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Abstract— Deployment and space partitioning problems are
fundamental tasks in robotic networks. In previous work
on coverage control, these tasks are formalized as locational
optimization problems and are achieved in a distributed way
under one critical assumption: information is exchanged syn-
chronously along all edges of a proximity graph. This work
proposes a novel deployment and partitioning algorithm that
requires only pairwise asynchronous gossip communication.
Which robot pair communicates at a given time may be
selected randomly or deterministically. A key novel idea is the
description of the coverage control problem as a dynamical
system on the space of partitions – in other words, we study
the evolution of the regions assigned to each robot, rather
than of the robot’s positions. We establish the convergence
properties of the novel gossip algorithm through two results
of independent interest. First, we prove the compactness of
the space of partitions and the continuity of certain geometric
maps. Second, we prove a convergence theorem for switching
maps on metric spaces.

I. INTRODUCTION

This paper deals with distributed coverage control and
partitioning policies for networks of robots. Coverage control
has the goal of optimizing the configuration of a group of
robots, or agents, in a given environment: the optimization
problem is expressed in terms of a cost function, depending
on the agents’ positions.

A. Statement of contributions
The main contributions of the present paper are three.

First, we describe coverage control algorithms in a novel
way. Classically, the state space for the coverage algorithms
are the agent positions: based on their positions, the agents
apportion the environment into regions, which are assigned
to each agent. In our approach, the agents positions are
no longer the main concern: the state space is a space of
partitions of the given environment. We discuss important
properties of such a space, namely its compactness with
respect to a suitable metric, and the continuity of several
functions defined on it.

Second, as key motivating application, we devise a novel
algorithm for coverage optimization, a “gossip” algorithm, in
which only one pair of agents communicates per time step.
We do this, because we know that reducing the communi-
cation burden is a critical issue for coverage control: indeed

This work was supported in part by ARO MURI grant W911NF-05-1-
0219, ONR grant N00014-07-1-0721 and NSF grant CNS-0834446.

Paolo Frasca was with the Dipartimento di Matematica, Politecnico
di Torino, and is now with the DIIMA, Università di Salerno and
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pairwise communication can be more effective in practical
situations if connections between agents are not guaranteed
to be fully reliable.

Third, we provide convergence theorems which extend
the LaSalle invariance principle to a special class of set-
valued maps on metric spaces. Convergence to a certain set
of fixed points is achieved under uniform deterministic or
stochastic persistency conditions. Applying these extensions
of the LaSalle invariance principle and the properties of the
state of partitions, we are able to give conditions for the
proposed algorithm to converge to the critical points of a
natural cost functional. In the interest of brevity all proofs
are postponed to a forthcoming journal submission.

B. Related works

Coverage control problems have been recently solved in a
distributed way in [1], which set up the classical agent-based
approach. A broad discussion about coverage control is pre-
sented in [2], [3]; other related works include [4] on sensor-
based algorithms, [5] on dynamic coverage, [6] on estimation
of stochastic spatial fields, [7] on equitable partitioning
policies, and [8], [9], [10] on nonconvex environments. The
pairwise “gossip” approach to agents communication has
been already considered for the consensus problem in recent
works [11], [12].

In our work we use tools from topology and we consider
control systems on non-Euclidean spaces. The application of
topological methods to multiagent systems and distributed
coverage verification has received recent attention, e.g.,
see [13], [14]. The interest for control systems defined on
non-Euclidean spaces has a rich history, e.g., see [15].

C. Paper structure and notations

The paper is structured as follows. In Section II we for-
mally describe the coverage control problem. In Section III
we present the coverage algorithm relying on pairwise com-
munication, we state its convergence properties, and we show
simulations results. Section IV contains the convergence the-
orems extending the LaSalle invariance principle; Section V
describes the space of partitions; and Section VI, states the
continuity properties of the relevant maps and functions.
Some conclusions are given in Section VII.

We let R>0 and R≥0 denote the set of positive and non-
negative real numbers, respectively, and Z≥0 denote the set
of non-negative integer numbers. Given a subset A of the
Euclidean space Rd, we let int(A) denote its interior, A
denote its closure, ∂A denote its boundary and diam(A)
its diameter. Given two sets X and Y , a set-valued map,
denoted by T : X ⇒ Y , associates to an element of X a
subset of Y .



II. COVERAGE OPTIMIZATION AND DISTRIBUTED
CONTROL VIA MULTICENTER FUNCTIONS

We are given a group of robots (also called agents)
with limited communication and sensing capabilities, and
an environment, and we want the agents to deploy in the
area in an optimal way. The environment is apportioned into
smaller regions, each assigned to an agent. Iteratively, the
partition, and the agents configuration, are updated in a way
to minimize a cost functional, which depends on the current
partition and agents’ positions.

A. Partitions, centroids and multicenter optimization
In what follows, let the environment to apportion be Q,

a compact convex subset of Rd with non-empty interior.
Partitions of Q are defined as follows.

Definition II.1 (Partition) An N -partition of Q, denoted by
v = {vi}N

i=1, is a collection of N subsets of Q with the
following properties:

(i) each set vi, i ∈ {1, . . . , N}, is closed, has non-empty
interior, and its boundary has measure zero;

(ii) int(vi)∩ int(vj) is empty whenever i 6= j; and
(iii) ∪i∈{1,...,N} vi = Q.

We let VN denote the set of N -partitions of Q.

Let p = (p1, . . . , pN ) ∈ QN denote the position of N
agents in the environment Q. Given v ∈ VN and almost any
p ∈ QN , each agent is naturally in one-to-one correspon-
dence with an element of v; specifically we sometimes refer
to vi as the dominance region of agent i ∈ {1, . . . , N}.

On Q, we define a density function to be a bounded mea-
surable positive function φ : Q → R>0 and a performance
function to be a locally Lipschitz, monotone increasing and
convex function f : R≥0 → R≥0. With these notions, we
next define the multicenter function Hmulticenter : VN×QN →
R≥0 by

Hmulticenter(v, p) =
N∑

i=1

∫

vi

f(‖pi − q‖)φ(q)dq. (1)

We aim to minimize this function with respect to both the
partition v and the locations p.

Remark II.2 (A word about locational optimization)
The function Hmulticenter has the following interpretation.
Given an agent at location pi, assume that f(‖pi−q‖) is the
cost incurred by agent i to “service” an event taking place
at point q. Events take place inside Q with likelihood φ.
Accordingly, the multicenter function Hmulticenter quantifies
how well the environment Q is partitioned and how well the
agents are placed inside Q. This and related optimal sensor
placement problems are studied in locational and geometric
optimization, spatial resource allocation, quantization theory,
clustering analysis, and statistical pattern recognition; see [2,
Chapter 2] and references therein. ¤

Among all possible ways of partitioning a subset of Rd,
there is one which is worth of special attention. Define the
set of partly coincident locations SN = {p ∈ QN | pi =
pj for some i, j ∈ {1, . . . , N}, i 6= j}. Given p ∈ QN \SN ,

the Voronoi partition of Q generated by p, denoted by V (p),
is the collection of the Voronoi regions {Vi(p)}N

i=1, defined
by

Vi(p) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ for all j 6= i}. (2)

In other words, the Voronoi partition is a map V : (QN \
SN ) → VN . The regions Vi(p), i ∈ {1, . . . , N}, are convex
and, if Q is a polytope, they are polytopes. Now, given two
distinct points q1 and q2 in Rd, define the (q1; q2)-bisector
half-space by

Hbs(q1; q2) = {q ∈ Rd | ‖q − q1‖ ≤ ‖q − q2‖}. (3)

In other words, Hbs(q1; q2) is the closed half-space con-
taining q1 whose boundary is the hyperplane bisecting1 the
segment from q1 to q2. Note that Hbs(q1; q2) 6= Hbs(q2; q1)
and that Voronoi partition of Q satisfies Vi(p1, . . . , pn) =
Q∩ (∩j 6=i Hbs(pi; pj)

)
.

Each region equipped with a density function possesses
a point with a special relationship with the multi-center
function. Given A, a measurable subset of Q, for each p ∈ Q
we define the scalar 1-center function H1 by

H1(p; A) =
∫

A

f(‖p− q‖)φ(q)dq. (4)

One can show that, under the stated assumptions on the
performance function f , the function p 7→ H1(p; A) is
strictly convex in p, for any set A with positive measure
(Lemma VI.1). Since this function is strictly convex, it has a
unique minimum in Q. Therefore, we define the generalized
centroid of A by

Cd(A) = argmin{H1(p;A) | p ∈ Q}. (5)

In what follows, it is convenient to drop the word “general-
ized,” and to denote by Cd(v) = (Cd(v1), . . . , Cd(vN )) ∈
QN the vector of regions centroids corresponding to a
partition v ∈ VN .

Remark II.3 (Quadratic and linear performance func-
tions) If the performance function is f(x) = x2, then the
global minimum of H1 is the centroid (also called the center
of mass) of A, defined by

Cd(A) =
( ∫

A

φ(q)dq
)−1

∫

A

qφ(q)dq.

If the performance function is f(x) = x, then the global
minimum of H1 is the median (also called the Fermat–Weber
center) of A. See [2, Chapter 2] for more details. ¤

Proposition II.4 (Properties of Hmulticenter) For any parti-
tion v ∈ VN and any point set p ∈ QN \ SN ,

Hmulticenter(V (p), p) ≤ Hmulticenter(v, p), (6)
Hmulticenter(v, Cd(v)) ≤ Hmulticenter(v, p). (7)

Furthermore, inequality (6) is strict if any entry of V (p)
differs from the corresponding entry of v by a set with non-
empty interior, and inequality (7) is strict if Cd(v) differs
from p.

1A hyperplane bisects a segment if it is perpendicular to and passes
through the midpoint of the segment.



These statements, proved in [2, Propositions 2.14 and 2.15],
motivate the following definition: a partition v∗ ∈ VN is a
centroidal Voronoi partition if v∗ = V (Cd(v∗)). Based on
the multicenter function, we define Hcentroid : VN → R≥0 by

Hcentroid(v) = Hmulticenter(v,Cd(v)) (8)

=
N∑

i=1

∫

vi

f(‖q − Cd(vi)‖)φ(q)dq.

The novel function Hcentroid plays a key role in later devel-
opments and has the following property that is an immediate
consequence of Proposition II.4: given a partition v with
Cd(v) /∈ SN ,

Hcentroid(V (Cd(v))) ≤ Hcentroid(v), (9)

and this inequality is strict if any entry of V (Cd(v)) differs
from the corresponding entry of v by a set with non-empty
interior.

B. Distributed coverage control and its limitations
Given a network of robots, coverage control algorithms [1]

move the robots in order to minimize Hmulticenter. To discuss
these algorithms, we introduce a useful graph. The Delaunay
graph [16], [2] associated to the distinct positions p ∈
QN \SN is the undirected graph with node set {pi}N

i=1 and
with the following edges: (pi, pj) is an edge if and only if
Vi(p)∩Vj(p) is non-empty. In other words, two agents are
neighbors if and only if their Voronoi regions intersect.

Fig. 1. The Voronoi partition and the corresponding Delaunay graph

The distributed coverage algorithm studied in [1] is de-
scribed as follows. At each discrete time instant t ∈ Z≥0,
each agent i performs the following tasks: (i) it transmits
its position and receives the positions of its neighbors in
the Delaunay graph; (ii) it computes its Voronoi region with
the information received; (iii) it moves to the centroid of its
Voronoi region. In mathematical terms, for t ∈ Z≥0,

p(t + 1) = Cd(V (p(t))). (10)

Because of the smoothness of the various maps, compactness
of Q, and monotonicity properties in Proposition II.4, one
can show [2] that the solutions of (10) converge asymptot-
ically to the set of the centroidal Voronoi partitions. This
distributed coverage algorithm requires synchronized and
reliable communication along all edges of a Delaunay graph.

This paper aims to reduce the reliability, synchroniza-
tion and communication requirements of distributed cov-
erage algorithms. Relevant questions are: Is it possible to
optimize agents positions and environment partition with

asynchronous, unreliable, delayed communication? What if
the communication model is that of gossiping agents, that is,
a model in which only a pair of robots can communicate at
any time? How do we overcome the limitation that Voronoi
partitions generated by moving agents can not be computed
with only asynchronous pairwise communication?

III. PARTITIONS-BASED GOSSIP COVERAGE ALGORITHM

In the partitions-based approach, the position of the robot
essentially plays no role anymore and we instead describe
how to update the dominance regions. Designing coverage
algorithms as dynamical systems on partitions has an im-
portant advantage: we do not restrict our attention only to
Voronoi partitions.

A. The gossip coverage algorithm
Here we present an novel partition-based coverage algo-

rithm that, at each iteration, requires only a pair of adjacent
regions to communicate. We adopt the following convention:
we allow communication between adjacent regions. The
following definition generalizes the notion of Delaunay graph
and the notion of dual graph of a planar graph [16].

Definition III.1 (Adjacency graph of a partition)
Given a partition v ∈ VN , its adjacency graph G(v) is
the undirected graph with node set v (or equivalently
{1, . . . , N}) and with the edge set E(v) defined as follows:
(vi, vj) is an edge if and only if the two regions vi and vj

are adjacent in the sense that int(vi)∩ int(vj) is non-empty.

Recalling the notion of bisector half-space from equa-
tion (3), the gossip coverage algorithm is stated as follows.

At each time t ∈ Z≥0, each agent i maintains in memory a
dominance region vi(t). The collection {v1(0), . . . , vN (0)}
is an arbitrary N -partition of Q. At each t ∈ Z≥0 a
communicating pair, say (i, j) ∈ E(v(t)), is selected by a
deterministic or stochastic process to be determined. Every
agent k 6∈ {i, j} sets vk(t+1) = vk(t), whereas agents i and
j perform the following tasks:

1: agent i transmits to agent j its dominance region vi(t)
and vice-versa

2: both agents compute the centroids Cd(vi(t)) and
Cd(vj(t))

3: if Cd(vi(t)) = Cd(vj(t)) then
4: vi(t + 1) := vi(t) and vj(t + 1) := vj(t)
5: else
6: vi(t+1) :=

(
vi(t)∪ vj(t)

)∩Hbs
(
Cd(vi(t)); Cd(vj(t))

)
vj(t+1) :=

(
vi(t)∪ vj(t)

)∩Hbs
(
Cd(vj(t)); Cd(vi(t))

)
7: end if

In other words, when two agents with distinct centroids
communicate, their dominance regions evolve as follows:
the union of the two dominance regions is divided into
two new dominance regions by the hyperplane bisecting
the segment between the two centroids; see Figure 2. As
a consequence, if the centroids Cd(vi(t)), Cd(vj(t)) are
distinct, then {vi(t + 1), vj(t + 1)} is the Voronoi partition
of the set vi(t)∪ vj(t) generated by the centroids Cd(vi(t))
and Cd(vj(t)). We claim that the algorithm is well-posed in
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Fig. 2. The gossip coverage algorithm. The left and right figure contain
the initial partition and the partition after one application of the gossip
coverage algorithm with (i, j) = (1, 2). In the middle figure we show the
two centroids and the bisector half-space.

the sense that the sequence of collections v(t) generated by
the algorithm is an N -partition at all times t, that is, satisfies
the three properties in Definition II.1.

Now, for any pair (i, j) ∈ {1, . . . , N}2, i 6= j, we define
the map Tij : VN → VN by

Tij(v) =

{
v, if Cd(vi) = Cd(vj),
(v1, . . . , v̂i, . . . , v̂j , . . . , vN ), otherwise,

where

v̂i =
(
vi ∪ vj

)∩Hbs
(
Cd(vi); Cd(vj)

)
,

v̂j =
(
vi ∪ vj

)∩Hbs
(
Cd(vj); Cd(vi)

)
.

The dynamical system on the space of partitions is therefore
described by, for t ∈ Z≥0,

v(t + 1) = Tij(v(t)), for some (i, j) ∈ E(v(t)), (11)

together with a rule describing what edge (i, j) is selected at
each time. We also define the set-valued map T : VN ⇒ VN

by T (v) = {Tij(v) | (i, j) ∈ E(v)}. The map T describes
one iteration of the gossip coverage algorithm; an evolution
of the gossip coverage algorithm is one of the solutions to
the non-deterministic set-valued dynamical system

v(t + 1) ∈ T (v(t)). (12)

B. Designing a continuous gossip coverage algorithm
The gossip coverage map T does not satisfy certain

continuity properties. In general given two regions vi and
vj , problems arise either when ‖Cd(vi)− Cd(vj)‖ → 0 or
when vi and vj share a piece of boundary whose length tends
to 0. In our convergence analysis continuity properties are
necessary. Therefore, we introduce a minor modification of
the gossip coverage map T , which does possess the needed
continuity properties, as stated in Theorem VI.2.

Given v = {v1, . . . , vN} ∈ VN , consider two regions vi

and vj such that Cd(vi) 6= Cd(vj). Pick δ > 0 and define2

β(vi, vj) = satδ (‖Cd(vi)− Cd(vj)‖)
· (1− satδ(dist(int(vi), int(vj)))) ,

where satδ : R≥0 → [0, 1] is such that satδ(x) = x/δ if
x ∈ [0, δ], and satδ(x) = 1 if x > δ. We aim to define a
“smoothed” map T δ

ij , parameterized by δ, with the following
properties. If β(vi, vj) = 1, i.e., if the distance between the

2Given two subsets A and B of Q, define dist(A, B) = inf{‖a −
b‖ | (a, b) ∈ A×B}.

regions vi and vj is zero (vi and vj are adjacent) and the
distance between Cd(vi) and Cd(vj) is larger than δ, then
T δ

ij(v) = Tij(v); in this case the map T δ
ij reduces to the

map Tij introduced in the previous section. Additionally, if
β(vi, vj) = 0, i.e., either Cd(vi) and Cd(vj) coincide or the
distance between vi and vj is larger than δ, then T δ

ij(v) = v,
that is, the map T δ

ij leaves the regions unchanged.
To define such a map T δ

ij , we proceed as follows, see
Figure 3. Define Ri = vi ∩Hbs(Cd(vj), Cd(vi)) = {q ∈
vi | ‖q − Cd(vi)‖ ≥ ‖q − Cd(vj)‖}, and similarly Rj =
vj ∩Hbs(Cd(vi), Cd(vj)). Let γ⊥ be the hyperplane bisect-
ing the segment from Cd(vi) to Cd(vj), that is,

γ⊥ = {q ∈ Q | ‖q − Cd(vj)‖ = ‖q − Cd(vi)‖}.
Observe that for each q ∈ Ri ∪ Rj there exists only one
hyperplane γ parallel to γ⊥ and passing through q; we denote
this hyperplane as γq . Now define two points p̂i ∈ Ri and
p̂j ∈ Rj such that

p̂i ∈ argmax
q∈int (Ri)

min
y∈γ⊥

‖q − y‖,

p̂j ∈ argmax
q∈int (Rj)

min
y∈γ⊥

‖q − y‖,

and define two sets

R̂i = {q ∈ Ri | dist(p̂i, γq) ≤ β(vi, vj) dist(p̂i, γ⊥)},
R̂j = {q ∈ Rj | dist(p̂j , γq) ≤ β(vi, vj) dist(p̂j , γ⊥)}.

Now, we introduce the map T δ
ij : VN → VN ,

T δ
ij(v) =

{
v, if Cd(vi) = Cd(vj),
(v1, . . . , v̂i, . . . , v̂j , . . . , vN ), otherwise,

where

v̂i =
(
vi \ int(R̂i)

) ∪ R̂j , and v̂j =
(
vj \ int(R̂j)

) ∪ R̂i.

Finally we define the modified gossip coverage map T δ :
VN ⇒ VN by

T δ = {T δ
ij(v) | (i, j) ∈ {1, . . . , N}2, i 6= j}. (13)

C. Analysis and convergence results
Here we state the main convergence results of the present

paper. We begin by characterizing a useful set.

Definition III.2 A partition v ∈ VN is a mixed equal-
centroidal and centroidal-Voronoi partition if, for all (i, j) ∈
G(v), either Cd(vi) = Cd(vj) or (vi, vj) is a centroidal
Voronoi partition of vi ∪ vj .

It is easy to show that the set of mixed equal-centroidal and
centroidal Voronoi partitions is equal to the set of fixed points

{v ∈ VN | v = Tij(v) for all i, j ∈ {1, . . . , N}, j 6= i}.

Remark III.3 Let v ∈ VN . If {vi, vj} is a centroidal
Voronoi partition of vi ∪ vj for any (i, j) ∈ E(v), then v
is a centroidal Voronoi partition. ¤

Before stating the convergence results for the modified
gossip coverage algorithm, we introduce one last notion. We
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Fig. 3. Demonstration of the map T δ
ij , for two regions which are close to each other.

say that (1) the boundary of a set is degenerate if it has
positive measure; and (2) a partition has degenerate boundary
if at least one component of the partition has degenerate
boundary. Note that, if each component of a partition is a
collection of polygons with a finite number of vertices, then
the partition boundary is not degenerate.

We now state the main deterministic convergence result
for the gossip coverage algorithm.

Theorem III.4 (Convergence under uniformly persistent
gossip) Given δ > 0, consider the modified gossip coverage
algorithm T δ defined in (13) and let v : Z≥0 → VN be an
evolution of T δ . Assume that

(i) the trajectory v does not have an accumulation point
with degenerate boundary; and

(ii) for each pair (i, j) ∈ {1, . . . , N}2, i 6= j, there exists
an increasing sequence of times {tk}k∈Z≥0 ⊂ Z≥0

such that (tk+1 − tk) is bounded and v(tk + 1) =
T δ

ij(v(tk)).
Then the trajectory v converges to the set of the mixed equal-
centroidal and centroidal-Voronoi partitions.

We now state the main stochastic convergence result for
the gossip coverage algorithm.

Theorem III.5 (Convergence under persistent random
gossip) Given δ > 0, consider the modified gossip coverage
algorithm T δ defined in (13). Given a stochastic process
J : Z≥0 → {(i, j) ∈ {1, . . . , N}2 | i 6= j}, consider an
evolution v : Z≥0 → VN of T δ satisfying, for t ∈ Z≥0,

v(t + 1) = T δ
J(t)(v(t)).

Assume that
(i) the trajectory v does not have an accumulation point

with degenerate boundary; and
(ii) there exists p ∈ ]0, 1[ and k ∈ N such that, for all

(i, j) ∈ {1, . . . , N}2, i 6= j, and for all t ∈ Z≥0, there
exists h ∈ {1, . . . , k} such that

P
[
J(t + h) = (i, j) | J(t), . . . , J(1)

] ≥ p.

Then the trajectory v almost surely converges to the set of the
mixed equal-centroidal and centroidal-Voronoi partitions.

The proof of these two theorems is based upon the
following basic result and three more complex sets of ideas.
First, the basic result is a monotonicity property that clarifies
the relationship between the multicenter function Hcentroid
and the gossip coverage algorithms.

Lemma III.6 Let v ∈ VN , i, j ∈ {1, . . . , N}, i 6= j,
and β ∈ R>0. Then the gossip coverage map has the
following property: Hcentroid(Tij(v)) ≤ Hcentroid(v), and
Hcentroid(Tij(v)) = Hcentroid(v) if and only if Tij(v) = v.
Additionally, the same result holds for the modified gossip
coverage map, that is, Hcentroid(T δ

ij(v)) ≤ Hcentroid(v), and
Hcentroid(T δ

ij(v)) = Hcentroid(v) if and only if T δ
ij(v) = v.

This lemma indicates how the function Hcentroid plays the role
of a Lyapunov function for the dynamical system defined by
T or T δ . However, to provide a complete Lyapunov con-
vergence proof, one needs to develop three sets of relevant
results. First, we need to establish extensions of the LaSalle
invariance principle for set-valued dynamical systems over
compact metric spaces. Second, we need to prove that the
space of partitions is a compact metric space. Third, we need
to establish the continuity properties of the relevant maps and
functions. These three topics are the subjects of Section IV,
V and VI, respectively.

D. Simulation results and implementation remarks

We have extensively simulated the partition-based gossip
coverage algorithm described by (11) on a 2-dimensional
polygonal environment with uniform density and perfor-
mance function f(x) = x2. Simulations have been imple-
mented as a Matlab program, using the General Polygon
Clipping library to perform operations on polygons. At
each iteration, one edge is chosen, uniformly at random,
among the edges belonging to the current adjacency graph.
From these simulations, the effectiveness of the algorithm
above introduced appears evident: all solutions converge to
a centroidal Voronoi partition (Figure 4).

Our main numerical finding is that, although it is theoreti-
cally possible to have convergence to pathological partitions
(e.g., to regions having coincident centroids), such events
do not happen in simulations. Specifically, our numerically-
computed sequences of partitions always converge to cen-
troidal Voronoi partitions, as the synchronous coverage con-
trol algorithm (10) does.

A second numerical finding is that, throughout numerous
sample executions, regions rarely have complicated shapes
and large numbers of vertices. This is good news because
of large number of vertices affects both the computation and
the communication burden required to implement the gossip
coverage algorithm.

Finally, let us note that it is possible, and we have
observed it numerically, to have evolutions of the algorithm
that, before converging to centroidal Voronoi partitions, have
components with disconnected regions. From the point of



Fig. 4. Simulations of randomized gossip algorithm, with N = 6, Q ⊂ R2, φ ≡ 1 and f(x) = x2. The figure shows snapshots of a time evolution of
the partitions, for t = 0, 20, 50, 100, 300. Remark that the dominance regions can loose connectivity during the evolution.

view of the applications, a connected region can be covered
by an agent in a more natural way. These reasons suggest
keeping the regions connected when applying the algorithm.
Although we do not have theoretical results in this sense, we
simulated a modification of the gossip coverage algorithm
which keeps the dominance regions connected: during the
update step, every connected component is traded between
the interacting regions only if this can be done without
loosing connectivity. Our simulations show that such an
algorithm leads to centroidal Voronoi partitions as well.

E. A robotic implementation of gossip coverage algorithms
Consider a group of agents all having the following capa-

bilities: (C1) each agent i ∈ {1, . . . , N} knows its positions
and moves at positive speed ui to any position in the compact
convex environment Q ⊂ R2; (C2) each agent may store an
arbitrary number of locations in Q and has a clock that is not
necessarily synchronized with other agents’ clocks; and (C3)
if any two agents are within distance rcomm of each other for a
positive time duration tcomm and they have not communicated
during the immediately prior interval of time of duration
tcomm, then there is a positive probability pcomm that they
establish a communication link and exchange information. It
is realistic to assume tcomm ¿ diam(Q)/(Nui) for each i.

The random destination+wait motion algorithm is de-
scribed as follows. Given a parameter ε < rcomm/4, each
agent i ∈ {1, . . . , N} maintains in memory a (possibly time-
varying) dominance region vi and determines its motion
by repeatedly performing certain actions over periods of
time that we label epochs. An epoch is the amount of
time that agent i requires to perform the following three
actions:

1: it selects uniformly randomly a destination point qi in
the set {q ∈ R2 | dist

(
q, ∂vi \ ∂Q

) ≤ ε};
2: it moves in such a way as to reach point qi in time equal

to ti = diam(Q)/(N min{u1, . . . , uN}); and
3: it waits at point qi for a time duration that is uniformly

randomly distributed in the interval [ti, 3ti].
A clarification is in order: we have assumed that agents
may move outside of Q and reach locations at a maximum
distance of ε from Q. This assumption may be removed at
the cost of additional notation.

The random destination+wait motion algorithmis to be
implemented concurrently with the modified gossip coverage
algorithm with parameter δ < rcomm/4. The two algorithms
jointly determine the evolution of the agents positions and
the evolution of the agents dominance regions as follows.
If at any instant of time during any epoch, an agent i is

within communication range rcomm of any other agent j for a
duration tcomm, then, with a probability pcomm, the two agents
exchange sufficient information to update their respective
regions vi and vj via the modified gossip coverage map T δ

ij .

Proposition III.7 (Random destination+wait ensures per-
sistent random gossip) Consider a group of N agents with
capacities (C1), (C2) and (C3) and parameters ui, rcomm,
tcomm, and pcomm. Assume the agents implement the random
destination+wait motion algorithm and the modified gossip
coverage algorithm with parameter ε < rcomm/4 and δ <
rcomm/4. Then, the sequence of applications of the modified
gossip coverage map satisfies the “persistent random gossip
assumption” in Theorem III.5 (Assumption (ii)); therefore,
if the generated trajectory does not have an accumulation
point with degenerate boundary, the set of dominance regions
maintained by the agents converges to the set of the mixed
equal-centroidal and centroidal-Voronoi partitions.

IV. LASALLE INVARIANCE PRINCIPLE FOR SET-VALUED
MAPS ON METRIC SPACES

In this section we consider discrete-time continuous-space
set-valued dynamical system defined on metric spaces. Our
goal is to provide some extensions of the classical LaSalle
invariance principle; we refer the interested reader to [17],
[18] for recent Lasalle invariance principles for switched
continuous-time and hybrid systems.

We start by reviewing some preliminary notions. Consider
a metric space (X, d), where X is a set and d a metric on
X . A set-valued map T : X ⇒ X is non-empty if T (x) 6=
∅ for all x ∈ X . An evolution of the dynamical system
determined by a non-empty set-valued map T over X is a
sequence {xn | n ∈ Z≥0} ⊂ X with the property that

xn+1 ∈ T (xn), n ∈ Z≥0.

Given any initial x0 ∈ X , an evolution of T is computed by
recursively setting xn+1 equal to an element in T (xn).

A set W is weakly positively invariant for T if, for any
x0 ∈ W , there exists x ∈ T (x0) such that x ∈ W . A set W
is strongly positively invariant for T if, for any x0 ∈ W , all
x ∈ T (x0) satisfy x ∈ W .

The following result is a version of the LaSalle invari-
ance principle for a particular class of switching dynamical
systems.

Theorem IV.1 (Uniformly persistent switches) Let (X, d)
be a metric space. Given a collection of maps T1, . . . , Tm :
X → X , define the set-valued map T : X ⇒ X by T (x) =



{T1(x), . . . , Tm(x)} and let {xn | n ∈ Z≥0} be an evolution
of T . Assume that:

(i) there exists a set W ⊆ X that is strongly positively
invariant for T and whose closure is compact;

(ii) there exists a function U : W → R such that U(w′) <
U(w), for all w ∈ W and w′ ∈ T (w) \ {w};

(iii) the functions Ti, for i ∈ {1, . . . , m}, and U are
continuous on W ; and

(iv) for all i ∈ {1, . . . , m}, there exists an increasing
sequence of times {nk | k ∈ Z≥0} such that xnk+1 =
Ti(xnk

) and (nk+1 − nk) is bounded.
If x0 ∈ W , then there exists c ∈ R such that the evolution
xn approaches the set

(
(F1 ∩ · · · ∩Fm)∪(∂W \W )

)∩U−1(c),

where, for i ∈ {1, . . . , m}, Fi = {w ∈ W | Ti(w) = w} is
the set of fixed points of the map Ti in W .

We also provide a probabilistic version of Theorem IV.1.

Theorem IV.2 (Persistent random switches) Let
(X, d) be a metric space. Given a collection of maps
T1, . . . , Tm : X → X , define the set-valued map
T : X ⇒ X by T (x) = {T1(x), . . . , Tm(x)}. Given a
stochastic process J : Z≥0 → {1, . . . ,m}, consider an
evolution {xn | n ∈ Z≥0} of T satisfying

xn+1 = TJ(n)(xn).

Assume that:
(i) there exists a set W ⊆ X that is strongly positively

invariant for T and whose closure is compact;
(ii) there exists a function U : W → R such that U(w′) <

U(w), for all w ∈ W and w′ ∈ T (w) \ {w};
(iii) the functions Ti, for i ∈ {1, . . . , m}, and U are

continuous on W ; and
(iv) there exists p ∈ ]0, 1[ and k ∈ N such that, for all i ∈

{1, . . . , m} and n ∈ Z≥0, there exists h ∈ {1, . . . , k}
such that

P
[
J(n + h) = i | J(n), . . . , J(1)

] ≥ p.

If x0 ∈ W , then there exists c ∈ R such that almost surely
the evolution xn approaches the set

(
(F1 ∩ · · · ∩Fm)∪(∂W \W )

)∩U−1(c),

where, for i ∈ {1, . . . , m}, Fi = {w ∈ W | Ti(w) = w} is
the set of fixed points of the map Ti in W .

V. THE SPACE OF PARTITIONS

Motivated by the results in Section IV, we study a metric
structure on the set of partitions; specifically, we show
how the set of partitions can be regarded as a compact
metric space. In this section, and only in this section, the
assumptions on Q are relaxed to give more general results:
we assume that Q ⊂ Rd is compact and connected and has
non-empty interior.

Let C denote the set of the closed subsets of Q. Ad-
ditionally, a set C ∈ C is said to be regularly closed if
int(C) = C. Given a closed set C ∈ C, we say int(C) to be

its regularization. We want to introduce a suitable metric and
topology on C; since the cost functions defined in Section II
are insensitive to sets of zero measure, we look for a metric
with the same property.

Let µ be the Lebesgue measure of a subset of Rd. Given
two subsets A, B ∈ C, define their symmetric difference by
A∆B = (A ∪ B) \ (A∩B) and their symmetric distance
d∆ : C × C → R≥0 by

d∆(A,B) = µ(A∆B).

In other words, the symmetric distance is the measure of the
symmetric difference of the two sets. Given these definitions,
it is useful to identify sets that differ by a set of measure zero.
More formally, let us write A ∼ B whenever d∆(A,B) = 0,
and remark that ∼ is an equivalence relationship. In what
follows we will study the quotient set of closed subsets C∗ =
C/ ∼. The next result is the main result of this section.

Theorem V.1 (Metric structure and compactness of C∗)
The pair (C∗, d∆) is a metric space. Moreover, with the
topology induced by the metric d∆, the set C∗ is compact.

Next, we characterize the metric structure and compact-
ness of the set of partitions. The space of partitions VN ,
introduced in Section II, is mapped by the canonical projec-
tion into a V∗N , whose components belong to C∗. The metric
d∆ naturally extends to a metric on the product space (C∗)N

and on V∗N as follows. The symmetric distance on partitions
d∆ : VN × VN → R≥0 is defined by

d∆(u, v) =
N∑

i=1

d∆(ui, vi). (14)

The compactness of the space of partitions is then a simple
consequence of Theorem V.1.

Corollary V.2 (Metric structure and compactness of V∗N )
The pair (V∗N , d∆) is a metric space. Moreover, with the
topology induced by the metric d∆, the closure of V∗N is a
compact set.

In the rest of the paper, V∗N and VN are treated as one
and the same: one may think to VN as the space of the
actual dynamics for the agents, and V∗N as a space which
is introduced for analysis purposes. Note that, thanks to the
definition of VN , V∗N can as well be depicted as a space
of “partitions” made of regularly closed sets, representing
the actual regions, in the sense that they differ by a set
of measure zero. In general, the equivalence classes of
closed sets can not be treated by means of regularly closed
representatives, since the regularization of a closed set can
differ from it by a set of positive measure. However, the
identification can be done for closed sets satisfying the
assumptions in Definition II.1, since they have zero-measure
boundary.

It can be checked that all functions and maps of C or
VN , that we use in this paper, are independent of the
representative which is chosen, but only depends on the
equivalence class, that is, are defined up to sets of measure
zero. Thus, not only a sequence in VN is mapped into a



sequence in V∗N , but the dynamics in VN induces a dynamics
in V∗N ; it is the latter dynamics that we are able to study.
Some additional useful equivalence properties are stated as
follows.

Corollary V.3 Let u, v ∈ VN and d∆(u, v) = 0. Then
(i) the adjacency graphs of u and of v are equal;

(ii) u and v have the same regularization; and
(iii) if each set in u and v is regularly closed, then u = v.

VI. CONTINUITY PROPERTIES OF RELEVANT MAPS

The following lemma states some important properties of
the one-center cost function.

Lemma VI.1 Let Q be the environment, and φ and f be the
density and performance functions, respectively. For p ∈ Q,
and A a compact subset of Q with positive measure, let
H1(p, A) =

∫
A

f(‖p− q‖)φ(q)dq as in equation (4). Then
(i) the map p 7→ H1(p,A) is strictly convex in p, for any

A;
(ii) the map p 7→ H1(p,A) is globally Lipschitz in p, for

any A; and
(iii) the map A 7→ H1(p,A) is globally Lipschitz in A, for

any p.

This lemma is a key step to prove the following results.

Theorem VI.2 (Continuity) The following properties hold
true.

(i) The centroid map Cd : C∗ \ {∅} → Q, as defined in
equation (5), is continuous.

(ii) The Voronoi map V : QN \ SN → VN , as defined in
equation (2), is continuous.

(iii) The function Hcentroid : VN → R≥0, as defined in
equation (8), is continuous.

(iv) For all δ > 0, (i, j) ∈ {1, . . . , N}2, i 6= j, the modified
gossip coverage map T δ

ij : VN → VN , as defined in
Section III-B, is continuous.

Statements (iii) and (iv) are exactly what is needed to apply
the LaSalle invariance principles stated in Section IV to the
modified gossip coverage algorithm. Statements (i) and (ii)
are intermediate results of independent interest.

VII. CONCLUSIONS

In short summary, we have introduced novel multiagent
coverage and partitioning algorithms, established novel ver-
sions of the LaSalle Invariance Principle, studies the topol-
ogy of the space of partitions and the continuity of certain
multicenter functions.

We believe that the gossiping agents model and, in general,
the partition-based approach to coverage control, can be
the subject of further research. A first issue is extending
these ideas to non-convex environments: indeed parts of
our analysis hold with the weaker assumption of Q being
compact. A second issue regards the problem of partitioning
environments which are not subset of Rd, but of general
metric spaces: for instance, discrete objects like graphs. As
third direction of future research, we plan to investigate gos-
sip coverage algorithms for robotic networks with appearing
and disappearing robots.
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