
Chapter 2

Exponential stability for hybrid systems

with nested saturations

2.1. Introduction

Hybrid systems are systems with both continuous-time and discrete-time dynam-

ics. Recently, the interest on hybrid systems has been growing, see [BRA 98, LIB 03,

GOE 04, SUN 05, PRI 07, GOE 09, GOE 12], due to the increasing application of

digital devices for the control of real systems, like chemical processes, communica-

tions and automotive systems, and also for their flexibility, which allows to overcome

some fundamental limitations of classical control [BEK 04, PRI 10, FIC 12b, FIC 12c,

FIC 12a, PRI 13].

We consider here the problem of characterizing both local and global exponential

stability for hybrid systems with nested saturations. The proposed method is based

on set-theory and invariance and provides computation-oriented conditions for deter-

mining estimations of the domain of attraction for this class of nonlinear hybrid sys-

tems. Set-theory and invariance in control have been widely employed in recent years

to characterize the stability properties of linear and nonlinear systems, see [BER 72,

GUT 86, GIL 91, BLA 94, KOL 98, BLA 99] and the monograph [BLA 08]. The

peculiarity of this approach is that convex analysis and optimization techniques can be

often employed to compute the Lyapunov functions and the estimations of the domain

of attraction. For instance, the issue of estimating the domain of attraction for satu-

rated systems, in continuous-time and discrete-time, has been dealt with considering

ellipsoids, see [Gom 01, HU 02a, HU 02b, ALA 05], and polytopes, in [ALA 06].
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A first contribution of this work is the geometrical characterization of saturated

functions. Parameterized set valued maps which are local extensions of the saturated

and nested saturated functions are given. Such results permit to characterize con-

tractivity of ellipsoids and to determine quadratic Lyapunov functions candidates by

means of convex constraints. Some results present in literature for continuous-time, as

[HU 02a, ALA 05], and discrete-time saturated systems, see [HU 02b], are improved

or recovered as particular cases of our approach, see [FIA 11a]. The results are applied

here also to obtain computationally suitable conditions for local and global asymp-

totic stability for hybrid systems with simple and nested saturations. Such conditions

result in convex optimization problems and provide also ellipsoidal estimations of the

domain of attraction, see also [FIA 12b]. On the other hand, as the resulting quadratic

function is allowed to increase during the jump, the standard conditions for exponen-

tial stability are not satisfied, see [TEE 11]. Nevertheless the solution of the proposed

convex problem is proved to ensure exponential stability for hybrid systems with sim-

ple and nested saturation. Moreover, a class of exponential Lyapunov functions related

to the quadratic one is characterized. Finally, the computation-oriented conditions for

local and global exponential stability are applied to numerical examples of saturated

hybrid systems.

Notation. Given n ∈N, denote Nn = {x ∈N : 1 ≤ x ≤ n}. The nonnegative real are

denoted R+ Given A ∈ R
n×m, Ai with i ∈ Nn denotes its i-th row, A( j) with j ∈ Nm its

j-th column and Ai, j the entry of the i-th row and j-th column of A. The identity matrix

of order n is denoted In, the null m×n matrix is 0m×n. Given the matrix P = PT > 0,

define the ellipsoid E (P) = {x ∈ R
n : xT Px ≤ 1}. Given D,E ⊆ R

n the Minkowski

set addition is defined as D+E = {z = x+ y ∈ R
n : x ∈ D, y ∈ E}. Given the set D

and α ≥ 0, denote the set αD = {αx : x ∈ D}, co(D) is its convex hull, S (D) are

the subsets of D, K (D) are the convex compact subsets of D and K 0(D) are the

convex compact subsets of D with 0 ∈ int (D). Given the finite set J ⊆Nm, we denote

J̄ = Nm\J with m ∈ N. The symbol ∗ stands for symmetric block.

2.2. Problem statement

Consider the closed-loop saturated hybrid system, represented by using the hybrid

framework introduced in [ZAC 05, NES 08], whose continuous-time dynamics is

given by
{

ẋ = ĝ(x) = Âx+ B̂ϕ(K̂x),
τ̇ = 1,

(2.1)

valid if (x,τ) ∈ G , where x ∈ R
n is the state, and the discrete-time dynamics is

{

x+ = g̃(x) = Ãx+ B̃ϕ(K̃x),
τ+ = 0,

(2.2)

if (x,τ)∈J . Regions G and J are referred to as the flow and jump sets, respectively.

Function ϕ : Ra → R
a denotes the saturation, i.e. ϕi(y) = sgn(yi)min{|yi|, 1}, for
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every i∈Na, with y∈R
a. The saturation bounds can be considered equal to 1, without

loss of generality. Sets F and J are assumed to be defined as

G = {(x,τ) ∈ R
n+1 : xT Mx ≥ 0, or τ < ρ},

J = {(x,τ) ∈ R
n+1 : xT Mx ≤ 0, and τ ≥ ρ},

(2.3)

where M = MT ∈ R
n×n and ρ ≥ 0, as in [GRO 93]. Different kinds of flow and

jump regions can be defined by (2.3), like the reset conditions used in reset control

as studied in [ZAC 05, NES 08, TAR 11a]. Furthermore, choosing M = MT > 0 (or

M = MT < 0), the formulation (2.3) permits to restrict the dynamics to a continuous-

time (resp. discrete-time) system, see also [FIA 11a].

Remark 1 The variable τ represents the time passed from the last jump. Its intro-

duction, together with the parameter ρ ≥ 0, permits to define a lower bound on the

time interval between two successive jumps. The presence of such a bound, which

will be referred to as “temporal regularization”, can be used to prevent having an

infinite number of jumps in a finite time interval, i.e. Zeno solutions [GOE 04], which

should be avoided in real applications. Notice that conditions on the state x ensuring

the system flowing for a certain amount of time, used in some applications of hybrid

systems theory, consist in determining implicitly a positive value of ρ . Hereafter the

knowledge of the value of ρ will be used to allow the potential Lyapunov function to

increase during a jump. This leads to more general results than those obtained impos-

ing its decreasing during both the flow and the jumps. This case can be recovered by

posing ρ = 0.

The presence of nested saturations are also considered to obtain a more general

model (see [TAR 06]). In fact, the presence of a further saturation between the plant

output and the controller input is a realistic assumption, considering that bounds on

the measurements are often present. In this case, the continuous-time dynamics of the

hybrid system becomes

{

ẋ = ĝ(x) = Âx+ B̂ϕ(K̂x+ Êϕ(F̂x)),
τ̇ = 1,

(2.4)

and, analogously, the discrete-time dynamics is

{

x+ = g̃(x) = Ãx+ B̃ϕ(K̃x+ Ẽϕ(F̃x))
τ+ = 0.

(2.5)

The objectives can be summarized as follows.
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Problem 1 Given the flow and jump sets, G and J , determine an ellipsoidal region

Ω = E (P), with P = PT > 0, as large as possible, such that the origin is locally expo-

nentially stable for the saturated hybrid system (2.1)-(2.3), or for the hybrid system

with nested saturations (2.3)-(2.5), within Ω.

In order to develop generic conditions, set-theory will be exploited to deal with

hybrid systems. Some of the employed properties related to set-theory and invariance

are presented in Section 2.3.

2.2.1. Saturated reset systems

A particularly interesting subclass of saturated hybrid systems is given by reset

systems. Consider the following plant

{

ẋp = Apxp +Bpup,
yp = Cpxp,

(2.6)

where xp ∈ R
np is the state, yp ∈ R

p is the output and up ∈ R
mc is the input of the

plant.

Remark 2 The plant is assumed to have pure continuous-time dynamics, as in the

classical reset systems framework. Nothing prevents to consider the more general

case of a plant with hybrid nature, provided that the flow and jump sets of the overall

closed-loop reset system can be expressed as in (2.3).

Associated to system (2.6), we consider a hybrid controller whose state is xc ∈R
nc .

The controller is described by continuous-time dynamics







ẋc = Acxc +Bcuc,
yc = Ccxc +Dcuc,
τ̇ = 1,

(2.7)

if (xp,xc,τ) ∈ F , and
{

x+c = Adxc +Bdud ,
τ+ = 0,

(2.8)

if (xp,xc,τ) ∈ J , where xc ∈ R
nc is the state of the controller at time t, xc the state

after a jump and yc ∈ R
mc is the controller output. Variables uc ∈ R

p and ud ∈ R
md

are the inputs of the continuous-time and the discrete-time dynamics of the controller,

respectively. The signal ud is function of the controller state.
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We first suppose that magnitude limitations on the plant input and on the discrete-

time dynamics input are present. Such assumptions are modeled by introducing satu-

rations on the inputs, that is

up = ϕ(yc), ud = ϕ(xc). (2.9)

The controller input is the plant output, that is uc = yp. The continuous-time con-

troller (2.7) is supposed to stabilize system (2.6), in absence of the saturation of the

plant input, i.e. with up = yc.

Remark 3 Classical reset systems, whose discrete-time dynamics consists essentially

in setting the state of the controller to the value of 0, are recovered by posing Ad =
0nc×nc , Bd = 0nc×md

. Our will is to consider a more general problem, whose solution

could apply to a wider class of systems, as in [PRI 10], and then also to reset systems

as a particular case.

Considering the state vector defined as x = (xp,xc) ∈ R
n, where n = np + nc, the

overall closed-loop saturated hybrid system is then given by (2.1)-(2.2) with

Â =

[

Ap 0np×nc

BcCp Ac

]

, B̂ =

[

Bp

0nc×mc

]

, K̂ =
[

DcCp Cc

]

,

Ã =

[

Inp 0np×nc

0nc×np Ad

]

, B̃ =

[

0np×nc

Bd

]

, K̃ =
[

0nc×np Inc

]

.

If also saturations on the plant outputs are present, i.e.

uc = ϕ(yp),

then nested saturation are present and the system is given as in (2.4)-(2.5). Consider,

in fact, the continuous-time dynamics of the plant and the controller

{

ẋp = Apxp +Bpϕ(yc),
yp = Cpxp,

{

ẋc = Acxc +Bcϕ(yp),
yc = Ccxc +Dcϕ(yp).

where the dynamics of τ has been neglected. Notice that the nested saturation appears

when the expression of yc is used in the plant dynamics and then we have that the

overall continuous-time system is

{

ẋp = Apxp +Bpϕ
(

Ccxc +Dcϕ(Cpxp)
)

,
ẋc = Acxc +Bcϕ(Cpxp).
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Hence, posing x = (xp, xc), we have that the continuous-time dynamics of the system

has the form (2.4) with:

Â =

[

Ap 0

0 Ac

]

, B̂ =

[

Bp 0

0 Bc

]

,

K̂ =

[

0 Cc

Cp 0

]

, Ê =

[

Dc

0

]

, F̂ =
[

Cp 0
]

.

Analogous definitions of matrices Ã, B̃, K̃, Ẽ and F̃ lead to the representation of the

discrete-time dynamics with nested saturations (2.5). Considering for instance a sat-

urated reset as discrete-dynamics, as for the examples analyzed in Section 2.6, that

is
{

x+p = xp,
x+c = xc +ϕ(−xc),

we have that it is equivalent to equation (2.5) (or more simply equation (2.2) since no

nested saturation affects the discrete-time dynamics) with

Ã =

[

1 0

0 1

]

, B̃ =

[

0

1

]

,

K̃ =
[

0 −1
]

, Ẽ =
[

0
]

, F̃ =
[

0 0
]

.

Clearly, the representation (2.3)-(2.5) encloses also the case of simple saturation (2.1)-

(2.3).

For reset systems, the output of the plant and the output of the controller are

assumed to be one-dimensional, i.e. p = mc = 1, and the jump depends on the sign of

their product, see [ZAC 05, LOQ 07]. Then, in this case, G and J are given by (2.3)

with M =CT TC where

T =

[

0 −1

−1 0

]

∈ R
2×2, C =

[

Cp 01×nc

DcCp Cc

]

∈ R
2×n.

2.3. Set theory and invariance for nonlinear systems: brief overview

The concept of invariance has become fundamental for the analysis and design of

control systems. The importance of invariant sets in control is due to stability and

robustness implicit properties of these regions of the state space. An invariant set for a

given dynamic system is a region of the state space such that the trajectory generated

by the system remains confined in the set if the initial condition lies within it.

A notable pioneering contribution on invariance for dynamic systems is [BER 72].

Many well established results regarding invariance and related topics have been pro-

vided in literature: for instance on the maximal invariant set contained in a set, see

[GUT 86, GIL 91, BLA 94, KOL 98, BLA 99]; and the minimal invariant set, see
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[RAK 05, ONG 06]. A first important survey paper on invariance is [BLA 99], fol-

lowed by the monograph [BLA 08], which gathers many of the results presented up

to the actuality on invariance and set-theory in control. Invariance is also widely

employed to ensure convergence of model predictive control, see [MAY 00].

Although there are many results which can be used for characterizing and com-

puting invariant sets for linear systems, in the case of nonlinear systems few general

results are available. Methods for obtaining ellipsoidal and parallelotopic invariant

sets for nonlinear model predictive control, are proposed in [MAG 01, CAN 03], using

LDI (Linear Difference Inclusions). The computation of ellipsoidal invariant sets for

linear systems with particular static nonlinear feedbacks, such as piecewise affine and

saturation, has been addressed in the works [Gom 99, HU 04, TAR 11b]. Methods

to obtain polytopic invariant sets are proposed for saturated systems, [ALA 06] and

for Lur’e systems, [ALA 09]. The problem of computing polytopic invariant sets for

general nonlinear systems is addressed in [BRA 05], using interval arithmetic, and in

[FIA 10b], using DC functions (i.e. expressible as the difference of convex functions).

Nevertheless, there is still a clear gap between the importance of invariance in control

and systems analysis and the availability of practical invariant sets computation meth-

ods. More recently, an approach based on convexity and difference inclusions has been

proposed for characterizing invariance for nonlinear systems, see [FIA 10a, FIA 12a].

The underlining ideas of such an approach, developed mainly for discrete-time nonlin-

ear systems and recalled here, are employed in the following sections to characterize

invariance, contractivity and exponential stability for hybrid systems with nested sat-

urations.

2.3.1. Invariance for Convex Difference Inclusions

A modeling framework for representing and approximating nonlinear and uncer-

tain discrete-time systems has been introduced in [FIA 10a, FIA 12a]. The systems

taken into account are named Convex Difference Inclusions (CDI) systems and are

characterized by a particular class of set valued maps as dynamic functions. CDI sys-

tems are tightly related to differential and difference inclusions. A deep and exhaustive

analysis of such models, and of their properties, is provided in the works of Aubin and

co-authors, see [AUB 84, AUB 90, AUB 91]. The set valued map determining a CDI

system is bounded by a set of convex functions and such that, given a point in the state

space, its image through the map is a convex and compact set. Let the system be

x+ ∈ G (x), (2.10)

where x ∈ R
n is the state, x+ is the successor and G (·) is a set valued map on R

n, that

is a function which relates a set to every point x ∈ R
n. In particular we consider set

valued dynamic functions such that G (x) ∈ K (Rn), for any x ∈ R
n, and the graph of

G (·) is determined by a set of functions convex with respect to x, as stated below.
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Assumption 1 Given the set valued map G : Rn → K (Rn) determining the system

dynamics (2.10) and considering the function F̌ : Rn ×R
n → R defined as

F̌(x,η) = sup
z∈G (x)

ηT z, (2.11)

assume that F̌(·,η) is convex on R
n and F̌(0,η) = 0, for all η ∈ R

n.

We provide here the definition of support function, a useful tool when dealing with

convex closed sets.

Definition 1 Given D ⊆ R
n, the support function of D at η ∈ R

n is

φD(η) = sup
x∈D

ηT x.

Among the properties of support function, see [ROC 70, SCH 93], we have that set

inclusion conditions can be given in terms of linear inequalities involving the support

functions.

Property 1 Given a closed, convex set D⊆R
n, then x∈D if and only if ηT x≤ φD(η),

for all η ∈ R
n. Given also C ⊆ R

n, then C ⊆ D if and only if φC(η) ≤ φD(η), for all

η ∈ R
n.

Notice that, under Assumption 1 and for any x ∈ R
n, the value F̌(x,η) is the sup-

port function at η ∈ R
n of the set G (x) and is convex with respect to x. Furthermore,

by convexity and compactness of G (x) for every x ∈ R
n, we have that

G (x) = {z ∈ R
n : ηT z ≤ F̌(x,η), ∀η ∈ R

n}.

An alternative definition of CDI systems could be given in terms of the Minkowski

set addition.

Proposition 1 The set valued map G (·) determining the system dynamics (2.10) sat-

isfies Assumption 1 if and only if G : Rn → K (Rn) is such that

G (αx1 +(1−α)x2)⊆ αG (x1)+(1−α)G (x2),

for every α ∈ [0, 1] and every x1,x2 ∈ R
n, and G (0) = {0}.



Exponential stability for hybrid systems 21

A set valued map G : Rn → K (Rn) is a local extension of function f : Rn → R
n

on D ⊆ R
n if

f (x) ∈ G (x), ∀x ∈ D.

From properties of the support functions, if G , extension of f on D is such that G (x)
is closed and convex for x ∈ D, then

ηT f (x)≤ F̌(x,η), ∀η ∈ R
n,

for all x ∈ D.

Corollary 1 Let Assumption 1 hold for a given map G . Function F̌(·, ·) as in (2.11),

are convex with respect to x and such that

ηT f (x)≤ F̌(x,η),

for every x ∈ D and η ∈ R
n and every f such that G is an extension on D ⊆ R

n.

The fact that Assumption 1 holds for the dynamic function of a system allows us

to exploit features inherited by properties of convex functions and convex sets. Some

useful properties are listed below.

– Set relations, such as set inclusion, involving the image of a state x through

the set valued map, i.e., G (x), for any x ∈ R
n, can often be posed as a set of

convex constraints. For systems as in (2.10) and under Assumption 1, condi-

tion of inclusion of the successor state can be imposed through a set of con-

vex constraints, which can yield to convex problems, efficiently solvable, see

[ROC 70, BEN 01, BOY 04].

– Convexity related properties of the dynamic set valued function, in particular

convexity of functions F̌(·,η), for all η ∈ R
n, permits to infer features shared

by all the elements of a set by means of conditions involving only a subset of

elements, possibly finite.

– Assuming that the effect of the parametric uncertainty or the nonlinearity are

bounded by convex functions is not very restrictive. The family of dynamic

systems under analysis encloses a large class of functions. Many methods to

approximate nonlinear systems lead to systems with a structure that can be

reduced to CDI systems, as defined in (2.10). This means that, given a generic

system defined by a real valued function f (·), it is often possible to determine

a CDI system with function G (·) for which Assumption 1 holds and G (·) is

an extension of f (·). Therefore, any invariant set for the approximating CDI

system is also an invariant set for the nonlinear one.
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– In the case where the system presents a form of CDI systems as in (2.10), with

Assumption 1, the results presented are quite strong: the maximal invariant set,

for instance, can be well approximated. Recall that computation of the maximal

(robust) invariant set can be an hard task also for linear systems, for nonlinear

systems few general results have been provided in literature.

In [FIA 10a, FIA 12a], it is proved that, many desirable properties, typical of linear

systems, are valid also in the context of CDI ones. The main results are briefly recalled

hereafter.

First, it can be proved that, as for linear systems, necessary and sufficient condi-

tions for invariance and λ -contractivity of convex sets exists, for CDI systems. In par-

ticular, such conditions are given by convex constraints. Moreover, they are boundary

conditions, that is, they involve only the elements on the boundary, just a finite num-

ber of points (the vertices) in case of polytopic sets. Recall that such very desirable

properties do not hold for generic nonlinear systems.

Theorem 1 ([FIA 12a]) Let Assumption 1 hold for the set-valued map G (·) deter-

mining the system dynamics (2.10) with state constraint set X convex, closed and

0 ∈ int (X). Given λ ∈ [0,1], a set Ω ∈ K 0(X) is a contractive set for system (2.10)

if and only if

F̌(x,η)≤ λφΩ(η), ∀x ∈ ∂Ω, ∀η ∈ R
n. (2.12)

The necessary and sufficient condition is given by a set of convex constraints,

involving only the boundary of the set Ω. Moreover, as for the linear systems, every

contractive set induces a local Lyapunov function, since the contractivity of Ω implies

the contractivity of αΩ for all α ∈ [0,1].

Proposition 2 ([FIA 12a]) Let Assumption 1 hold for the set-valued map G (·) deter-

mining the system dynamics (2.10) with state constraint set X convex, closed and

0 ∈ int(X). Every contractive set Ω ∈ K 0(X) with contracting factor λ ∈ [0,1)
induces local Lyapunov function in S (Ω) for the system (2.10).

Hence, the convexity conditions given by Assumption 1 permits one to extend

many properties valid in linear context to the nonlinear one. It is also important to

stress that many nonlinear systems admit CDI representations or can be approximated

by CDI systems, see [FIA 10a, FIA 12a].

– Every system x+ = f (x) with f : Rn → R
n twice differentiable in D = {x ∈

R
n : ‖x− x0‖2 < r}, with r > 0, admits a CDI approximation determined by an

extension of f . Any invariant, contractive set and local Lyapunov function in D

for the CDI system, is so also for the nonlinear one.
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– A popular way of approximating nonlinear and uncertain systems is given by

Linear Difference Inclusion (LDI) systems, see [BOY 04, GUR 95]. The LDI

systems form a subclass of the CDI ones, in particular of those whose convex

bounding functions are piecewise linear. Hence, using an LDI system to approx-

imate a nonlinear one is a way of generating a CDI extension. Nonetheless CDI

provides a more general modeling framework, as not every CDI system admits

an LDI representation.

– Generalized saturated systems, introduced in [TAR 11b], are a family of systems

including many common static nonlinearities and are easily extendible by CDI

systems. A linear system in closed-loop with a (possibly time-varying) static

function ϕ(y,k) such that

−Γ(−y)≤ ϕ(y,k)≤ Γ(y), ∀y ∈ R
p, ∀k ∈ N, (2.13)

where Γ(y) = max{µ(y+σ), −y0} and k ∈ N is a generalized saturated sys-

tem. Such functions permit to represent common static nonlinear functions as

saturation plus dead-zone, hysteresis, saturation etc.

This means that the results valid for CDI systems can be used to obtain invariant

sets and contractive sets for a wide class of nonlinear systems. As a matter of fact,

the analysis of a CDI system can be considered as the analysis of families of systems,

since any nonlinear system bounded by a CDI one shares important invariance related

properties with the CDI system.

2.4. Quadratic stability for saturated hybrid systems

In this section it is shown, first, that the image of the state x ∈ R
n through a sat-

urated function g(x) is contained within a set explicitly obtainable. The resulting set

valued map is proved to satisfy the properties required for determining CDI systems,

see Assumption 1 and Proposition 1. This result permits one to geometrically charac-

terize quadratic stability for saturated hybrid systems, as well as for continuous-time

and discrete-time systems.

2.4.1. Set valued extensions of saturated functions

The following theorem is enunciated for nonlinear functions of the type g(x) =
Ax+Bϕ(Kx), with A∈R

n×n, B∈R
n×m and K ∈R

m×n. The theorem can be employed

to prove results for both the continuous-time and the discrete-time dynamics, and then

applied to hybrid systems.

Theorem 2 Given a function g(x) = Ax+Bϕ(Kx), the ellipsoid Ω = E (P), with P ∈
R

n×n and P = PT > 0, and H(i,J) ∈ R
1×n such that |H(i,J)x| ≤ 1 for all x ∈ Ω, for
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every J ⊆ Nm and every i ∈ J, then we have g(x) ∈ G(x) for all x ∈ Ω, where

G(x) = co({N(J)x ∈ R
n : J ⊆ Nm}),

and

N(J) = A+∑
i∈J̄

B(i)Ki +∑
i∈J

B(i)H(i,J). (2.14)

Proof: See [FIA 12b] for the proof. �

The meaning of Theorem 2 is that, for all x ∈ Ω, the image g(x) is contained in the

polytope G(x), whose vertices are known.

Remark 4 Among the set of matrices N(J), with J ⊆ Nm, there are some which can

be neglected. In fact, any of them represent a combination of saturations on the plant

inputs. As proved in [FIA 11b], not every combination is admissible but only the

subsets J ∈ N (Ω) where

N (Ω) = {J ⊆ Nm : ∃x ∈ Ω, η ∈ R
n s.t. i ∈ J ⇔ ηT B(i)Kix <−|ηT B(i)|}∪{ /0},

are combination of saturated inputs that occur in at least a x ∈ Ω. Then, the compu-

tational complexity can be reduced by removing the unnecessary J from the analysis.

In [FIA 11b] it is proved also that such complexity reduction might be remarkable

in some case. Analogous considerations could be done concerning the combinations

of saturated plant inputs and outputs and then also in the case of nested saturated

systems the computational complexity could be reduced.

We consider now the functions that present nested saturations, that is g(x) = Ax+
Bϕ(Kx+Eϕ(Fx)), with E ∈ R

m×p and F ∈ R
p×n. The analysis applies then to both

discrete-time and continuous-time linear systems with nested saturations, as well as to

hybrid ones.

Theorem 3 Given a function g(x) = Ax+Bϕ(Kx+Eϕ(Fx)), consider the ellipsoid

Ω= E (P), with P∈R
n×n and P = PT > 0, H( j,J)∈R

1×n such that |H( j,J)x| ≤ 1 for

every J ⊆Nm and j ∈ J, L(i, I(k)) ∈R
1×n such that |L(i, I(k))x| ≤ 1 for every k ∈Nm,

every I(k) ⊆ Np and i ∈ I(k), for all x ∈ Ω. Then we have g(x) ∈ S(x) for all x ∈ Ω,

where

S(x) = co({Q(J,I)x ∈ R
n : J ⊆ Nm, I(k)⊆ Np, k ∈ Nm}),

where I = {I(1), I(2), . . . , I(m)} and

Q(J,I) = A+ ∑
j∈J̄

B( j)

(

K j + ∑
i∈Ī( j)

E j,iFi + ∑
i∈I( j)

E j,iL(i, I( j))

)

+ ∑
j∈J

B( j)H( j,J).
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Proof: See [FIA 12b] for the proof. �

Notice that the image bounding condition for nested saturations involves the exis-

tence of a set I(k) for every k ∈ Nm, besides of J. There are 2m possible sets J (each

one representing a subset of Nm) and 2p possibilities of every I(k), with k ∈Nm. Hence

there are 2(p+1)m different values of Q(J,I), although some of them lead to redundant

or non-admissible selections and could be neglected, see Remark 4.

Remark 5 The set valued maps G(·) and S(·), defined in Theorems 2 and 3, are local

extensions on the ellipsoid Ω of the saturated and nested saturated functions, respec-

tively. Moreover, they satisfy the convexity related properties characterizing a CDI,

posed in Assumption 1. Consider, in fact, G(·) and the function g(x) = Ax+Bϕ(Kx)
(analogous considerations hold for S(·) and the function with nested saturations). The

map G : Rn → K (Rn) is an extension of the saturated function g over Ω. Further-

more, for every x ∈ Ω, we have that

F̌(x,η) = sup
z∈G(x)

ηT z = max
J⊆Nm

ηT N(J)x

with η ∈ R
n, is convex in x, being the pointwise maximum of a family of convex func-

tions, see [BOY 04]. Moreover, F̌(0,η) = {0} for all η ∈ R
n.

As illustrated in [FIA 11a], applying Theorem 2 to continuous-time and discrete-

time systems permits one to recover or extend results form literature, for instance those

presented in [HU 02a, HU 02b, ALA 05]. The results can be also extended to the case

of presence of nested saturation, as shown below.

2.4.2. Continuous-time quadratic stability

The application of the result provided in Theorem 2 to the case of continuous-time

systems leads to a condition for local quadratic stability of the saturated system. The

obtained result recovers the one provided in [ALA 05], which, in turn, generalizes the

condition presented in [HU 02a]. The proof of the following proposition can be found

in [FIA 11a].

Proposition 3 Given the continuous-time dynamics ĝ(x) = Âx + B̂ϕ(K̂x) in (2.1),

consider the ellipsoid Ω = E (P), with P ∈R
n×n and P = PT > 0, the matrix Q ∈R

n×n

with Q = QT > 0 and Ĥ(i, I) ∈ R
1×n such that |Ĥ(i, I)x| ≤ 1 for all x ∈ Ω, for every

I ⊆ Nmc and every i ∈ I. If

N̂(I)T P+PN̂(I)≤−Q, (2.15)
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for all I ⊆ Nmc , with

N̂(I) = Â+∑
i∈Ī

B̂(i)K̂i +∑
i∈I

B̂(i)Ĥ(i, I), (2.16)

then Ω is an ellipsoidal estimation of the domain of attraction and V (x) = xT Px is a

local Lyapunov function in Ω for system (2.1).

The conditions for global quadratic stability, are presented here for the continuous-

time system (2.1), see [FIA 12b].

Corollary 2 Given the continuous-time dynamics ĝ(x) = Âx+ B̂ϕ(K̂x) in (2.1), con-

sider P, Q ∈ R
n×n with P = PT > 0 and Q = QT > 0. If (2.15) holds with

N̂(I) = Â+∑
i∈Ī

B̂(i)K̂i, (2.17)

for every I ⊆ Nmc , then V (x) = xT Px is a global Lyapunov function for system (2.1).

Proof: The result follows from Proposition 3 with Ĥ(i, I) = 01×n, for all I ⊆ Nmc

and i ∈ I. �

Notice that exponential stability of the open-loop part of the system (2.1), is a

necessary condition for global exponential stability, in fact, given by constraint (2.15)

with I = Nmc and Ī = /0 in (2.16). Also asymptotic stability of the closed-loop system

in absence of saturations, implied by condition (2.15) with I = /0 and Ī =Nmc in (2.16),

is necessary.

Analogous results for the case of continuous-time systems with nested saturations

(2.4) are stated in the following theorem.

Theorem 4 Given the continuous-time dynamics (2.4), consider the ellipsoid Ω =
E (P), with P ∈ R

n×n and P = PT > 0, the matrix Q ∈ R
n×n with Q = QT > 0 and

Ĥ( j,J)∈R
1×n such that |Ĥ( j,J)x| ≤ 1 for every J ⊆Nmc and j ∈ J; L̂(i, I(k))∈R

1×n

such that |L̂(i, I(k))x| ≤ 1 for every k ∈ Nmc , every I(k) ⊆ Npc and i ∈ I(k), for all

x ∈ Ω. If

Q̂(J,I)T P+PQ̂(J,I)≤−Q, (2.18)

with I = {I(1), I(2), . . . , I(mc)}, where Q̂(J,I) is defined as

Q̂(J,I) = Â+ ∑
j∈J̄

B̂( j)

(

K̂ j + ∑
i∈Ī( j)

Ê j,iF̂i + ∑
i∈I( j)

Ê j,iL̂(i, I( j))

)

+ ∑
j∈J

B̂( j)Ĥ( j,J),

(2.19)
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for all J ⊆Nmc , I(k)⊆Npc , k ∈Nmc , then Ω is an ellipsoidal estimation of the domain

of attraction and V (x) = xT Px is a local Lyapunov function in Ω for system (2.4).

Furthermore, V (x) = xT Px is a global Lyapunov function for the continuous-time

system with nested saturations (2.4) if conditions (2.18) hold with

Q̂(J,I) = Â+ ∑
j∈J̄

B̂( j)

(

K̂ j + ∑
i∈Ī( j)

Ê j,iF̂i

)

, (2.20)

for all J ⊆ Nmc , I(k)⊆ Npc , k ∈ Nmc where I = {I(1), I(2), . . . , I(mc)}.

2.4.3. Discrete-time quadratic stability

Analogous results hold for the case of discrete-time systems presenting saturations

on the loop. Actually, Theorem 2 yields also a condition for quadratic stability for

discrete-time saturated systems. The results presented in [HU 02b], are particular

cases, more conservative, of our results, see the proof in [FIA 11a].

Proposition 4 Given the discrete-time dynamics g̃(x) = Ãx+ B̃ϕ(K̃x) in (2.2), con-

sider the ellipsoid Ω = E (P), with P ∈ R
n×n and P = PT > 0, the matrix Q ∈ R

n×n

with Q = QT > 0, and H̃( j,J)∈R
1×n, such that |H̃( j,J)x| ≤ 1 for all x ∈ Ω, for every

J ⊆ Nmd
and every j ∈ J. If

Ñ(J)T PÑ(J)−P ≤−Q, (2.21)

for all J ⊆ Nmd
, with

Ñ(J) = Ã+ ∑
j∈J̄

B̃( j)K̃ j + ∑
j∈J

B̃( j)H̃( j,J), (2.22)

then Ω is an ellipsoidal estimation of the domain of attraction and V (x) = xT Px is a

local Lyapunov function in Ω for system (2.2).

A condition for global exponential stability of the origin for the discrete-time sat-

urated systems follows. The proof is avoided since similar to that one of Corollary

2.

Corollary 3 Given the discrete-time dynamics g̃(x) = Ãx+ B̃ϕ(K̃x) in (2.2), consider

the matrices P, Q ∈ R
n×n with P = PT > 0 and Q = QT > 0. If (2.21) holds with

Ñ(J) = Ã+ ∑
j∈J̄

B̃( j)K̃ j, (2.23)

for every J ⊆ Nmd
, then V (x) = xT Px is a global Lyapunov function for system (2.2).
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The conditions for local and global exponential stability are stated in the following

theorem for the case in which nested saturations are present, i.e. for system (2.5).

Theorem 5 Given the discrete-time dynamics (2.5), consider the ellipsoid Ω = E (P),
with P ∈ R

n×n and P = PT > 0, the matrix Q ∈ R
n×n with Q = QT > 0 and H̃( j,J) ∈

R
1×n such that |H̃( j,J)x| ≤ 1 for every J ⊆Nmc and j ∈ J; L̃(i, I(k)) ∈R

1×n such that

|L̃(i, I(k))x| ≤ 1 for every k ∈ Nmd
, every I(k)⊆ Npd

and i ∈ I(k), for all x ∈ Ω. If

Q̃(J,I)T PQ̃(J,I)−P ≤−Q, (2.24)

with I = {I(1), I(2), . . . , I(md)}, where Q̃(J,I) is defined as

Q̃(J,I) = Ã+ ∑
j∈J̄

B̃( j)

(

K̃ j + ∑
i∈Ī( j)

Ẽ j,iF̃i + ∑
i∈I( j)

Ẽ j,iL̃(i, I( j))

)

+ ∑
j∈J

B̃( j)H̃( j,J),

(2.25)

for all J ⊆Nmd
, I(k)⊆Npd

, k ∈Nmd
. then Ω is an ellipsoidal estimation of the domain

of attraction and V (x) = xT Px is a local Lyapunov function in Ω for system (2.5).

Furthermore, V (x) = xT Px is a global Lyapunov function for the continuous-time

system with nested saturations (2.5) if conditions (2.24) hold with

Q̃(J,I) = Ã+ ∑
j∈J̄

B̃( j)

(

K̃ j + ∑
i∈Ī( j)

Ẽ j,iF̃i

)

, (2.26)

for all J ⊆ Nmd
, I(k)⊆ Npd

, k ∈ Nmd
where I = {I(1), I(2), . . . , I(md)}.

2.4.4. Exponential stability for saturated hybrid systems

The presented results are employed to state conditions for exponential stability for

hybrid systems with saturations, possibly nested, [FIA 11a, FIA 12b]. First the case

of simple saturations (2.1)-(2.3) is considered. We impose the decreasing of the can-

didate Lyapunov function V (x) = xT Px along the continuous trajectories. Moreover,

we have to ensure that the variation of V (x) during a jump plus the variation during

a flowing interval of ρ , is negative. This, with the temporal regularization, would

imply that V (x) is decreasing between two successive jumps. The resulting condition

is less conservative than imposing the decreasing of V (x) also during the jump. In

the following, mc and md are the number of columns of B̂ and B̃, pc and pd those

of Ê and Ẽ. Notice that the case of functions increasing along flow trajectories and

decreasing during jumps, as well as more general cases, could be considered, see also

[HES 08, GOE 12]. The following result is stated with no proof, see [FIA 12b].
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Theorem 6 Given the hybrid system (2.1)-(2.3), consider the ellipsoid Ω = E (P),
with P ∈ R

n×n and P = PT > 0, Ĥ(i, I) ∈ R
1×n and H̃( j,J) ∈ R

1×n such that

|Ĥ(i, I)x| ≤ 1 and |H̃( j,J)x| ≤ 1, for all x ∈ Ω, for every I ⊆ Nmc and i ∈ I, J ⊆ Nmd

and j ∈ J, λ > 0, and σ ≥ 0. If

N̂(I)T P+PN̂(I)≤−2λP, (2.27)

Ñ(J)T e−λρInPe−λρInÑ(J)−σM < P, (2.28)

where N̂(I) and Ñ(J) are defined as

N̂(I) = Â+ ∑
i∈Ī

B̂(i)K̂i + ∑
i∈I

B̂(i)Ĥ(i, I), Ñ(J) = Ã+ ∑
j∈J̄

B̃( j)K̃ j + ∑
j∈J

B̃( j)H̃( j,J),

(2.29)

for all I ⊆ Nmc and J ⊆ Nmd
, then Ω is an ellipsoidal estimation of the domain of

attraction and the origin is locally asymptotically stable for the hybrid system (2.1)-

(2.3).

A condition for global asymptotic stability is stated for hybrid systems (2.1)-(2.3).

Corollary 4 Consider the hybrid system (2.1)-(2.3) and P ∈ R
n×n with P = PT > 0,

λ > 0 and σ ≥ 0. If (2.27) and (2.28) hold with

N̂(I) = Â+∑
i∈Ī

B̂(i)K̂i, Ñ(J) = Ã+ ∑
j∈J̄

B̃( j)K̃ j, (2.30)

for every I ⊆ Nmc and J ⊆ Nmd
, then the origin is globally asymptotically stable for

the hybrid system (2.1)-(2.3).

Proof: The result follows from Theorem 6 with Ĥ(i, I) = H̃( j,J) = 01×n, for all

I ⊆ Nmc , J ⊆ Nmd
, i ∈ I and j ∈ J. �

Notice that asymptotic stability of the systems ẋ = Âx and x+ = Ãx is a neces-

sary condition for global asymptotic stability of system (2.1)-(2.3), in fact, given by

constraints (2.27) and (2.28) with I = Nmc (then Ī = /0) and J = Nmd
(thus J̄ = /0) in

(2.30). Also asymptotic stability of ẋ = (Â+ B̂K̂)x and x+ = (Ã+ B̃K̃)x, implied by

conditions (2.27) and (2.28) with I = /0 and J = /0 in (2.30), is necessary.

Analogous results for the case of nested saturations (2.3)-(2.5) are stated in the

following theorem.
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Theorem 7 Given the hybrid system with nested saturations (2.3)-(2.5), consider the

ellipsoid Ω = E (P), with P ∈ R
n×n and P = PT > 0, λ > 0 and σ ≥ 0. Assume

there exist: Ĥ( j,J) ∈ R
1×n such that |Ĥ( j,J)x| ≤ 1 for every J ⊆ Nmc and j ∈ J;

L̂(i, I(k)) ∈ R
1×n such that |L̂(i, I(k))x| ≤ 1 for every k ∈ Nmc , every I(k) ⊆ Npc and

i ∈ I(k), for all x ∈ Ω; H̃(u,U) ∈ R
1×n such that |H̃(u,U)x| ≤ 1 for every U ⊆ Nmd

and u ∈ U; L̃(v,V (l)) ∈ R
1×n such that |L̃(v,V (l))x| ≤ 1 for every l ∈ Nmd

, every

V (l)⊆ Npd
and v ∈V (l), for all x ∈ Ω, such that:

Q̂(J,I)T P+PQ̂(J,I)≤−2λP, (2.31)

Q̃(U,V)T e−λρInPe−λρInQ̃(U,V)−σM < P, (2.32)

with I = {I(1), I(2), . . . , I(mc)} and V = {V (1),V (2), . . . ,V (md)}, where Q̂(J,I) and

Q̃(U,V) are defined as in (2.19) and (2.25), for all J ⊆ Nmc , I(k)⊆ Npc , k ∈ Nmc and

all U ⊆ Nmd
, V (l)⊆ Npd

, l ∈ Nmd
. Then Ω is an ellipsoidal estimation of the domain

of attraction and the origin is locally asymptotically stable in Ω for the hybrid system

(2.3)-(2.5).

Proof: This result can be proved by using reasonings analogous to those of Theo-

rem 6 and Corollary 4 and employing the results from Theorem 3. �

Also a condition for global asymptotically stability can be given.

Corollary 5 The origin is locally asymptotically stable for the hybrid system with

nested saturations (2.3)-(2.5) if conditions (2.31)-(2.32) hold where Q̂(J,I) and

Q̃(U,V) are defined as in (2.20) and (2.26), for all J ⊆ Nmc , I(k) ⊆ Npc , k ∈ Nmc

and all U ⊆ Nmd
, V (l) ⊆ Npd

, l ∈ Nmd
, where I = {I(1), I(2), . . . , I(mc)} and

V = {V (1),V (2), . . . ,V (md)}.

Function V (x) in Theorems 6 and 7 and Corollaries 4 and 5 are not necessar-

ily decreasing along the trajectories of systems (2.1)-(2.3) and (2.3)-(2.5), due to the

jumps. Nevertheless, there exist k > 0 and σ > 0 such that

V (x(t))≤ ke−σ(t+ j)V (x0), ∀t ≥ 0, (2.33)

where j is the number of jumps occurred before t. This means that the origin in R
n

is locally (if it holds for all x0 ∈ Ω) or globally (if valid over Rn) exponentially stable

for the hybrid saturated systems, as V (x) is a norm if P is positive definite. Proving

exponential stability and providing an exponential Lyapunov function in the space of

(x, τ) are the objectives of the following section.
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2.4.5. Exponential Lyapunov functions for saturated hybrid systems

In this section the exponential Lyapunov functions and the exponential stability of

the origin are considered for the hybrid systems with nested saturation, (2.3)-(2.5), as

it is the more general case. Given a trajectory of the system (2.3)-(2.5), we introduce,

for notational convenience, the following definition

{

x−(t j) = x(t j),
x+(t j) = g̃(x(t j)),

if t j is a jump instant. That is, x−(t j) denotes the state before and x+(t j) the state after

the j-th jump. We also assume that x+(t) = x−(t) = x(t) if the system is flowing at t.

Proposition 5 The system (2.3)-(2.5) jumps at most once in the time intervals [t, t+ρ)
and (t, t +ρ] for every t ≥ 0.

Proof: Notice in fact that, denoting with ti the time of the i-th jump, the system

flows on the time interval (ti, ti+ρ), from the definition of the flow and jump sets, see

(2.3). Then, for every [t, t +ρ), no more than a jump can occur. Analogously for the

interval (t, t +ρ]. �

Given the positive definite matrix P as in Theorem 7, consider the quadratic func-

tion

V (x) = xT Px, (2.34)

and recall that the set Ω is a level set of such a function, in particular

Ω = E (P) = {x ∈ R
n : xT Px ≤ 1}.

We recall that V (x) is a norm of x ∈ R
n provided the matrix P is positive definite, and

such that there exist positive α, β

α‖x‖2
2 ≤V (x)≤ β‖x‖2

2, ∀x ∈ R
n, (2.35)

with α and β minimal and maximal eigenvalue of P, for instance.

Proposition 6 If the hypotheses of Theorem 7 hold then there exists θ ∈ [0, 1) such

that
V (x−(t +ρ))≤ θV (x−(t)),
V (x+(t +ρ))≤ θV (x+(t)),

(2.36)

for all x(t) ∈ Ω if a jump occurred at t j ∈ [t, t +ρ].
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Proof: The condition (2.32), which holds being among the hypotheses of Theorem

7, is equivalent to the existence of θ ∈ [0,1) such that

Q̃(U,V)T e−λρInPe−λρIn Q̃(U,V)−σM ≤ θP. (2.37)

Then, following the lines of the proof of Theorem 7, see [FIA 12b], one has

that x−(t j + ρ)T Px−(t j + ρ) ≤ θx−(t j)
T Px−(t j) and x+(t j + ρ)T Px+(t j + ρ) ≤

θx+(t j)
T Px+(t j), for all x(0) ∈ Ω, with t j jumping instant. Analogously, we have

also that

x(t +ρ)T Px(t +ρ)≤ θx(t)T Px(t),

if the system is flowing at t, provided a jump is occurred in the interval (t, t +ρ). In

fact, no more than one jump is possible in such an interval, see Proposition 5. The

result follows from the definition of the function V (x) as in (2.34). �

Supposing that Theorem 7 holds and given the positive θ ∈ [0, 1) as in Proposition

6, a rate useful to bound the decreasing along the flow and the at the jump is defined.

Definition 1 Let θ ∈ [0, 1) as in the Proposition 6. Define δ ∈ R such that

0 < δ < min

{

2λ ,−
lnθ

ρ

}

, (2.38)

with λ ∈ R as in Theorem 7.

Notice that from λ > 0 and θ < 1, it follows that

θ < e−δρ , e−2λρ < e−δρ , (2.39)

from the definition (2.38).

Corollary 6 If the hypotheses of Theorem 7 hold then there exists θ ∈ [0, 1) such that

V (x−(t +ρ))≤ e−δρV (x−(t)),

V (x+(t +ρ))≤ e−δρV (x+(t)),

for all x(t) ∈ Ω, with δ as in (2.38).

Proof: If a jump occurs in [t, t +ρ], then from Proposition 6 and (2.39), we have

V (x−(t +ρ))≤ θV (x−(t))≤ e−δρV (x−(t)),

V (x+(t +ρ))≤ θV (x+(t))≤ e−δρV (x+(t)),

otherwise the system flows in [t, t +ρ] and it follows

V (x(t +ρ))≤ e−2λρV (x(t))≤ e−δρV (x(t)),

as proved for the Theorem 7, see [FIA 12b]. �
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Remark 6 Notice that no assumption on the value of τ(0) has been done. Then, the

condition τ(t)> ρ could hold at every instant preceding the first jump. Thus, the first

jump could occur at any instant, in general.

Notice first that, from Proposition 3.29 in [GOE 12], the Theorem 7 provides a

sufficient condition for the local exponential stability of the origin in R
n.

Proposition 7 If the hypotheses of Theorem 7 hold then the origin in R
n is locally

exponentially stable in Ω for the system (2.3)-(2.5).

Proof: Consider the quadratic function given by (2.34) where P is such that the

hypotheses of the theorem are satisfied. Notice that also (2.35) holds being P positive

definite. Then we have that

〈∇V (x), ĝ(x)〉 ≤ −2λV (x), ∀x ∈ Ω,

while flowing and

V (g̃(x))< e2λρV (x), ∀x ∈ Ω,

while jumping, which is equivalent to the existence of 0 < ε < λ such that

V (g̃(x))≤ e2(λ−ε)ρV (x), ∀x ∈ Ω,

being V (x) a quadratic function. Denoting with j = j(t) the number of jumps occurred

before t, we have that jρ ≤ t +ρ from the temporal regularization assumption and the

Remark 6. Then from Proposition 3.29 in [GOE 12] we have

−2λ t +2(λ − ε)ρ j =−2λ t +2(λ − ε
2
)ρ j− ερ j

≤−2λ t +2(λ − ε
2
)t +2(λ − ε

2
)ρ − ερ j = 2(λ − ε

2
)ρ − ε(t + j),

which is a sufficient condition for locally exponentially stability in Ω, since (2.35)

holds. �

Then, there exist k > 0 and σ > 0 such that (2.33) is satisfied for all x0 ∈Ω. Finally,

a class of Lyapunov function satisfying the sufficient conditions for local exponential

stability of the closed set

A = {0}×R+, (2.40)

are given. Such functions are defined in the space of (x,τ) that is in R
n ×R and are

parametrized with respect to a function γ(τ).
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Proposition 8 If the hypotheses of Theorem 7 hold then for every C 1 function γ :R→
R such that γ(0) = 0,

dγ(τ)

dτ
=

{

1, if τ ≤ ρ,
0, if τ ≥ η ,

(2.41)

with η > ρ and 0 ≤ dγ(τ)
dτ ≤ 1 for all τ ∈ R+ and every δ such that

2λ − ε < δ < 2λ , (2.42)

with

ε =−
lnθ

ρ
> 0, (2.43)

with θ satisfying (2.37), then the function V̄ : Rn ×R+ → R defined as

V̄ (x,τ) = eδγ(τ)V (x), (2.44)

is an exponential Lyapunov function in Ω×R+ and the set A as in (2.40) is locally

exponentially stable for the system (2.3)-(2.5).

Proof: We prove that V̄ satisfies the sufficient condition for being a local exponen-

tial Lyapunov function in A , as stated in [TEE 11]. That is, we prove that there exist

positive real numbers α1, α2, p, σ such that

α1‖(x, τ)‖p

A ≤ V̄ (x,τ)≤ α2‖(x, τ)‖p

A , (2.45)

where ‖(x,τ)‖A = miny∈A ‖(x,τ)− y‖2 with A as in (2.40), and

〈∇V̄ (x,τ),(ĝ(x), 1)〉 ≤ −σV̄ (x,τ), ∀(x, τ) ∈ (Ω×R+)∩G , (2.46)

V̄ (g̃(x),0)≤ e−σV̄ (x,τ), ∀(x, τ) ∈ (Ω×R+)∩J , (2.47)

hold.

By construction γ(τ) is a monotonically non-decreasing function bounded above,

i.e. the real number Γ = supτ∈R+
γ(τ) is positive, finite and such that γ(τ)≤ Γ for all

τ ≥ 0. Moreover Γ ≥ ρ from (2.41). Then

V̄ (x,τ)≤ eδΓV (x), ∀(x,τ) ∈ R
n ×R+.

Thus condition (2.45) is satisfied since ‖(x, τ)‖A = ‖x‖2 and then it is sufficient to

choose p = 2 and α1 = β1, α2 = eδΓβ2, with β1,β2 the minimal and maximal eigen-

values of P, respectively.

Concerning (2.46), and since γ(τ)≤ τ for all τ ≥ 0, we have

〈∇V̄ (x,τ),(ĝ(x), 1)〉= δ
dγ(τ)

dτ τ̇eδγ(τ)V (x)+ eδγ(τ)V̇ (x)

≤ δeδγ(τ)V (x)+ eδγ(τ)V̇ (x)≤ (δ −2λ )eδγ(τ)V (x),
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for all (x, τ) ∈ (Ω×R+)∩G , with (δ −2λ )< 0 from (2.42). From (2.37), (2.43) and

τ ≥ γ(τ)≥ ρ at every jumping instant, it follows

V̄ (g̃(x),0)−V̄ (x,τ) =V (g̃(x))− eδγ(τ)V (x)≤ e2λρ θV (x)− eδγ(τ)V (x)

=
(

e2λρ θe−δγ(τ)−1
)

eδγ(τ)V (x) =
(

e2λρ−ερ−δγ(τ)−1
)

eδγ(τ)V (x)

≤
(

e(2λ−ε−δ )ρ −1
)

eδγ(τ)V (x) = e(2λ−ε−δ )ρV̄ (x,τ)−V̄ (x,τ),

for all (x, τ) ∈ (Ω×R+)∩J , and e(2λ−ε−δ )ρ < 1 from (2.42). Then, conditions

(2.46) and (2.47) are satisfied for all positive σ such that

σ ≤ min{2λ −δ , (δ −2λ + ε)ρ},

holds. �

2.5. Computational issues

Some computation-oriented considerations on how to practically obtain a

quadratic functions V (x) ensuring exponential stability of the origin for systems

(2.1)-(2.3) and (2.3)-(2.5) are provided. First, we propose a formulation of the

condition provided by Theorem 6 which can be reduced in LMI form by fixing the

value of λ .

Proposition 9 Consider the hybrid system (2.1)-(2.3). Suppose that there exist W ∈
R

n×n with W =W T > 0, λ > 0, Ẑ(i, I) ∈ R
1×n and Z̃( j,J) ∈ R

1×n for every I ⊆ Nmc ,

i ∈ I, J ⊆ Nmd
and j ∈ J, such that conditions

(

ÂW + ∑
i∈Ī

B̂(i)K̂iW + ∑
i∈I

B̂(i)Ẑ(i, I)+λW
)

+
(

WÂT + ∑
i∈Ī

WK̂T
i B̂T

(i)+ ∑
i∈I

Ẑ(i, I)T B̂T
(i)+λW

)

≤ 0,
(2.48)

[

W
(

WÃT + ∑
j∈J̄

WK̃T
j B̃T

( j)+ ∑
j∈J

Z̃( j,J)T B̃T
( j)

)

e−λρIn

∗ W

]

> 0, (2.49)

[

1 Ẑ(i, I)
∗ W

]

≥ 0, ∀i ∈ I,

[

1 Z̃( j,J)
∗ W

]

≥ 0, ∀ j ∈ J, (2.50)

are satisfied for every I ⊆ Nmc and J ⊆ Nmd
. Then set Ω = E (P), with P = W−1, is

an ellipsoidal estimation of the domain of attraction and the origin in R
n is locally

exponentially stable in Ω for the hybrid system (2.1)-(2.3) can be determined.
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Proof: The proposition stems from Theorem 6. In fact, it can be proved, using

standard matrix inequalities manipulation techniques, that (2.48)-(2.50) imply the con-

ditions of the theorem, with W = P−1, Ẑ(i, I) = Ĥ(i, I)W and Z̃( j,J) = H̃( j,J)W , for

every I ⊆ Nmc and i ∈ I, J ⊆ Nmd
and j ∈ J. The only difference is that condition

(2.28), concerning x ∈ Ω and (x,τ) ∈ J , is relaxed in (2.49) imposing the condition

on jumps for all x ∈ Ω. Finally, (2.50) assures that |Ĥ(i, I)x| ≤ 1 and |H̃( j,J)x| ≤ 1,

for all x ∈ Ω, every I ⊆ Nmc and J ⊆ Nmd
. �

Recall that although functions V (x) in Theorems 6 and 7 and Proposition 9 do not

decrease along the trajectories, local exponential Lyapunov functions exists.

Remark 7 As stated in the proof of Proposition 9, the condition on the variation of

the value of V (x) during the jump is imposed over the whole set Ω, although it could

have been restricted to the set J . In fact, the term σM in (2.28) is not present in

(2.49). This introduces some conservativeness, but permits to formulate the related

problem in LMI form, fixing λ . Removing this source of conservativeness is a possible

future improvement.

The result provided in Proposition 9 can be used to pose an optimization problem

to maximize the size of Ω and hence to provide a solution to Problem 1.

Remark 8 A possible evaluation criterion is the maximization of the value of β such

that the polytope βL = co({βv(k) ∈ R
n : k ∈ NV}) is contained in the estimate Ω =

E (P), where v(k) ∈ R
n, with k ∈ NV , are given points in the state space. The opti-

mization problem results:

max
β ,λ , Z̃,Ẑ,W

β

s.t. (2.48),(2.49),(2.50), ∀I ⊆ Nmc , ∀J ⊆ Nmd
[

1 βv(k)T

∗ W

]

< 0, ∀k ∈ NV ,

(2.51)

where, for sake of notational compactness, we denoted with Z̃ and Ẑ the matrices

Ẑ(i, I) and Z̃( j,J) for all I ⊆ Nmc and i ∈ I, J ⊆ Nmd
and j ∈ J. Constraints (2.48)-

(2.50) ensure that V (x) = xT Px yields local exponential stability of the origin in

E (W−1) for the hybrid system, and the second set of constraints imposes that βv(k) ∈
E (W−1), for every k ∈ NV .

Notice that, although the constraints (2.48) and (2.49) are not linear in the opti-

mization variables, they are LMI for fixed values of λ . Then, in practice, the problem

can be solved for different values of λ > 0, to obtain a guess of the maximal value
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of β . Notice also that λ is a bound on the decreasing rate of the quadratic function

along the trajectories of the continuous-time dynamics, then it could be considered as

a design parameter and fixed beforehand. The LMI condition for global exponential

stability for system (2.1)-(2.3) (and fixed λ ) follows.

Corollary 7 Consider the hybrid system (2.1)-(2.3), matrix P ∈ R
n×n with P = PT >

0, λ > 0 and σ ≥ 0. If conditions

(

Â+ ∑
i∈Ī

B̂(i)K̂i

)T
P+P

(

Â+ ∑
i∈Ī

B̂(i)K̂i

)

≤−2λP,

(

Ã+ ∑
j∈J̄

B̃( j)K̃ j

)T
e−λρInPe−λρIn

(

Ã+ ∑
j∈J̄

B̃( j)K̃ j

)

−σM < P,
(2.52)

are satisfied for every I ⊆Nmc and J ⊆Nmd
, then V (x) = xT Px yields global exponen-

tial stability of the origin in R
n for the hybrid system (2.1)-(2.3).

Remark 9 The conditions for hybrid systems with nested saturations (2.3)-(2.5) can

be easily recovered, by adequately modifying the terms B̂(i)K̂iW in (2.48) and B̃(i)K̃iW

in (2.49), as well the terms B̂(i)K̂i and B̃( j)K̃ j in (2.52).

2.6. Numerical examples

The systems presented below can be expressed as in (2.1)-(2.3), or (2.3)-(2.5), by

posing x = (xp, xc), see for instance Section 2.2.1.

Example 1 We consider the linear one-dimensional unstable system, proposed in

[TAR 11a], in closed-loop with a stabilizing reset PI controller:

{

ẋp = 0.1xp +ϕ(yc),
yp = xp,

{

ẋc =−0.2yp,
yc = xc −2yp.

(2.53)

The dynamics characterizing the reset behavior with saturation is x+c = xc +ϕ(−xc).
The minimum time interval between two jumps is set to 2 seconds, that is ρ = 2.

We solve the optimization problem (2.51) where points v(k), with k ∈ N4, are the

vertices of the square set L = {x ∈ R
2 : ‖x‖∞ ≤ 1}, and for different values of λ . We

found that the value of λ = 0.02 provides the best value (among those tested) of β ,

that is β = 3.2689 with

P =

[

0.0409 −0.0101

∗ 0.03241

]

.
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Figure 2.1. Set Ω and trajectories of the saturated reset system.

The set Ω = E (P) is an estimation of the domain of attraction of the reset system,

regardless of the set {x ∈ R
n : xT Mx ≥ 0}. This can be noticed in Figure 2.1, where

Ω is depicted with some trajectories of the system assuming that the jump can occur

at any point of Ω. Note in particular the trajectory marked in bold line with initial

condition x(0) = x−0 = [5.1188 1.0376]T . With the first jump at time 0 the trajectory

leaves Ω, then V (x) increases, i.e. V (x+0 ) = 1.0686 > 1. At the time of the second

jump the state is contained in the ellipsoid, with V (x(ρ−)) = 0.9196 < 1. Then V (x)
decreases between the two jumps, as ensured by Theorem 6.

Example 2 The case of nested saturations is considered. A further saturation is

added between the plant output and the controller input of the continuous-time dynam-

ics of system (2.53):

{

ẋp = 0.1xp +ϕ(xc −2ϕ(xp)),
ẋc =−0.2ϕ(xp),

while the discrete-time behavior is the same as in Example 1. The solution of the

optimization problem (2.51) adapted to the case of nested saturations and with λ =
0.02 leads to β = 1.8922. As expected, the further saturation entails a reduction of

the size of the estimation of the domain of attraction, see Figure 2.2.

Example 3 The condition for global exponential stability provided by Corollary 7 is

applied to a multi-input system. Consider the system, inspired to the examples in work
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[BEK 04] and references therein, whose dynamics are given by

Ap =

[

−4 1

0 −1

]

, Bp =

[

1 3

3 1

]

, Cp =
[

4 0
]

,

in closed-loop with continuous-time dynamical controller whose matrices are

Ac =−3, Bc =−1, Cc =

[

0.1
0.22

]

, Dc =

[

−0.0625

−0.1250

]

.

We suppose that the controller discrete-time dynamics is a saturated reset, i.e. x+c =
xc+ϕ(−xc), and the plant state performs an instantaneous rotation of π/4 radians, at

any jump instant. Notice that exponential stability of both the open-loop and closed-

loop continuous-time systems in absence of saturation, which are necessary condi-

tions for global exponential stability, are ensured. Posing ρ = 0.5 and λ = 0.01 and

supposing that the jump can occur at any x ∈ R
n, conditions (2.52) are satisfied by

P =





2.0972 0.0068 −0.0113

∗ 2.1054 −0.0056

∗ ∗ 1.8822



 ,

for every I ⊆ Nmc and J ⊆ Nmd
. Then, from Corollary 7, the origin in R

n is globally

exponentially stable for the saturated reset system .

2.7. Conclusions

In this work we dealt with the problems of analyzing exponential stability and

computing ellipsoidal estimations of the domain of attraction for hybrid systems with
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Figure 2.2. Set Ω and trajectories of the reset system with nested saturations.
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nested saturations. The approach is based on set-theory and invariance. A geometrical

characterization of the saturated functions is provided first, by determining a class of

set valued local extensions. The results lead to computation-oriented conditions for

quadratic stability, for continuous and discrete-time systems, and exponential stability

for saturated hybrid systems. Estimations of the domain of attraction are also obtained,

as well as exponential Lyapunov functions induced by the quadratic ones, for saturated

hybrid systems.

An interesting forthcoming issue could be to exploit the hybrid loop to improve

the performance of a controlled system in presence of exogenous signals. This could

be achieved by designing the reset law and both the flow and jump sets. Furthermore,

more general sets, as polytopes and generic convex sets, and more generic Lyapunov

functions candidates, as the polyhedral ones, should be considered to generalize the

approach.

2.8. Bibliography

[ALA 05] ALAMO T., CEPEDA A., LIMON D., “Improved computation of ellipsoidal invari-

ant sets for saturated control systems”, Proceedings of the 44th IEEE Conference on

Decision and Control and European Control Conference CDC-ECC 2005, Seville, Spain,

p. 6216-6221, Dec. 2005.

[ALA 06] ALAMO T., CEPEDA A., LIMON D., CAMACHO E. F., “A new concept of invari-

ance for saturated systems”, Automatica, vol. 42, p. 1515-1521, 2006.

[ALA 09] ALAMO T., CEPEDA A., FIACCHINI M., CAMACHO E. F., “Convex invariant sets

for discrete–time Lur’e systems”, Automatica, vol. 45, p. 1066–1071, 2009.

[AUB 84] AUBIN J., CELLINA A., Differential Inclusions: Set-Valued Maps and Viability

Theory, Springer, 1984.

[AUB 90] AUBIN J., FRANKOWSKA H., Set-valued analysis, Birkhäuser, 1990.

[AUB 91] AUBIN J., Viability theory, Birkhäuser, 1991.

[BEK 04] BEKER O., HOLLOT C. V., CHAIT Y., HAN H., “Fundamental properties of reset

control systems”, Automatica, vol. 40, p. 905-915, 2004.

[BEN 01] BEN-TAL A., NEMIROVSKI A., Lectures on modern convex optimization, MPS–

SIAM, 2001.

[BER 72] BERTSEKAS D. P., “Infinite-time reachability of state-space regions by using feed-

back control”, IEEE Transactions on Automatic Control, vol. 17, p. 604-613, 1972.

[BLA 94] BLANCHINI F., “Ultimate boundedness control for discrete-time uncertain systems

via set-induced Lyapunov functions”, IEEE Transactions on Automatic Control, vol. 39,

p. 428-433, 1994.

[BLA 99] BLANCHINI F., “Set invariance in control”, Automatica, vol. 35, p. 1747–1767,

1999.



Exponential stability for hybrid systems 41

[BLA 08] BLANCHINI F., MIANI S., Set-Theoretic Methods in Control, Birkhäuser, 2008.

[BOY 04] BOYD S., VANDENBERGHE L., Convex Optimization, Cambridge University Press,

2004.

[BRA 98] BRANICKY M. S., BORKAR V. S., MITTER S. K., “A unified framework for hybrid

control: model and optimal control theory”, IEEE Transactions on Automatic Control,

vol. 43, p. 31-45, 1998.

[BRA 05] BRAVO J. M., LIMON D., ALAMO T., CAMACHO E. F., “On the computation of

invariant sets for constrained nonlinear systems: An interval arithmetic approach”, Auto-

matica, vol. 41, p. 1583-1589, 2005.

[CAN 03] CANNON M., DESHMUKH V., KOUVARITAKIS B., “Nonlinear model predictive

control with polytopic invariant sets”, Automatica, vol. 39, p. 1487-1494, 2003.

[FIA 10a] FIACCHINI M., Convex difference inclusions for systems analysis and design, PhD

thesis, Universidad de Sevilla, Spain, January 2010.

[FIA 10b] FIACCHINI M., ALAMO T., CAMACHO E. F., “On the computation of convex

robust control invariant sets for nonlinear systems”, Automatica, vol. 46, num. 8, p. 1334-

1338, 2010.

[FIA 11a] FIACCHINI M., TARBOURIECH S., PRIEUR C., “Ellipsoidal invariant sets for sat-

urated hybrid systems”, Proceedings of the American Control Conference 2011, San Fran-

cisco, CA, USA, p. 1452-1457, June 2011.

[FIA 11b] FIACCHINI M., TARBOURIECH S., PRIEUR C., “Invariance of symmetric convex

sets for discrete-time saturated systems”, Proceedings of the 50th IEEE Conference on

Decision and Control and European Control Conference 2011, Orlando, USA, p. 7343-

7348, Dicember 2011.

[FIA 12a] FIACCHINI M., ALAMO T., CAMACHO E. F., “Invariant sets computation for con-

vex difference inclusions systems”, Systems & Control Letters, vol. 61, p. 819-826, 2012.

[FIA 12b] FIACCHINI M., TARBOURIECH S., PRIEUR C., “Quadratic stability for hybrid sys-

tems with nested saturations”, IEEE Transactions on Automatic Control, vol. 57, p. 1832-

1838, 2012.

[FIC 12a] FICHERA F., PRIEUR C., TARBOURIECH S., ZACCARIAN L., “A convex hybrid

H∞ synthesis with guaranteed convergence rate”, Proceedings of the 51st IEEE Conference

on Decision and Control, CDC’12, Maui, USA, 2012.

[FIC 12b] FICHERA F., PRIEUR C., TARBOURIECH S., ZACCARIAN L., “Improving the per-

formance of linear systems by adding a hybrid loop: the output feedback case”, Proceedings

of the American Control Conference 2012, Montréal, Canada, 2012.

[FIC 12c] FICHERA F., PRIEUR C., TARBOURIECH S., ZACCARIAN L., “On hybrid state-

feedback loops based on a dwell-time logic”, Proceedings of the 4th IFAC conference on

Analysis and Design of Hybrid Systems, ADHS’12, Eindhoven, Netherlands, 2012.

[GIL 91] GILBERT E. G., TAN K., “Linear systems with state and control constraints: The

theory and application of maximal output admissible sets”, IEEE Transactions on Automatic

Control, vol. 36, p. 1008-1020, 1991.



42 Book Tamplate

[GOE 04] GOEBEL R., HESPANHA J. P., TEEL A. R., CAI C., SANFELICE R., “Hybrid Sys-

tems: generalized solutions and robust stability”, Proceedings of the IFAC Symposium on

Nonlinear Control Systems, Stuttgart, Germany, p. 1-12, 2004.

[GOE 09] GOEBEL R., SANFELICE R., TEEL A. R., “Hybrid dynamical systems”, IEEE

Control Systems Magazine, vol. 29, num. 2, p. 28-93, 2009.

[GOE 12] GOEBEL R., SANFELICE R., TEEL A. R., Hybrid dynamical systems, Princeton

University Press, 2012.

[Gom 99] GOMES DA SILVA JR. J. M., TARBOURIECH S., “Polyhedral regions of local sta-

bility for linear discrete-time systems with saturating controls”, IEEE Transactions on

Automatic Control, vol. 44, p. 2081-2085, 1999.

[Gom 01] GOMES DA SILVA JR. J. M., TARBOURIECH S., “Local stabilization of discrete-

dime linear systems with saturating controls: an LMI-based approach”, IEEE Transactions

on Automatic Control, vol. 46, p. 119-125, 2001.

[GRO 93] GROSSMANN R. L., NERODE A., RAVN A. P., RISCHEL H., “Hybrid systems”,

Lecture Notes in Computer Science, vol. 736, 1993.

[GUR 95] GURVITS L., “Stability of discrete linear inclusion”, Linear Algebra and its Appli-

cations, vol. 231, num. 1, p. 47 – 85, 1995.

[GUT 86] GUTMAN P., CWIKEL M., “Admissible sets and feedback control for discrete-time

linear dynamical systems with bounded control and states”, IEEE Transactions on Auto-

matic Control, vol. AC-31, num. 4, p. 373–376, 1986.

[HES 08] HESPANHA J. P., LIBERZON D., TEEL A. R., “Lyapunov conditions for input-to-

state stability of impulsive systems”, Automatica, vol. 44, num. 11, p. 2735-2744, 2008.

[HU 02a] HU T., LIN Z., “Exact characterization of invariant ellipsoids for single input linear

systems subject to actuator saturation”, IEEE Transactions on Automatic Control, vol. 47,

num. 1, p. 164-169, jan. 2002.

[HU 02b] HU T., LIN Z., CHEN B. M., “Analysis and design for discrete-time linear systems

subject to actuator saturation”, Systems & Control Letters, vol. 45, num. 2, p. 97-112, 2002.

[HU 04] HU T., LIN Z., A general framework for absolute stability analysis of systems under

a generalized sector condition, Technical report, Department of Electrical & Computer

Engineering, University of Virginia, 2004.

[KOL 98] KOLMANOVSKY I., GILBERT E. G., “Theory and computation of disturbance

invariant sets for discrete-time linear systems”, Mathematical Problems in Engineering,

vol. 4, p. 317-367, 1998.

[LIB 03] LIBERZON D., Switching in systems and control, Boston: Birkhauser, 2003.

[LOQ 07] LOQUEN T., TARBOURIECH S., PRIEUR C., “Stability analysis for reset systems

with input saturation”, Proceedings of the 46th IEEE Conference on Decision and Control,

New Orleans, LA, USA, p. 3272-3277, 2007.

[MAG 01] MAGNI L., DE NICOLAO G., MAGNANI L., SCATTOLINI R., “A stabilizing

model-based predictive control algorithm for nonlinear systems”, Automatica, vol. 37,

p. 1351-1362, 2001.



Exponential stability for hybrid systems 43

[MAY 00] MAYNE D. Q., RAWLINGS J. B., RAO C. V., SCOKAERT P. O. M., “Constrained

model predictive control: Stability and optimality”, Automatica, vol. 36, p. 789-814, 2000.

[NES 08] NESIC̀ D., ZACCARIAN L., TEEL A. R., “Stability properties of reset systems”,

Automatica, vol. 44, num. 8, p. 2019-2026, 2008.

[ONG 06] ONG C. J., GILBERT E. G., “The minimal disturbance invariant set: outer approx-

imations via its partial sums”, Automatica, vol. 42, p. 1563–1568, 2006.

[PRI 07] PRIEUR C., GOEBEL R., TEEL A. R., “Hybrid feedback control and robust stabi-

lization of nonlinear systems”, IEEE Transactions on Automatic Control, vol. 52, num. 11,

p. 2103-2117, 2007.

[PRI 10] PRIEUR C., TARBOURIECH S., ZACCARIAN L., “Guaranteed stability for nonlinear

systems by means of a hybrid loop”, Proceedings of the IFAC Symposium on Nonlinear

Control Systems (NOLCOS), Bologna, Italy, p. 72-77, September 2010.

[PRI 13] PRIEUR C., TARBOURIECH S., ZACCARIAN L., “Lyapunov-based hybrid loops for

stability and performance of continuous-time control systems”, Automatica, to appear,

2013.
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