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Abstract— In this note we study the average consensus
algorithm in a distributed system of agents which are allowed
to communicate according to a directed graph. Moreover,
the communication between connected agents is not perfect,
but affected by some error, which can be either a random
additive noise or produced by a quantization. We investigate the
effects of these constraints on the performance of the average
consensus algorithms.

I. INTRODUCTION

In recent years much research has been focused on the

coordinated control and estimation [1], [2], [4], [5], [6], [8],

[9]. In this area, the simplest and more crucial problem is the

coordinated consensus problem, which has been addressed

by many authors [3], [7]. Most of these papers are based on

modelling the communication between agents by a (directed)

graph and assuming that communications along edges are

ideal. In this setting much work has been done and now we

are able to design effective consensus algorithms, with mild

conditions on the graph structure.

The natural development of these themes is then to look

for more realistic communication models and to design

algorithms which are effective in this more realistic scenario.

This is what we are trying to do in this note, dealing with

communications which are either affected by additive noises,

in section III, or constrained to be quantized, in section IV.

We will show that these two models have different features,

which we study using both mathematical tools and computer

simulations. To develop this analysis we need some technical

preliminaries, which are collected in section II.

Section V contains the proposal of a algorithm suited for

average consensus with quantized communication.

The concluding section, then, summarizes our results and

points out some open problems in this emerging field.

II. PRELIMINARIES

In this section we collect some definitions and notations

which are used through the paper.

A. Graphs

The communications between agents are modeled by a

directed graph G = (V,E). V = {1, . . . , ...N} is the set of

vertices and E is the set of (directed) edges, i.e. a subset of

V ×V , the set of all ordered couples (h,k) where h and k are
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in V . We say that the vertices i and j are communicant,

or connected, if there exists the couple ( j, i) in E. This

means that j can transmit information about its state to i. The

adjacency matrix A is a {0,1}-valued square matrix indexed

by the elements in V defined by letting Ai j = 1 if and only

if (i, j) ∈ E . Define the in-degree of a vertex j as ∑i Ai j

and the out-degree of a vertex i as ∑ j Ai j. A graph is called

in-regular (out-regular) of degree k if each vertex has in-

degree (out-degree) equal to k. A graph is said a undirected

(or symmetric) graph if (i, j)∈ E implies that ( j, i)∈ E. Any

(i, i) ∈ E is called a self loop.

A graph is strongly connected if for any given pair of vertices

(v,v′) there exists a path (i.e. an ordered list of edges) which

connects v to v′. It is said fully connected or complete if for

any couple of vertices there exists an edge joining them.

Let us now to introduce the concept of Cayley graph defined

on Abelian groups [16]. Let G be any finite Abelian group

(internal operation will always be denoted +) of order |G|=
N, and let S be a subset of G containing zero. The Cayley

graph G (G,S) is the directed graph with vertex set G and

arc set

E = {(g,h) : h−g ∈ S} .

Notice that a Cayley graph is always in-regular, namely the

in-degree of each vertex is equal to |S|. If G = ZN then the

graph is said circulant.

B. Matrices

A matrix M ∈ R
N×N is said compatible or supported by

the graph G if Mi j is positive only if there is an edge from

j to i. Conversely, given the matrix M, we can define an

induced graph GM by taking N nodes and putting an edge

( j, i) in E if Mi j > 0. A matrix is said nonnegative [13] if

Mi j ≥ 0 for all i and j, and is said doubly stochastic if it is

nonnegative and the sums along each row and column are

equal to 1.

A notion of Cayley structure can also be introduced for

matrices. Let G be any finite Abelian group of order |G|= N.

A matrix M ∈ R
G×G is said to be a Cayley matrix over the

group G if

Mi, j = Mi+h, j+h ∀ i, j,h ∈ G .

If G = ZN then P is said circulant.

Now we give some notational conventions. Given a matrix

M ∈ R
N×N , diag(M) means a diagonal matrix with the same

diagonal elements of the matrix M and out(M) means the

matrix obtained from M by putting equal to 0 all its diagonal

elements, i.e. out(M) = M− diag(M).



III. ADDITIVE COMMUNICATION NOISE

In this section we study the performance of some dis-

tributed consensus algorithms when communications are

affected by a transmission additive noise.

A. Noiseless communication algorithm

In the standard noiseless consensus algorithm we have that

the agent i has a state xi(t) and the algorithm updates the

state according to the formula

xi(t +1) =
N

∑
j=1

Pi jx j(t), (1)

More compactly we can write

x(t +1) = Px(t), (2)

where x(t) is the column vector with entries xi(t) and P is

the matrix with entries Pi j. It is well known in the literature

[3], [11] that, if P is a doubly stochastic matrix with positive

diagonal and with GP strongly connected, then the previous

algorithm solves the average consensus problem, namely

lim
t→+∞

x(t) =
1

N

(

N

∑
i=1

xi(0)

)

1, (3)

where 1 is the (column) vector of all ones. This can be shown

because the previous conditions imply that

(A) 1 is the only eigenvalue of P on the unit circle centered

in 0;

(B) the eigenvalue 1 has algebraic multiplicity one and 1 is

its eigenvector;

(C) all the other eigenvalues are strictly inside the unit disk

centered in 0.

B. Communication noise. Mean square analysis

Let us consider now a noisy version of the previous

algorithm, namely the following systems

x(t +1) = Px(t)+n(t), (4)

where n(t) is a N-dimensional white noise with with zero

mean and covariance E[n(t)n(t)T ] = Z. This model can

describe different ways in which the noise enters in the

consensus algorithm.

For instance, if the agent i can access only to an approx-

imation x̂ j,i(t) of x j(t), then the algorithm (1) becomes

xi(t +1) = Piixi(t)+
N

∑
j=1
j 6=i

Pi j x̂ j,i(t), (5)

If x̂ j,i(t) is a noisy version of x j(t), namely x̂ j,i(t) = x j(t)+
νi j(t), where νi j(t) are i.i.d. random variables of zero mean

and variance σ2, then we have that (5) can be written in the

form of (4), taking

ni(t) =
N

∑
j=1
j 6=i

Pi jνi j(t). (6)

In this case we have that Z = σ2{diag(PPT )− [diag(P)]2}.

If now we consider the average of the positions xa(t) =
1
N

1T x(t) we can define the vector ∆(t) = x(t) − xa(0)1
together with the disagreement ∆̃(t) = x(t)− xa(t)1 and the

bias β (t) = xa(t)− xa(0) and their mean squared 2-norms,

w(t) =
1

N
E[||∆(t)||2],

v(t) =
1

N
E[||∆̃(t)||2]

η(t) = E[|β (t)|2].

Since with a communication noise there is no hope to

reach an average consensus in the usual sense, we are

interested in describing the performances of these systems

with respect to their capacity to lead the agents near to con-

sensus at the average of the initial conditions. The following

theorem shows that this is not possible.

Theorem 1: Let

Y = I − 1

N
11∗

Then the evolution of the mean squared norms w, v, and η
is given by the following formulas.

v(t) =
1

N
tr

[

(Y P)t
E[x(0)x(0)T ](PTY )t

]

+

1

N
tr

[

t−1

∑
i=0

(Y P)iZ (PTY )i

]

(7)

η(t) =
t

N2
(1T Z1) (8)

w(t) = v(t)+η(t) (9)

Remark 1: Equation (8) implies that instead of being

average preserving, as hoped, when communications are

noisy these algorithms are affected, in mean, by a drift on

the (estimated) average position, which is linear in time. On

the other hand, since Y P is a asymptotically stable matrix,

then the first term in sum in (7) tends to zero and so

v(∞) =
1

N
tr

[

∞

∑
i=0

(Y P)iZ (PTY )i

]

and this allows us to see that v(t) is bounded as t goes to

infinity, while w(t) is not.

C. Examples

The above analysis can be specialized in some special

cases.

Complete Graph

Consider P = N−111T . In case we consider the noise

structure given in (6), we have that

η(t) = σ2 N −1

N3
t

v(t) = σ2 N −1

N2
for t ≥ 1

Cayley Graph

In a Cayley graph one can compute w(t),v(t),η(t) as

function of its spectrum, showing that also on these graphs,

the performances are corrupted by noise. Here we will regard



the initial condition x(0) as the realization of a random

variable of zero mean and variance τ2, independent from

the noises.

In case we consider the noise structure given in (6), we

have that Z is Cayley and diagonal and so all its eigenvalues

coincides with µ = σ2 ∑N
j=2 P2

1 j.

Denote σ(P) = {λ0,λ1, . . . ,λN−1} the spectrum of P,

where by the properties of P we have that λ0 = 1 and

|λi| < 1, ∀1 ≤ i ≤ N −1. Then, we are able to compute

v(t) =
τ2

N

N−1

∑
j=1

|λ j|2t +
µ

N

N−1

∑
j=1

1−|λ j|2t

1−|λ j|2

η(t) =
µ

N
t.

Remark that w(t) is the sum of three terms: a summation of

decreasing exponentials, a term saturating to a constant and

a linear drift. Indeed,

v(∞) =
µ

N

N−1

∑
j=1

1

1−|λ j|2
.

A similar bound is presented in [14] where the authors study

the system (4) taking ni to be a process noise, rather than

coming from communication.

Remark 2: An interesting result can be found if we as-

sume that G = Zk
M and N = Mk. Let eh ∈ Z

k
M, h = 1, . . . ,k

be the column vector with all zeros except a 1 at position h.

Let e(0) = (0, . . . ,0). Assume now that P has the following

structure

Pi j =

{

1
k+1

if i− j = eh ∃h : 0 ≤ h ≤ M

0 otherwise
(10)

Then, it is possible to prove that

v(∞) ≈







CkN if k = 1

Ck logN if k = 2

Ck if k ≥ 3

(11)

where Ck is a suitable constant independent of N. This result

is presented in [15].

D. Sensible solutions against drift

Since the drift problem appears because the agents get

and use information which is corrupted by noise, an idea to

overcome can be by selecting in some way the information

that is worth to use. This can be done if the agents are ”aware

of the problem”, namely if they know something about the

probability distribution of the noise.

In this case, a criterion can be to discard any information

about agents whose position is too near. Of course, doing

this, the agents renounce the idea of seeking a perfect

agreement.

Namely, we introduce a family of threshold functions

f (z) =

{

z if |z| > R

0 if |z| ≤ R

and we change the evolution equation (5) into

xi(t +1) = xi(t)+
N

∑
j=1

Pi j f (x̂ j,i(t)− xi(t)). (12)

In spite of its simplicity, simulations (Figure 1) show this

method as effective in avoiding drift.

Namely, if we suppose that the noise probability distribu-

tion has bounded support, i.e. that ∃B such that P(|ni j| >
B) = 0, we have that

• if B > R we still have a linear drift in the average

position, but slower1;

• if B ≤ R we avoid the drift, and asymptotically in time

the agents will have states such that both v∞ and w∞

are finite and depending on N and R, so that the best

choice is R = B.
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Fig. 1. Time evolution of w(t) on a circulant graph of degree 1, where

xi(t + 1) = 1
2

xi(t) + 1
2

xi+1(t) and N = 20 (solid line). The improvement
obtained discarding some information (dashed) is clear.

IV. QUANTIZED COMMUNICATION

In this section we deal again with a set of agents which

communicate in order to estimate the average value of their

initial conditions. Differently from most of the literature

we assume that the communication network is constituted

only of digital links. This implies the exchange of perfect

information between the systems is not allowed. In fact,

through a digital channel, the j-th agent can only send

to the i-th agent symbolic data. Hence beside the aspects

induced by the choice of the structure of the communication

network, one have also to face the effects of the quantization

constraints due to the digital links.

This problem is now starting to attract the interest of the

scientific community, as in [12] and [10]. In particular in

the latter the authors consider an interesting randomized

communication scheme on a connected undirected graph

which allows agents which have integer states to converge

to the average of initial conditions.2

1Of course, this is also the case when the noise probability distribution
has unbounded support.

2Actually, the consensus is reached in the sense that the initial sum of the
states is preserved and the asymptotic states of the agents can only differ
by 1.
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Fig. 2. The plot compares the evolution of w(t) in the actual quantized
case (13) with its noisy approximation and the perfect communication case,
on a circulant graph where xi(t +1) = 1

2
xi(t)+ 1

2
xi+1(t) and N = 20.

Our approach is different because we suppose that agents

can only exchange integer numbers between them, but their

states are real numbers. Moreover, we do not assume the

graph to be undirected.

With these hypotheses, the agents evolve following

x(t +1) = diag(P)x(t) + out(P)q(x(t)) (13)

where with q : R
N → Z

N we denote the quantizer, which

maps each component of x into the nearest integer, namely,

if x = (x1, . . . ,xN)T and n = (n1, . . . ,nN)T we have that ,∀1 ≤
i ≤ N,

q(x) = n ∈ Z
N ⇔ xi ∈ [ni −1/2,ni +1/2[, if xi ≥ 0

xi ∈ ]ni −1/2,ni +1/2], if xi < 0.

Remark 3: The system (13) does not conserve the average

of the agents’ states, i.e., xa(t +1) 6= xa(t).
Then, in general this algorithm will not be able to drive

the states to an average consensus, but to a weaker condition

of consensus at some other value.

A. Additive white noise model

A first approach to the analysis of the system (13) could

be trying to model the quantization error as an additive noise,

following (4)

x(t +1) =Px(t)+ out(P)(q(x)− x) = (14)

Px(t)+ out(P)ν(t), (15)

Here ν(t) is a vector of noises which are uniformly dis-

tributed in
[

− 1
2
, 1

2

]

. These are intended to model, in the

average, the behavior of the rounding error.

Even if sensible, this model is not a good description of

the behavior of the system with quantized communication.

This is visualized in Figure 2.

Its more evident drawback is that such a noisy model can

be proved to be affected by a drift in time of its average
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Fig. 3. Periodic dynamic of xi(t) following (13) on a directed circulant
graph.

of states, while this does not occur in the actual quantized

system. In fact, if we denote ∆(t) = x(t)−xa(0)1 and u(t) =
1
N
||∆(t)||2, it is possible to prove, by convexity arguments,

that u(t) is bounded in time for the system (13).

Thus the only way to study the quantization seems to be by

dealing with the actual evolution law (13). Solving exactly

its dynamics is in general not simple, and can be tackled

only in some special cases.

In the next section will be presented a possible way to

overcome in part the drawbacks of this naive approach to

quantization.

V. QUANTIZED COMMUNICATION II

In the above section we have seen how the naive approach

to quantization leads to a system difficult to study and with

poor performances (Figure 3). Then it is natural to look for

some clever quantization algorithm.

The starting point is the constraint that allows each agent

to access only the integer approximation of its neighbors’

states. Then, the designer can only look for a smart way for

the agents to use their own information.

Then, we propose the evolution scheme

xi(t +1) = xi(t)−q(xi(t)) +
N

∑
j=1

Pi j q(x j(t)) (16)

or, more concisely,

x(t +1) = x(t) + (P− I)q(x(t)). (17)

This scheme avoids the main shortcoming of (13), noticed

in Remark 3.

Proposition 2: The algorithm (17) conserves the average

of the initial conditions.

Proof: Since P is doubly stochastic we have that

xa(t +1) = N−11T x(t +1) =

N−11T x(t) +N−11T (P− I)q(x(t)) = N−11T x(t) = xa(t),



for all t.

Moreover, one can prove that this is the only local choice3

which satisfies the constraint and allows to preserve the

average of states.

Then, we want to study how the proposed algorithm leads

the agents near to the consensus.

A. Communication between two agents

As a first example, we show that the quantized system can

behave rather poorly even in the trivial case when the system

is made of only two communicating agents.

Proposition 3: Let the evolution law be

xi(t +1) = xi(t)+ k [q(xi+1(t))−q(xi(t))] i = 1,2 ,

with 0 < k < 1, and let δ (t) = |x1(t)− x2(t)|. Then

δ (∞) ≤











k

1− k
if k ≥ 1/2

1 if k ≤ 1/2.

(18)

Remark that the limit behavior depends heavily on the

parameter k, which represents the weight each agent assigns

to the value it receives from its neighbor.

B. The pursuit graph case

We consider a circulant graph (pursuit graph) where each

agent i communicates with only one neighbor and evolves

following

xi(t +1) = xi(t)+
1

2
[q(xi+1(t))−q(xi(t))] i = 1, . . . ,N.

(19)

The dynamic (19) can be studied by mean of a symbolic

dynamic approach. We define, first, ni = ⌊2xi⌋, mapping the

real dynamics into an equivalent dynamics between integers

ni(t +1) = g(ni(t),ni+1(t)) with

g(ni(t),ni+1(t)) =

⌊

ni(t)

2

⌋

+

⌈

ni+1(t)

2

⌉

.

For this map g, it is possible to study the evolution and the

limit behavior (fixed and periodic points), and then to recover

information on the dynamics of xi.

Theorem 4: The limit state of system (19) is reached in

finite time, can be either a fixed or a periodic point, and is

such that

lim
t→∞

|xi(t)− x j(t)| ≤ 1. (20)

This theorem tells that, in this special family of graphs,

the agents get close to the average agreement and this does

not depend on the number of the agents.

3We call local choice, a choice which is a local rule, that is which can
be done with no global knowledge on the graph topology or the population
of agents.
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C. Simulations on general graphs

The analysis is difficult for general graphs, but simula-

tions allow some remarks. While on some graphs, e.g. the

complete graph and the pursuit graph considered in the above

subsection, the performance of the algorithms are similar, on

some others the asymptotical performance of the algorithm

(17) scales better with N than the naive (13). A sample of

these simulations is shown in Figures 4 and 5.

D. General results

Inspired by the good performances obtained in simula-

tions, some general results can be obtained about (17). In

the following we only assume that the matrix P satisfies the

conditions (A),(B),(C) stated in Section III. We denote by

ρ(P) its essential spectral radius [11], which is the largest

in modulus eigenvalue, different from 1, of the matrix P,



namely

ρ(P) = max{|λ | : λ ∈ σ(P)\1}.

Then the following result can be proved.

Theorem 5: Let ∆(t) = (I −N−111T )x(t) and let d(t) =
1√
N
||∆(t)||2. Consider the evolution equation (17) and let ρ

be the essential spectral radius of P. Then the following facts

hold.

i) d(t) ≤ ||I −P||2
2

1−ρ t

1−ρ
+ρ t ||∆(0)||2√

N

ii) d∞ = limsup
t→∞

d(t) ≤ 1

1−ρ

Remark 4: The claim ii) gives a bound which is finite in

time, but which can depend on N. An interesting case is

given by the Cayley matrices. Indeed, it is known [11] that

if P is a Cayley matrix and ν is the in-degree of GP then

ρ(P) ≥ 1− C

N2/ν
where C > 0 is a constant independent of

the graph and of N. Hence, if we consider ν fixed and N

tends to infinity, we have that 1−ρ(P) tends to 0 as N− 2
ν

implying that the bound ii) diverges polynomially in N.

However, about this family of matrices, something more

refined than this remark is given by the following result.

Theorem 6: Let P be any symmetric Cayley matrix. De-

note by ν the in-degree of GP. Then

d∞ ≤Cν logN, (21)

where Cν > 0 is a constant depending on ν .

This means that the worst case behavior of our scheme

scales, for the family of Cayley matrices, better than poly-

nomially with N.

VI. CONCLUDING REMARKS

This paper attempted to look for some insight into the

behavior of linear averaging algorithms for the consen-

sus problem on a graph with additional constraints in the

communication. This has been done in two cases, when

communication is affected by an additive noise and when

communication is quantized. In the former case we showed

that such a system will fail to find an average consensus, due

to a drift from the initial average. We also proposed some

heuristic techniques to avoid this problem.

In the quantized communication several questions remain

open. Here we tried to begin a study of the heavy effects

of a constraint of quantized communication on the well-

known diffusion agreement schemes [11]. Then we proposed

a new agreement algorithm of this class, which is able to

preserve the average of the initial data, and which gives

good performances and a good scalability with N. Then,the

next step is to make a deeper mathematical study of this

algorithm, in order to understand the origin of its features

and design further improvements.
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