡) = 𝐸0

(

1 −
𝑈 (𝑡)𝛾

1 + 𝑈 (𝑡)𝛾

)

(4)

with 𝐸0 the initial BIS, 𝛾 the slope coefficient of the surface and 𝑈 (𝑡)
the interaction term defined by:

𝑈 (𝑡) =
𝑥𝑝4(𝑡)
𝐶50𝑝

+
𝑥𝑟4(𝑡)
𝐶50𝑟

. (5)

In these equations, 𝑥𝑝4 and 𝑥𝑟4 are the propofol and remifentanil
concentrations of the effect-site, 𝐶50𝑝 and 𝐶50𝑟 are the propofol and
remifentanil half-effect concentrations for BIS (i.e. the concentrations
to obtain half of the effect of the drugs).

Finally, the fully discretized model subject to noise can be summa-
rized by the following structure:
{

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)
𝑦(𝑘) = ℎ(𝑥(𝑘)) +𝑤(𝑘)

(6)

where ℎ is the non-linear output function from Eq. (4)–(5) and 𝑤 mod-
els both the measurement noise and the eventual output disturbances.

In the simulation, the parameters of [22,23] are used respectively
for propofol and remifentanil PK model. For the PD model, the param-
eters from [24] are implemented.

To have simulations as close to reality as possible, uncertainties
are added to the parameters. Particularly, each parameter uncertainty
follows a log-normal distribution (the parameters of this distribution
are specified in the previously cited papers), and a realization of the
distribution is used for each patient. In practice, for each simulated
patient, first a nominal model (𝐴𝑛𝑜𝑚, 𝐵𝑛𝑜𝑚, ℎ𝑛𝑜𝑚) is computed using
patient demography data and then uncertainties are introduced to
obtain the simulated model (𝐴𝑠𝑖𝑚, 𝐵𝑠𝑖𝑚, ℎ𝑠𝑖𝑚). This way of modeling the
nter-patient variability allows the estimator to have access only to the
ominal model and not to the simulated one.

.3. Extended observability of the system

The goal of this paper is to compare two methods for estimating
oth the states and the PD parameters. The parameter 𝐸0 can be
easured before the induction of anesthesia and 𝐸𝑚𝑎𝑥 is usually set

qual to 𝐸0. Thus, the remaining parameters are 𝐶50𝑝, 𝐶50𝑟, and 𝛾,
hence 𝜃 = (𝐶50𝑝, 𝐶50𝑟, 𝛾) is used to describe the vector of unknown
parameters. As the PD parameters are not accessible, an extended
system must be considered here. The extended state is given by �̄� =
(𝑥, 𝜃) with the dynamics:

�̄�(𝑘 + 1) = �̄��̄�(𝑘) + �̄�𝑢(𝑘) (7)

𝑦(𝑘) = ℎ̄(�̄�(𝑘)),
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Fig. 1. Schemes of the PK-PD compartments model.
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)

and �̄� =
(

𝐵
03×2

)

. ℎ̄ is the output function ℎ of

he system parameterized by the PD parameters 𝜃 inside the extended
tate �̄�.

In order to analyze the observability of the system, we consider the
ontinuous time version of the dynamics. Given a standard non-linear
ystem of dimension N:

̇ = 𝑓 (𝑥, 𝑢)

𝑦 = ℎ(𝑥),

he observability matrix [25] is defined by:

=
(

𝜕ℎ
𝜕𝑥

𝜕𝐿𝑓𝑢ℎ
𝜕𝑥

𝜕𝐿2
𝑓𝑢

ℎ

𝜕𝑥 ⋯
𝜕𝐿𝑁−1

𝑓𝑢
ℎ

𝜕𝑥

)

here 𝐿𝑓𝑢 is the Lie derivative along 𝑓𝑢 defined by:

𝐿𝑓𝑢ℎ = 𝜕ℎ
𝜕𝑥

𝑓 (𝑥, 𝑢)

Using a formal calculation software, one can conclude that the
observability matrix is full rank for the system (7) when the states are
non-null. This guarantees the structural observability of the system.
However, as this is a non-linear framework, the persistent excitation
of the system condition must be ensured to guarantee the practical
observability of the system. To verify this condition, the empirical
observability Gramian can be computed as in [26]. This matrix is
positive semi-definite if the persistent excitation of the system is veri-
fied. Moreover, the higher the eigenvalues are, the faster the estimator
will be able to converge. For system (7), the minimal eigenvalue of
the Gramian matrix for 10 closed-loop simulations (defined later in
Section 4.1) is computed. A mean value of approximately 2.1 × 10−7 ±
3.01 × 10−8 is obtained. For comparison, the same simulation with null
inputs leads to a value of zero, and input amplitude divided by 100
leads to a value of 1.4 × 10−7 ± 4.4 × 10−8, which shows that the system
is weakly-excited. This means that the excitation of the system is nearly
sufficient to have observability, but the convergence will be quite slow.

Note that this study on the observability assumes that �̄� and �̄� are
known. In practice, though, uncertainties are present in these matrices,
which leads to a harder problem. All these considerations imply that it
is almost impossible to accurately estimate the extended state vector.
However, as the end goal is to use an estimator in a closed-loop
process, it is sufficient that the identified model can reasonably predict
the future behavior of the system. This is why the metric used to
compare the estimators (described in Section 3.3) does not consider
3

the convergence of the states. K
3. Methods

In this section, different methods used to estimate the unknown
parameters of the PD models are detailed.

The Multiple Extended Kalman Filter (MEKF) method selects the
best vector in a grid over the space of the parameters. This discrete
choice allows a fast convergence but less precise at the end. The
Moving Horizon Estimation (MHE) method uses an extended state
formulation to estimate the vector of parameters along with the state
in a continuous space. Thus, the method could identify more precisely
the parameters but is more subject to noise and could be slower than
MEKF.

3.1. Multiple extended Kalman filter

In order to identify the PD parameters, the MEKF method uses a
set of extended Kalman filter (EKF), one for every realization of the
vector selected within a grid in the space of the parameters. The grid is
designed to reasonably represent the variability of the parameter vec-
tor. Then, the active vector is chosen using a model-matching criterion.
Fig. 2 illustrates the principle of the method.

EKF is a state-estimation method that relies on the linearization of
a non-linear model. If we consider the model given in Eq. (6) with
the non-linear function ℎ parameterized by 𝜃, the estimator using the
parameter vector 𝜃𝑖 is given by:

𝐻 𝑖(𝑘) =
𝜕ℎ(𝑥, 𝜃𝑖)

𝜕𝑥
|

|

|

|𝑥=�̂�𝑖(𝑘|𝑘−1)

𝑖(𝑘) = 𝑃 𝑖(𝑘|𝑘 − 1)𝐻 𝑖⊤(𝑘)
(

𝐻 𝑖(𝑘)𝑃 𝑖(𝑘|𝑘 − 1)𝐻 𝑖⊤(𝑘) + 𝑅2

)−1

̂ 𝑖(𝑘|𝑘) = �̂�𝑖(𝑘|𝑘 − 1) +𝐾 𝑖(𝑘)
(

𝑦(𝑘) − ℎ(�̂�𝑖(𝑘|𝑘 − 1), 𝜃𝑖)
)

𝑖(𝑘|𝑘) = 𝑃 𝑖(𝑘|𝑘 − 1) −𝐾 𝑖(𝑘)𝐻 𝑖(𝑘)𝑃 𝑖(𝑘|𝑘 − 1)

̂ 𝑖(𝑘 + 1|𝑘) = 𝐴�̂�𝑖(𝑘|𝑘) + 𝐵𝑢(𝑘)
𝑖(𝑘 + 1|𝑘) = 𝐴𝑃 𝑖(𝑘|𝑘)𝐴⊤ + 𝑅1

here, the notation 𝑋(𝑘1|𝑘2) represents the value of variable 𝑋 com-
uted at time step 𝑘1 based on the knowledge available at 𝑘2, and
𝑖 denotes the variable associated to the parameter vector 𝜃𝑖. The

stimated state vector is �̂�𝑖 and 𝑃 𝑖 is the covariance matrix. 𝐴 and 𝐵
re the matrices describing the discretized dynamic system, Eq. (6). 𝑅1
nd 𝑅2 are two constant matrices used to respectively characterize the
rocess uncertainties and the measurements noise. Notice that in the
alman filter the assumption that process uncertainty can be modeled
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Fig. 2. Block diagram of the Multiple Extended Kalman filter Estimator.
Source: Adapted from [17]
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y additive process noises is implicitly made. For the studied system,
hough, the process uncertainty comes from the matrix parameters
hich is different. However, as demonstrated later, this assumption is

ufficient to obtain an estimator able to estimate coherent states, and
o satisfactorily predict the future trajectory of the system.

This method aims at selecting the ‘best‘ observer at each time step,
y using the criterion proposed in [17]. In [17], this criterion has
een proposed to choose an estimator between different Luenberger
stimators using different gains. The novelty here is to use this same
riterion to select the best EKF among a set of EKF using different
ystem parameters.

To evaluate the criterion for each observer, the estimation error on
he output is 𝑒𝑖(𝑘) = 𝑦(𝑘)−ℎ(𝑥(𝑘|𝑘−1), 𝜃𝑖), computed at each time step.
he dynamics of the criterion for the 𝑖th observer is then given by:
𝑖(𝑘 + 1) = 𝜈𝜂𝑖(𝑘) + 𝜆1|𝑒

𝑖(𝑘)|2 + 𝜆2|𝐾
𝑖(𝑘)𝑒𝑖(𝑘)|2, (8)

where 𝜆1, 𝜆2, and 𝜈 are three positive hyper-parameters. The criterion
depends both on the output estimation error 𝑒𝑖(𝑘) and the correction
effort of the observer 𝐾𝑖(𝑘)𝑒𝑖(𝑘). The following equation can be deduced
from Eq. (8):

𝜂𝑖(𝑘) = 𝜈𝑘𝜂𝑖(0) +
𝑘
∑

𝑗=1
𝜈𝑘−𝑗−1(𝜆1|𝑒𝑖(𝑗)|

2 + 𝜆2|𝐾
𝑖(𝑗)𝑒𝑖(𝑗)|2). (9)

where 𝜂𝑖 can be seen as a cost, permitting to select the observer with
the minimal cost at each time step. The index of the currently selected
observer is denoted by 𝑖∗. The parameter 𝜈 is a forgetting factor; a small
value of 𝜈 giving more importance to the last error value but leading to
bigger fluctuation of the EKF choice. The ratio 𝜆1

𝜆2
should be of the same

agnitude as 𝐾 𝑖 in order to give similar importance to the estimation
rror and the correction effort.

To avoid too many switches between the observers, the parameter
∈ (0, 1] is introduced, and the switch takes place at time step 𝑘 only

f it exists 𝑖 ≠ 𝑖∗ such that 𝜂𝑖(𝑘) < 𝜖𝜂𝑖∗ (𝑘). A small value of 𝜖 will lead
o a more stable behavior of the filter, although, it will degrade the
erformance as the selected EKF will not always be the one with the
mallest criterion.

To initialize the criterion of each observer, 𝜂𝑖(0) is set to reflect the
rior probability of 𝜃𝑖 on the grid to be close to the real 𝜃.

.2. Moving horizon estimation

In order to include the estimation of 𝜃 along the state estimation, the
HE method uses an extended state formulation. The extended system

nd its dynamics have been described in Eq. (7) and an MHE method
as been already presented and tested in [16]. In this paper, a different
HE formulation has been employed to meet the standard formulation

iven by:

min�̄�(𝑘) 𝐽𝑁 (�̄�(𝑘), ̂̄𝐱(𝑘 − 1), 𝐲,𝐮)
(10)
4

s.t. 𝑥 ∈ X
where X is the set of admissible state values (only positive values for
ur system) and the cost function is given by:

𝑁 (�̄�(𝑘), ̂̄𝐱(𝑘 − 1), 𝐲,𝐮) =
𝑘
∑

𝑖=𝑘−𝑁𝑀𝐻𝐸

‖𝑦(𝑖) − ℎ̄(�̄�(𝑖))‖𝑅

+
𝑘
∑

𝑖=𝑘−𝑁𝑀𝐻𝐸+1
‖�̄�(𝑖) − (�̄��̄�(𝑖 − 1) + �̄�𝑢(𝑖 − 1))‖𝑄

+ ‖�̄�(𝑘 −𝑁𝑀𝐻𝐸 ) − ̂̄𝑥(𝑘 −𝑁𝑀𝐻𝐸 )‖𝑃

where �̄�(𝑘), ̂̄𝐱(𝑘 − 1), 𝐲,𝐮, respectively represent the state vector up to
ime 𝑘 and the previously estimated state up to time (𝑘 − 1) over the
stimation horizon, the output, and the input measurements over the
stimation horizon. 𝑄 and 𝑃 are two positive semi-definite matrices

used to penalize the deviation from the model dynamics and the previ-
ous state estimation, 𝑅 is a positive scalar used to penalize the output
error, and 𝑁𝑀𝐻𝐸 is the length of the horizon. These four constants are
used as hyper-parameters.

3.3. Metric for the comparison

At first, simulated data was used to compare the two methods. In
this setup, all simulation parameters and states are known and a simple
way to evaluate the performance of the estimators could have been
to compare the estimated states and parameters with the true ones.
However, this idea will lead to inaccurate results. In fact, since the
dynamics are different in the simulation and in the estimators due
to the introduction of uncertainties ((𝐴𝑠𝑖𝑚, 𝐵𝑠𝑖𝑚) for simulation and
(𝐴𝑛𝑜𝑚, 𝐵𝑛𝑜𝑚) for the observers, as discussed in Section 2.2), the identi-
fied parameters that better reproduce the observed behavior might not
be equal to those used for simulation. Nevertheless, as the comparison
between the estimations and the measured values is aimed at predicting
the BIS value, the capability of the estimators to predict in open-loop
the BIS value in the near future is considered as performance measure.

The idea, illustrated in Fig. 3, is to perform, at some instants, an
open-loop simulation of the system starting from the estimated states
and parameters and to compare the output of the simulation with the
actual output. The metric used to compare the different methods is the
mean square error (MSE) between the actual output and the simulated
one. The MSE is computed over the next two minutes after the end
of the estimation. This time length might be, for instance, related to
the MPC prediction horizon in a control framework. Thus, the metric
computed at time step 𝑘 is given by:

SE(𝑘) =
𝑘+𝑁𝑀𝑆𝐸
∑

𝑖=𝑘

(

𝑦(𝑖) − ℎ̄( ̂̄𝑥𝑘(𝑖))
)2

, (11)

where 𝑁𝑀𝑆𝐸 is the number of samples in two minutes, and ̂̄𝑥𝑘(𝑖) is
he extended state value computed in open-loop starting from the state
stimation ̂̄𝑥(𝑘) at time step 𝑘:
{ ̂̄𝑥𝑘(𝑖 + 1) = �̄�𝑛𝑜𝑚 ̂̄𝑥𝑘(𝑖) + �̄�𝑛𝑜𝑚𝑢(𝑖) (12)
̂̄𝑥𝑘(𝑘) = ̂̄𝑥(𝑘)
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Fig. 3. Illustration of the proposed metric.

Fig. 4. Results of the control algorithm for a single random patient.

4. Tests on simulated data

Consider first the tuning of the estimators and the analysis on
simulated data.

4.1. Data generation

To obtain a simulated dataset representative of clinical data, a PID
controller already proposed in [6] has been used. For this control
method, the ratio between propofol and remifentanil rates is fixed to 2.
Then a PID controller is used to control the rates using the BIS signal.
An example of the resulting control is represented in Fig. 4.

The final database includes induction (15 min) simulation files for
500 different patients, with a sampling time of two seconds. Patient
features have been randomly chosen using uniform distribution (age
∈ [18, 70], height ∈ [150, 190], weight ∈ [50, 100], and gender ∈ {0, 1}).
The parameters of the PK-PD models were randomly chosen according
to the distributions from [22–24]. Noise has been added to the output
as white noise (standard deviation of 3) filtered by a second-order low-
pass filter with a cut-off frequency of 0.03 Hz. Fig. 5 shows the results
of the simulations for the 500 patients. Simulations are done using
the Python Anesthesia Simulator [27], Python code for data generation
and estimators comparison is available on Github (https://github.com/
BobAubouin/MEKF_vs_MHE).
5

Fig. 5. BIS trajectory for all the simulations.

4.2. Tuning of the parameters

Tuning of the hyperparameters can be an arduous task for observers.
In order to obtain a fair comparison between the methods, a single
metric was used to tune the hyperparameters of the observers. This
metric is the integral of the mean square error, as computed in Eq. (11).
More precisely, the parameters were tuned to minimize the following
cost function:

𝑓 = 1
𝑁𝑝𝑎𝑡𝑖𝑒𝑛𝑡

𝑁𝑝𝑎𝑡𝑖𝑒𝑛𝑡
∑

𝑘=0

𝑁𝑠𝑖𝑚−𝑁𝑀𝑆𝐸
∑

𝑖=0
MSE𝑘(𝑖), (13)

where 𝑁𝑝𝑎𝑡𝑖𝑒𝑛𝑡 is the number of patients considered for the tuning (16
random patients from the simulated database), 𝑁𝑠𝑖𝑚 the duration of the
simulation (15 min), 𝑀𝑆𝐸𝑘(𝑖) the MSE computed at time step 𝑖 for the
patient 𝑘.

A tree-structured parzen estimator algorithm [28] was used to tune
the main hyper-parameters of the observers. For the MHE, four hyper-
parameters were investigated: the horizon 𝑁𝑀𝐻𝐸 , the penalty scalar 𝑅,
a scalar 𝑞 such that 𝑄 = 𝑞 × 𝑄𝑐𝑜𝑛𝑠𝑡 where 𝑄𝑐𝑜𝑛𝑠𝑡 is a given matrix and
the value of 𝛽 used in the penalty matrix 𝑃 as follows:

𝑃 =
(

𝑃1 0
0 𝛽𝑃2

)

, (14)

where 𝑃1 ∈ R8×8 and 𝑃2 ∈ R3×3 are the penalty matrices for the
state and the parameters respectively, tuned to obtain a similar rate
of convergence for each variable. The best results are obtained with
𝑅 = 2.36×10−4, 𝛽 = 4.35×10−4, and the estimation horizon 𝑁𝑀𝐻𝐸 = 26.

For the MEKF, the grid of the parameters has been fixed using
the known distribution. More precisely, the interval [0,1] is linearly
partitioned into 𝑛 equal parts, where 𝑛 is the number of different
parameter values in the grid (𝑛 = 5 for 𝐶50𝑝 and 𝑛 = 6 for 𝐶50𝑟 and
for 𝛾). Then, each value is evaluated using the percent point function
(inverse of the cumulative distribution function) as illustrated in Fig. 6.
The grid is the combination of all the possible values of each parameter,
leading to 180 points.

For the optimization, four hyper-parameters were investigated: the
penalty matrix 𝑅1 and a multiplicative coefficient for 𝑅2 matrix in the
Kalman filters, the value of 𝜆2 in the computation of the criterion in
Eq. (8) and the value of 𝜖 for the switching rule. Parameters 𝜈 and
𝜆1 were set respectively to 10−5 and 1, a small value of 𝜈 allowing
the criterion not to forget the past error, while the value of 𝜆1 is
fixed since only the ratio 𝜆1∕𝜆2 is relevant. The best results have been
obtained with 𝑅1 = 76.5, 𝜆2 = 3.33, 𝜖 = 0.76, and 𝑅2 = 0.058 ×
𝑑𝑖𝑎𝑔([0.1, 0.1, 0.05, 0.05, 1, 1, 10, 1]).

https://github.com/BobAubouin/MEKF_vs_MHE
https://github.com/BobAubouin/MEKF_vs_MHE
https://github.com/BobAubouin/MEKF_vs_MHE
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Fig. 6. Illustration of the parameters value choice for the grid construction.

Fig. 7. Comparison of the metrics at different time steps for the two methods on
simulated data. Mean value and standard deviation are given.

4.3. Results

The results over the 500 simulated patients are shown in Fig. 7. One
can observe that both methods have similar metric curves. The MEKF
seems to converge faster during the first 2 min, but then the MHE is
more precise. At the end of the simulation, the two methods converge
to the same mean value. Concerning the spread of the curves, after
2 min the standard deviation of MHE is smaller than the one of MEKF
(as for the mean value), finally converging to the same value. These
results might be explained by the proper structure of each method. The
MEKF employs a discrete grid of parameter values, while MHE uses
a continuous approximation of the parameters. Thus, the MEKF can
converge faster but less precisely than the MHE. While a smaller final
value for the MHE was expected, both estimators in reality converge to
the same value.

Considering the worst-case results, Fig. 8 shows the maximum of
the metrics for each method. The same performances are obtained as
for the mean metrics. It should be noted, however, that the difference
between the MHE and MEKF after 2 min is greater than for the mean
value.

Concerning the computation times, the MEKF method is faster than
the MHE, with a mean iteration time of 50 ms for the MEKF and 130 ms
for the MHE. Both are suitable for a real-time implementation, as the
sampling time is 2 s. However, the fact that the MEKF is faster is
6

Fig. 8. Maximum of the metrics at different time steps for the two methods on
simulated data.

interesting, since the computation of the Kalman filters could be done
in parallel to accelerate the process.

Overall, the results of both methods are fairly similar and do not
demonstrate a clear superiority of one method. Moreover, these results
are still dependent on the tuning of the controller and particularly on
the choice of the grid for the MEKF. One can imagine that a finer grid
could help the MEKF method converge to a better mean precision at
the price of a higher computational burden.

5. Tests on clinical data

Clinical data selection and results analysis are presented hereafter.

5.1. Data description

The methods were also tested using a clinical dataset, namely a
subset of the vitalDB dataset [18]. This recent repository is the first
open-source perioperative high-resolution database, it involves 6388
surgical patients and is composed of intraoperative biosignals and
clinical information. The data used in this paper is composed of 188
patients undergoing general anesthesia. Cases with only propofol and
remifentanil were selected, and a visual inspection of the data was done
to ensure the consistency of the signals. The data was resampled to
0.5 Hz and the first 15 min, from the first injection, was used for the
study. This is justified by the fact that this period corresponds to the
ones with lower disturbances, as the surgery has not started yet.

5.2. Results

Statistical results of the estimations with different methods are
presented in Fig. 9 and are obtained using the same parameters as
in the previous section for both estimators. The estimators could have
been tuned again to better fit the clinical data, however, the goal is to
test the robustness of the method on new data. Thus, both methods
perform worse on this set of data than on the simulated data. The
results are different from those obtained on simulated data (Fig. 7). On
the clinical data, the MEKF estimator performs better than the MHE
during all the simulations. Both the mean value and the associated
standard deviation are smaller. This demonstrates the robustness of the
MEKF on real-world data. This might be explained by the fact that the
discrete approach of the parameter estimation is less affected by the
noise and the disturbances present in the clinical data.

The maximum values for the metrics are available in Fig. 10 for both
methods. Here the MEKF is also better than the MHE during almost all



Journal of Process Control 136 (2024) 103179B. Aubouin-Pairault et al.

d

t
M
c
a
f
l

6

e
m
s
h
t
m
b
H
t
d
e

Fig. 9. Comparison of the metrics at different time steps for the two methods on
clinical data. Mean value and standard deviation are given.

Fig. 10. Maximum of the metrics at different time steps for the two methods on clinical
ata.

he simulations. Overall, compared to the results on simulated data, the
EKF method performs better than MHE when using the methods on

linical data. This could be explained by the fact that this method uses
grid of parameters, which is more robust than a continuous approach

or the estimation as in the MHE. This grid approach is less likely to
ead to incoherent and unstable parameter estimation.

. Conclusion

This paper proposes a new estimation method, based on multiple
xtended Kalman filters, and a comparison with the classical MHE two
ethods to estimate both the states and the PD parameters of a PK-PD

ystem during general anesthesia. For the comparison, both observers
ave been tuned using the same criteria, which evaluate the ability of
he estimators to predict the future output of the system. Using the same
etric, tests on simulated data show that both methods have similar

ehavior, converging to the same final value with different profiles.
owever, while using the same parameter for the tests on clinical data,

he MEKF method performs better than the MHE. This suggests that a
iscrete approach to parameter identification provides robustness to the
stimation.
7

Future work will focus on using a combination of both methods
to propose a closed-loop control of the anesthesia process. Moreover,
the approach could be applied to other applications, where a fast and
robust estimation of system parameters is required.
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