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Broadcast gossip averaging: interference and
unbiasedness in large Abelian Cayley networks

Fabio Fagnani Paolo Frasca

Abstract—In this paper we study two related iterative random-
ized algorithms for distributed computation of averages. The first
algorithm is the Broadcast Gossip Algorithm, in which at each
iteration one randomly selected node broadcasts its own state to
its neighbors. The second algorithm is a novel variation of the for-
mer, in which at each iteration every node is allowed to broadcast:
hence this algorithm, which we call Collision Broadcast Gossip
Algorithm (CBGA), is affected by interference among messages.
The performance of both algorithms is evaluated in terms of rate
of convergence and asymptotical error: focusing on large Abelian
Cayley networks, we highlight the role of topology and of design
parameters. We show that on fully-connected graphs the rateof
convergence is bounded away from one, whereas the asymptotical
error is bounded away from zero. On the contrary, on sparse
graphs the rate of convergence goes to one and the asymptotical
error goes to zero, as the size of the network grows larger. Our
results also show that the performance of the CBGA is close to
the performance of the BGA: this indicates the robustness of
broadcast gossip algorithms to interferences.

I. I NTRODUCTION

When it comes to perform control and monitoring tasks
through networked systems, a crucial role has to be played
by algorithms for distributed estimation, that is algorithms
to collectively compute aggregate information from locally
available data. Among these problems, a prototypical one isthe
distributed computation of averages, also known as the average
consensus problem. In the average consensus problem each
node of a network is given a real number, and the goal for the
nodes is to iteratively converge to a good estimate of the aver-
age of these initial values, by repeatedly communicating and
updating their states. Recently, an increasing interest has been
devoted within the control and signal processing communities
to randomizedalgorithms able to solve the average consensus
problem, because randomized algorithms may offer better
performance and robustness with respect to their deterministic
counterparts. As well, randomized algorithms may require less
or no synchronization among the nodes, a property which is
often difficult to ensure in the applications. These facts are
especially relevant when communication is obtained through
a wireless network. For these reasons, in this paper we study
the performance of two notable algorithms based on random
broadcast communication.

Related works

In latest years, the interest for wireless networks has lead
the researchers to consider averaging algorithms based on
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broadcastcommunication over networks. The paper [3] is
devoted to study the so-called Broadcast Gossip Algorithm
(BGA): at each time step one node, randomly selected from
a uniform distribution over the nodes, broadcasts its current
value to its neighbors. Each of these neighbors, in turn,
updates its value to a convex combination of its previous
value and the received one. In [3], the authors prove that the
BGA converges almost surely to a consensus value, which is,
in expectation, the average of the initial node values. They
also show that the mixing parameter of the algorithm can
be suitably used to trade-off between convergence rate and
accuracy of the computation in a mean squared error sense.
More recently, the paper [2] considers a related communication
model, leading to a Probabilistic Broadcast Gossip Algorithm
(PBGA): the broadcasted values are received or not with a
probability which depends on the transmitter and receiver
nodes, or equivalently on the graph edge. In [2] it is shown that
also the PBGA converges almost surely to a consensus value
whose expectation is the average of initial node values. These
results suggest the robustness of BGA to independent random
communication failures. A few other randomized “gossip”
algorithms have been proposed and studied in the literature,
including [5], [4], [11], [18], [9], [14]; see [10] for a recent
survey, and [1] for general theoretical results.
The BGA is distributed and requires minimal synchronization:
indeed, it is observed in [3] that the BGA communication
model is equivalent, up to a suitable scaling of time, to
assuming that each node broadcasts at time instants selected
by a private Poisson process. Nevertheless, this equivalence
is no longer true if broadcasting takes a finite duration of
time. If this happens, a node can be with non-zero probability
the target of more than one simultaneous communication,
and destructive interference may occur. This issue is mostly
relevant in wireless networks, which have to share their com-
munication medium. Hence, the practical applicability of this
algorithm in a distributed system resides either on the validity
of the assumption that communications are instantaneous, or
on the possibility to incorporate some nontrivial collision
detection scheme. The role of interference, message collisions
and packet losses in consensus problems, and the effectiveness
of countermeasures, has already been investigated in [8] for
consensus problems in a finite state space, and for real-valued
consensus in a few papers, including [19], [22], [15]. However,
to our knowledge there is no contribution yet about the role
of interference in broadcast gossip algorithms.
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Contribution

In this paper, we study averaging algorithms based on
broadcasting communication. In order to investigate the effect
of interference in the BGA, we propose and study a novel
averaging algorithm, which we call Collision Broadcast Gossip
Algorithm (CBGA). In this algorithm, we allow more than
one node to broadcast at the same time, possibly causing
the destructive interference of attempted communications, and
message loss. Instead, when a node properly receives a mes-
sage, it updates its state as in the BGA. It is of note that
this communication model can not be understood as a special
case of the PBGA in [2], because in the CBGA the events of
ineffective communication are not independent among edges.
Our results show that, just like the BGA, also the CBGA
algorithm converges almost surely to a random variable, whose
expectation is the average of initial values.

Besides convergence, we are then interested in the speed
and the accuracy of the algorithms. In particular, we call
bias the variance of the limit value, and we want to know
whether the algorithms areasymptotically unbiased, that is
whether the accuracy can be arbitrarily improved by taking a
larger network. This analysis question is motivated because,
although in most applications the size of the network is fixed
during operation, network design typically requires to choose
the size and topology of the network. In classical (centralized)
estimation, average is a natural estimator, and we know that
increasing the number of samples is a way to improve the
accuracy of the estimate. In a network, when each sample is
available to only one node and the average is computed by
a distributed procedure, we possibly introduce an error which
depends on the network and in particular on its size. Then, if
such error does not decrease to zero when the size grows, we
are wasting the advantage of using more samples – see [17]
for a related discussion.

Our results are based on the technical assumption that the
network topology has certain structural symmetries, namely
that the network is the Cayley graph of an Abelian group.
Under this assumption we prove that on sparse graphs with
bounded degree, both the BGA and the CBGA are asymp-
totically unbiased. Instead, both algorithms are biased on
complete graphs. As a byproduct of our analysis, we prove
a decomposition formula for the mean square evolution of the
BGA and CBGA, which shows that the performance of the
two algorithms is close on large networks: this suggests that
the BGA is robust to non-independent communication failures
due to interferences.

Paper structure

After presenting in Section II the averaging problem and the
algorithms under consideration, we develop our analysis tools
in Section III, including the mean square analysis theory and
the Abelian Cayley graph model. Later, Sections IV and V
are devoted to analyze the Broadcast Gossip Algorithm and
the novel Collision Broadcast Gossip Algorithm, respectively.
Some concluding remarks are presented in Section VI.

Notations

Given a setV of finite cardinality |V| = N , we define a
graph on this set asG = (V , E), whereE ⊆ V×V (we exclude
the presence of self-loops, namely edges of type(u, u)). Given
u, v ∈ V , if (v, u) ∈ E , we shall say thatv is an in-neighbor of
u, and converselyu is an out-neighbor ofv. We will denote by
N+

u andN−
u , the set of, respectively, the out-neighbors and the

in-neighbors ofu. Also, d+u = |N+
u | andd−u = |N−

u | are said
to be the out-degree and the in-degree of nodeu, respectively.
A graph whose nodes all have in-degreek is said to bek-
regular. A graph is said to be (strongly) connected if for any
pair of nodes(u, v), one can find a path, that is an ordered
list of edges, fromu to v. A graph is said to be symmetric
if (u, v) ∈ E implies (v, u) ∈ E . In a symmetric graph, being
the neighborhood relation symmetrical, there is no distinction
between in- and out-neighbors and we will drop, consequently,
the index+ or −. We let1 be theN−vector whose entries are
all 1, I be theN ×N identity matrix, andΩ := I−N−1

11
∗.

Given aN -vectora, we denote bydiag(a) the diagonal matrix
whose diagonal is equal toa. The adjacency matrix of the
graph G, denoted byAG , is the matrix in{0, 1}V×V such
that AGuv = 1 if and only if (v, u) ∈ E . We also define
the out-degree matrix asD+

G := diag (A∗
G1), the in-degree

matrix asD−
G := diag (AG1), and the Laplacian matrix as

LG = D−
G − AG . Given a matrixM ∈ R

V×V , we define the
graphGM = (V , EM ) by putting (v, w) ∈ EM iff v 6= w and
Mwv 6= 0. A matrix M is said to beadaptedto the graph
G = (V , E) if GM ⊆ G, that is if EM ⊆ E . When it comes
to compare two sequences{an}n∈N and {bn}n∈N, we shall
write thatan = o(bn) if lim supn

|an|
|bn|

= 0, that an = O(bn)

if lim supn
|an|
|bn|

< +∞, and thatan = Θ(bn) if an = O(bn)

and bn = O(an). Given a linear operatorL from a vector
space to itself, for instance represented by a square matrix,
we denote bysr(L) its spectral radius, that is the modulus of
its largest in magnitude eigenvalue. Wheneversr(L) = 1, we
shall define asesr(L) the modulus of the second largest in
magnitude eigenvalue.

II. B ROADCAST GOSSIP AVERAGING ALGORITHMS

In this section we present the averaging problem and the
algorithms we are going to study. Let us be given a connected
graphG = (V , E), and one real valueyv for each nodev ∈ V .
Then, the averaging problem consists in approximating the
average 1

N

∑

v∈V yv, with the constraint that at every time
step each nodev can communicate to its out-neighbors only.
Typically, this is solved by linear iterative algorithms such that
x(0) = y, and for all t ∈ Z≥0, x(t + 1) = P (t)x(t), where
the matrixP (t) ∈ R

V×V is adapted toG.
We start by recalling the Broadcast Gossip Algorithm as

presented in [14], [3]. In this algorithm, at every time step
one node, randomly selected from a uniform distribution over
the nodes, broadcasts its current value to its neighbors. Its
neighbors, in turn, update their values to a convex combination
of their previous values and the received ones. More formally,
we can write the algorithm as follows. Note that the only
design parameter is the weight given to the received value in
the convex update, which we callmixing parameter.
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Broadcast Gossip Algorithm – Parameters:q ∈ (0, 1)

For all t ∈ Z≥0,

1: Sample a nodev from a uniform distribution overV
2: for u ∈ V do
3: if u ∈ N+

v then
4: xu(t+ 1) = (1 − q)xu(t) + qxv(t)
5: else
6: xu(t+ 1) = xu(t)
7: end if
8: end for

This algorithm can be written in the form of iterated matrix
multiplication. Letv be the broadcasting node which has been
sampled at timet. Then,x(t+ 1) = P (t)x(t), where

P (t) = I + q
∑

u∈N+
v

(eue
∗
v − eue

∗
u), (1)

and ei is the i-th element of the canonical basis ofRV .
Clearly, at each timet, the matrixP (t) is the realization of
a uniformly distributed random variable, depending on the
stochastic choice of the broadcasting node. The Broadcast
Gossip algorithm has been thoroughly studied in [3], under
the assumption that the communication graph is symmetric.
In this paper we shall focus on one specific analysis question,
regarding the accuracy of the algorithm. We know that the
expectation of the convergence value is the initial average:
which is its variance? In particular, how does this variance
depend on the size and topology of the graph?

As we noted in the introduction, the practical interest
of the BGA algorithm depends on the assumption that the
transmissions are instantaneous, and reliable. In an effort
towards more realistic communication models, we propose a
modification of the Broadcast Gossip Algorithm, which has the
feature of dealing with the issue of finite-length transmissions,
and consequent message losses due to collisions. At every time
step, each node is allowed to wake up, independently with
probability p, and broadcast its current state to all its out-
neighbors. It is clear that some nodes can be the target of more
than one message: in this case, we assume that a destructive
collision occurs, and no message is actually received by these
nodes. As well, interference prevents the broadcasting nodes
from hearing any others1. If a nodeu ∈ V is able to receive
a message from nodev, it updates its state to a convex
combination with the received value, similarly to the standard
BGA. More formally, the algorithm is as follows.

Collision Broadcast Gossip Algorithm – Parameters:
q ∈ (0, 1), p ∈ (0, 1)

For all t ∈ Z≥0,

1: let Act be the random set defined by: for everyv ∈ V ,
P[v ∈ Act] = p

2: let Rec := {u ∈ V : |N−
u ∩Act | = 1, u 6∈ Act}

3: for all u ∈ Rec, let σ(u) be the onlyv ∈ V such that
v ∈ Act∩N−

u

1This half-duplex constraint is assumed throughout the paper: however,
dropping it would imply minimal changes in the analysis.

4: for u ∈ V do
5: if u ∈ Rec then
6: xu(t+ 1) = (1− q)xu(t) + qxσ(u)(t)
7: else
8: xu(t+ 1) = xu(t)
9: end if

10: end for

Also the latter algorithm can be written as matrix multiplica-
tion, defining

P (t) = I + q
∑

(v,u)∈Act×Rec

(eue
∗
v − eue

∗
u). (2)

Both algorithms can actually be rewritten in the following
graph-theoretic way. LetG(t) be the subgraph ofG depicting
the communications taking place at a certain instantt: the pair
(u, v) is an edge inG(t) iff v successfully receives a message
from u at time t. Denote byA(t), D(t), L(t) the adjacency,
degree and Laplacian matrices, respectively, ofG(t). Clearly,
for both algorithms:

P (t) = I − qL(t). (3)

Several questions are natural for the collision-prone CBGA
algorithm, in comparison with the BGA. Does the algorithm
converge? How fast? Does it preserve the average of states? If
not, how far it goes? Is performance poorer because of inter-
ferences? We are going to answer the analysis questions we
have posed, via a mean square analysis of the algorithm. Our
interest will be mostly devoted to the properties of algorithms
for large networks. To this goal, we shall often assume to have
a sequence of graphsGN of increasing orderN ∈ N, and we
shall consider, for eachN ∈ N, the corresponding matrixP (t),
which depends onG and then onN . Thus we will focus on
studying the asymptotical properties of the algorithms asN
goes to infinity.

III. M ATHEMATICAL MODELS AND TECHNIQUES

In this section we lay down some mathematical tools
that can be used to analyze gossip and other randomized
algorithms. Namely, in Section III-A we review the Mean
Square Analysis (MSA) in [14], which is going to be applied
to the BGA and CBGA algorithms in Sections IV and V,
respectively. Later, in Section III-B we introduce Abelian
Cayley graphs and their properties.

A. Mean square analysis

Motivated by the interpretation of the broadcast algorithms
as iterated multiplications by random matrices, given in Equa-
tions (1) and (2), in this subsection we shall recall from [14]
some definitions and results for the analysis of a generic
algorithm, in which the vector of statesx(t) ∈ R

V evolves
in time following an iteratex(t + 1) = P (t)x(t), where
{P (t)}t∈Z≥0

is a sequence of i.i.d. stochastic-matrix-valued
random variables. Consequently,x(t) is a stochastic process.
In this context, the sequenceP (t) is said to achieveprob-
abilistic consensusif for any x(0) ∈ R

V , it exists a scalar
random variableα such that almost surelylimt→∞ x(t) = α1.
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Assuming that the algorithm achieves probabilistic consensus,
we describe its speed of convergence as follows. We define the
current averagexave(t) := 1

N

∑

v∈V xv(t), the disagreement
d(t) := N−1‖x(t) − xave(t)1‖22, and the rate of convergence
as

R := sup
x(0)

lim sup
t→+∞

E[d(t)]1/t.

If we consider the (linear) operatorL : RV×V → R
V×V such

that
L(M) = E[P (t)∗MP (t)],

we can notice thatE[d(t)] = E[x∗(t)Ωx(t)] = x∗(0)∆(t)x(0),
with ∆(t) = Lt(Ω) defined by applyingt times the operator
L. Then,R is the spectral radius ofL, and it has been proved
in [14, Proposition 4.4] that

esr(P )2 ≤ R ≤ sr(L(Ω)), (4)

where P̄ = E[P (t)]. It is clear that, if allP (t) matrices are
doubly stochastic,x(t) converges to the initial average of states
xave(0). If they are not, as in the cases we are studying in this
paper, it is worth asking how far is the convergence value from
the initial average. To study this bias in the estimation of the
average, we letβ(t) = |xave(t) − xave(0)|2, and we define a
matrix B such that

lim
t→∞

E[β(t)] = x(0)∗Bx(0). (5)

Let Q(t) = P (t − 1) · · ·P (0). Then, there exists a random
variableρ, taking values inRV , such thatlimt→∞ Q(t) = 1ρ∗

andα = ρ∗x(0). This implies that

B = E[ρρ∗]− 2N−1
E[ρ]1∗ +N−2

11
∗,

whereE[ρ] and E[ρρ∗] are the eigenvectors relative to 1 of
P̄ andL, respectively. In particular, if̄P is doubly stochastic,
then

B = E[ρρ∗]−N−2
11

∗ =
1

1∗∆1
lim
t→∞

Lt(∆)−N−2
11

∗, (6)

for any N -dimensional matrix∆. Instead of computingB,
it may be easier and significant to obtain results about some
functional ofB, for instance the spectral norm‖B‖2 or the
trace tr(B). The latter figure is of interest because, if we
assume that the initial valuesxi(0) are i.i.d. random variables
with zero mean and varianceσ2, then

E[x(0)∗Bx(0)] = σ2 tr (B). (7)

Motivated by our interest in the properties of the algorithms
on large networks, and by Equation (7), we state the following
definition.

Definition III.1 Given a sequence of graphsGN , a random-
ized algorithmP (t) is said to beasymptotically unbiasedif
lim

N→∞
tr(B) = 0.

One would like to use the MSA results in [3] to obtain
unbiasedness results for the BGA on some sequences of
graphs. If we plug the formulas from [3, Lemma 2 and

Lemma 4] into the bound presented in [3, Proposition 3] we
obtain that

trB ≤

(

1−
λ1

λN−1

1

1− 1
2

q
N λN−1

)

, (8)

where {λi}
N−1
i=1 are the eigenvalues ofL, with 0 = λ0 <

λ1 ≤ . . . ≤ (1 − q)λN−1 ≤ 2N. By the latter inequality,
the right-hand-side in (8) can be lower bounded by1− λ1

λN−1
.

Since on several graphs of applicative interest, includingrings,
bidimensional grids and random geometric graphs, the ratio
λ1

λN−1
does not go to one as the size grows, the bound in (8)

can not be effectively used to prove asymptotical unbiasedness.
In view of these remarks, and in order to prove unbiasedness
results, in this paper we apply the mean square analysis to
class of graphs with structural symmetries, the Abelian Cayley
graphs, which we define in the next section.

B. Abelian Cayley graphs

A special family of graphs is that of Abelian Cayley graphs,
which are graphs representing a group, as follows. LetG be an
Abelian group, considered with the additive notation, and letS
be a subset ofG. Then, theAbelian Cayley graphgenerated
by S in G is the graphG(G,S) having G as node set and
E = {(g, h) ∈ G × G : h − g ∈ S} as edge set. In words,
two nodes -i.e. two group elements- are neighbors if their
difference is inS. As well, a notion of Abelian Cayleymatrix
can be defined. Given a groupG and a generating vectorπ
of length|G|, we shall define the Cayley matrix generated by
π as cayl(π)hg = πh−g. Correspondingly, for a given Cayley
matrixM , we shall denote byπM the generating vector of the
Cayley matrixM . Clearly, the adjacency matrices ofG-Cayley
graphs areG-Cayley matrices.

Cayley graphs have a long history in abstract mathematics,
and have been recently used in control theoretical applications,
for instance in [21], [17], to describe communication networks.
Assuming Abelian Cayley topologies is motivated both by
their algebraic structure, which allows a formal mathematical
treatment –we refer the reader to [23], [6] for more details–,
and also by their potential applications. Indeed, Abelian Cay-
ley graphs are a simplified and idealized version of com-
munications scenarios of practical interest. In particular, they
capture the effects on performance of the strong constraintthat,
for many networks of interest, communication is local, not
only in the sense of a little number of neighbors, but also with
a bound on the geometric distance among connected nodes.
This constraint is abstracted into the edge set definition given
above. These constraints are especially relevant for wireless
networks: indeed, Abelian Cayley graphs have been related,
for instance in [5], [20], [7], to other models for wireless
networks, as random geometric graphs or disk-graphs [16].
Abelian Cayley graphs encompass several important examples.

Example III.1 Let Zn denote the cyclic group of integers
modulon.

1) Thecompletegraph onN nodes, that is the graph where
each node is directly connected with every other node,
is G(ZN ,ZN \ {0});
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2) Thecirculantgraphs (resp. matrices) are Abelian Cayley
graphs (resp. matrices) on the groupZN ; we denote the
circulant matrix generated byπ ascirc(π). For instance,
he ring graph is the circulant graphG(ZN , {−1, 1}); its
adjacency matrix isA = circ([0, 1, 0, . . . , 0, 1]) and its
Laplacian isL = circ([2,−1, 0, . . . , 0,−1]). For a ring,
the eigenvalues ofL are{2(1−cos

(
2π
N l

)
)}l∈ZN

, and in
particularλ1 = 4π2

N2 + o
(

1
N3

)
asN → +∞.

3) The square grids on a d-dimensional torus are
G(Zd

n, {ei,−ei}i∈{1,...,d}), whereei are elements of the
canonical basis ofRd. In particular, then-dimensional
hypercubegraph isG(Zn

2 , {ei}i∈{1,...,n}).

Notice how all examples above are naturally forming a
sequence of graphs indexed by the number of nodesN .
Special cases for which we will be able to prove asymptotical
unbiasedness in the following, are when the generating setS
is finite and “kept fixed” as in the ring graph. Precisely we
consider the following general example.

Example III.2 Start from an infinite latticeV = Z
d and fix

a finite S ⊆ Z
d \ {0} generatingZd as a group. For every

integern, let Vn = [−n, n]d considered as the Abelian group
Z
d
2n+1 and letG(n) be the Cayley Abelian graph generated by

Sn = S ∩ [−n, n]d. Notice that all graphsG(n) have the same
generating setS for n sufficiently large, in particular they have
the same degree. Rings and grids fit in this framework.

A G-Cayley structure for the communication graphG
has important consequences on the mean square analysis of
randomized consensus algorithms. In particular, it is easyto
see that ifC is a G-Cayley matrix, then alsoL(C) is G-
Cayley. Then, for everyt ∈ Z≥0, the matrices∆(t) = Lt(Ω)
are G-Cayley. Thus, the sequence∆(t) can be equivalently
seen as the sequence of the corresponding generating vectors
π(t) = e∗0∆(t), wheree0 is the indicator vector corresponding
to the group element0. We shall refer to the vectorπ(t) as
the MSA vector. SinceL is linear, the MSA vector evolution
can be written as a matrix multiplicationπ(t + 1) = Mπ(t).
Clearly,R = esr(M). Moreover,M is ∗-stochastic, and if we
let π′ to be the invariant vector ofM , that is

{

π′ = Mπ′

1
∗π′ = 1,

then, Equation (6), implies that

B =
1

N
cayl

(

π′ −
1

N
1

)

, trB = π′
0 −

1

N
(9)

whereπ′
0 is the component ofπ′ corresponding to0 ∈ G.

The following simple result will be useful later on.

Lemma III.3 LetG beG-Cayley, and suppose thatP (t)uu ≥
δ > 0 almost surely. Then,

GA ⊆ GM∗ ⊆ GA+A∗+A∗A

Proof: A straightforward computation shows that

Muv =
∑

k

E[P (t)k+v,uP (t)k0]

Hence, Muv > 0 implies that there existsk such that
P (t)k+v,u > 0 andP (t)k0. If k = 0, this yieldsAvu > 0. If
k+ v = u, thenAu−v,0 > 0 or alsoAuv > 0. Finally, if both
cases above do not happen, then,Ak+v,u > 0 andAk+v,v > 0
which yields (A∗A)uv > 0. The second inclusion is thus
proven. To prove the first one, notice that, by the assumption
made,Muv ≥ δ E[P (t)vu]. This completes the proof.

Notice that in the BGA and CBGA examples we can always
apply Lemma III.3 withδ = 1− q.

IV. B ROADCAST WITHOUT COLLISIONS

In this section we present a comprehensive analysis of
the Broadcasting Gossip Algorithm, in terms of both rate
of convergence and bias. The following result characterizes
the convergence properties of the algorithm, extending [3,
Lemmas 2 and 4] to directed networks. We omit a detailed
proof, which can be obtained by direct computation.

Proposition IV.1 (Convergence of BGA algorithm)
Consider the BGA algorithm. LetG be any connected graph,
and let A and L respectively denote its adjacency and
Laplacian matrices. Then

P̄ = I − qN−1L (10)

L(Ω) =Ω− q(1 − q)N−1(L+ L∗) + qN−2(L∗
11

∗ + 11
∗L)

− q2N−2(D+ −A)(D+ −A∗). (11)

In particular, the BGA algorithm achieves probabilistic con-
sensus.

The next result provides explicit bounds on the convergence
rate, assuming the communication graph to be symmetric.

Corollary IV.2 ([3], Lemma 4) Under the assumptions of
Proposition IV.1, ifG is symmetric, then

P̄ = I − qN−1L

L(Ω) =Ω− 2q(1− q)N−1L− q2N−2L2.

In particular, the convergence rate can be estimated as

1−
2q

N
λ1 ≤ R ≤ 1−

2q(1− q)

N
λ1,

whereλ1 is the smallest positive eigenvalue ofL.

For the rest of this section, we focus onAbelian Cayley
graphs. The next result shows that the linear operatorL,
which encodes the MSA evolution of the algorithm, can be
decomposed into a “simple” operator, which is essentially the
Laplacian of the communication graph, plus a perturbation,
which is a sparse matrix if the graph is sparse.

Lemma IV.3 Consider the BGA algorithm and let the com-
munication graphG be an Abelian Cayley graph generated by
S ⊂ G, with degreed = |S|. Then, the MSA vectorπ evolves
as

π(t+ 1) = (C + T )π(t), (12)
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where
C = I −

q

N
(L+ L∗)

and T is a matrix such thatT =
q2

N
T̃ where T̃ does not

depend neither onq nor explicitly onN but only onS, and
is such that the number of non-zero rows is at mostd2 and
non-zero columns is at mostd2 − d+ 1.

Proof: Using the fact that all matrices are Abelian Cayley
and the notation in (3), we obtain

∆(t+ 1) = E[P (t)∗∆(t)P (t)]

=∆(t) − qE[L(t)∗∆(t)] − qE[∆(t)L(t)]

+ q2E[L(t)∗∆(t)L(t)]

=
(

I −
q

N
(L+ L∗)

)

∆(t)

+
q2

N

∑

g∈G

∑

h:h−g∈S

∑

k:k−g∈S

(ege
∗
h − ehe

∗
h)∆(t)(eke

∗
g − eke

∗
k)

Sinceπ(t) = ∆(t)e0 (being∆(t) symmetric for everyt),
we easily obtain from above that

π(t+ 1) =(I − q
1

N
(L + L∗))π(t)

+
1

N
q2

∑

g∈G

∑

h:h−g∈S

∑

k:k−g∈S

πh−k(t)

× (ege
∗
g − ege

∗
k − ehe

∗
g + ehe

∗
k)e0

=(I − q
1

N
(L + L∗)π(t)

+
1

N
q2[

∑

h:h∈S

∑

k:k∈S

πh−k(t)(e0 − eh)

+
∑

g∈−S

∑

h:h−g∈S

πh(t)(eh − eg)] .

From this we immediately see that the non-zero elements ofT̃
have row indices in(S−S)∪S and column indices inS−S,
whereS−S = {g ∈ G : ∃s1, s2 ∈ S such thatg = s1−s2}.
Hence the result follows.

This lemma has a few interesting consequences. Note that
the entries of the matrixT in (12) are proportional toN−1

and, moreover, the number of the non-zero entries is upper
bounded by(1 + d2)2, where d is the degree ofG. This
implies that, if the degree is small, i.e., the graph is sparse,
then also the matrixT is sparse. In particular, if we consider
a sequence of graphs of increasing size with fixed degree, we
expect that, asN diverges,T would become negligible, and the
MSA would depend on the matrixC only2. This would imply
the unbiasedness of the algorithm, because it is immediate to
remark that the invariant vector ofC is N−1

1. This property
of asymptotical unbiasedness can be actually stated as the
following result.

2Note that, in general,C is not a stochastic matrix since it may be negative
on the diagonal, however for large enoughN (andd fixed) C is a stochastic
matrix.

Theorem IV.4 (Unbiasedness of BGA)Fix a finiteS ⊆ Z
d\

{0} generatingZd as a group. For every integern, let Vn =
[−n, n]d considered as the Abelian groupZd

2n+1 and letG(n)

be the Cayley Abelian graph generated bySn = S∩ [−n, n]d.
Then on the sequence ofG(n) the BGA is asymptotically
unbiased.

Proof: The idea is to apply the perturbation result Theo-
rem A.1 to the sequence of matricesC∗ and(C+T )∗. Notice
that GC∗ = G(n) while G(C+T )∗ ⊇ G(n) by Lemma III.3.
Hence,GC∗ and G(C+T )∗ are both strongly connected. This
also implies that the limit graph onZd

n of the two sequences
GC∗ and G(C+T )∗ both containG(∞) which is simply the
Abelian Cayley graph onZd

n generated byS which is strongly
connected by the assumption made. Finally, notice thatC∗ is
Abelian Cayley, hence obviously weakly democratic, while
Lemma IV.3 guarantees that(C + T )∗ is a finite perturbation
of C∗ in the sense of Appendix A. Hence also(C + T )∗ is
weakly democratic. This yields, by (9),

trB = |N−1 − π′
0| ≤ N−1 + π′

0 → 0.

Theorem IV.4 tells us that the BGA is asymptotically un-
biased on sparse Abelian Cayley graphs. More precise results
can be obtained by computing the matrixT in some examples:
for instance, we consider ring graphs and complete graphs,
which show opposite behaviors.

Example IV.5 (Ring graph) On ring graphs, Corollary IV.2
implies that, forN large enough,

1− q
8π2

N3
≤ R ≤ 1− q(1− q)

8π2

N3
,

and namely R = 1−Θ( 1
N3 ). Specializing the proof of

Lemma IV.3, the evolution ofπ(t) can be written as

πj(t+ 1) =
(

1−
4q

N
+

q2

N
πA2

j

)

πj(t)

+ 2
( q

N
−

q2

N
πA
j

)

(πj−1(t) + πj+1(t))

+
q2

N
(2π0(t) + π2(t) + π−2(t)) δ0j ,

that isπ(t+ 1) = (C + T )π(t), with

C = circ (1−
4q

N
, 2

q

N
, 0, . . . , 0, 2

q

N
)

and

T =
q2

N















4 0 1 0 . . . 0 1 0
−2 0 −2 0 . . . . . . 0
0 0 1 0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0 1 0
−2 0 . . . . . . 0 −2 0















.

Thanks to these explicit formulas, we can numerically compute
the rate and bias. Namely, about the rate we obtain that
esr(C) < esr(C + T ), andesr(C + T ) = 1 − Θ(N−3). This
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means that the perturbationT does not significantly affect the
rate for largeN . Moreover, sinceesr(C) = 1−Θ(N−3) and
esr(C + T )− esr(C) = 1−Θ(N−4) we argue that actually

R = 1− q
8π2

N3
+O

(
1

N4

)

asN → ∞. (13)

On the other hand, about the bias we obtain thattr (B) =
Θ(N−1). This is confirmed by the simulations reported in
Fig. 1.

Example IV.6 (Complete graph) LetG be a complete graph,
and consider the BGA algorithm. In this case, the degree
is proportional toN , and Theorem IV.4 does not apply.
From [13] we know that

R = 1− q(2 − q)

B =
q

2− q

1

N
(I −

11
∗

N
).

Then, trB = q
2−q

(
1− 1

N

)
and hence theBGA is not

asymptotically unbiased on the complete graph.

In order to take into account the locality constraint on
connectivity in real-world networks, several models of random
geometric graphs have been proposed, as accounted in [16].
Such models are not in general Abelian Cayley: hence in
the next example we study one such model by means of
simulations.

Example IV.7 (Random geometric graph) In this example
we consider sequences of random geometric graphs, based on
the following construction. For allN ∈ N, we sampleN points
{zi}i∈ZN

from a uniform distribution over a unit square[0, 1]2,
and we draw an edge(i, j) between nodesi, j ∈ ZN when

‖zi−zj‖ ≤ 0.8
√

logN
N . On these realizations we run the BGA

algorithm until convergence is reached, up to a small tolerance
threshold, and in this way we compute an approximation of
limt→∞ β(t). The results are plotted in Fig. 1, in comparison
with the analogous quantity on the complete and ring graph. It
appears from simulations that, asN diverges,β is Θ(1) on the
complete graph, whereas it isΘ(N−1) on the ring graph, and
O(N−1/2) on the random geometric graph. These evidences
are in accordance with the theoretical results, and suggesttheir
extension to other families of geometric graphs.

V. BROADCAST WITH COLLISIONS

In this section we present a comprehensive analysis, in terms
of both rate of convergence and bias, of the Collision Broad-
cast Gossip Algorithm. We recall that in this algorithm every
node is allowed to broadcast at every time step with some
probability p. After proving a general convergence result, we
focus on Abelian Cayley graphs in Subsection V-A, and study
ring and complete graphs as examples in Subsection V-B. Our
main finding is that the behavior of the CBGA, in terms of
both speed and bias, is close to the behavior of the BGA: in
this sense we may claim the robustness of broadcast gossip
algorithms to local interferences.

10
2

10
−3

10
−2

10
−1

N

β

 

 

Ring graph

Random Geometric

Complete

Fig. 1. The plot shows the asymptotical biasβ as a function ofN , computed
by simulations on sequences of complete, random geometric,and ring graphs.
Plotted values are the average over 1000 runs. See text for more information.

Proposition V.1 (Convergence of CBGA algorithm)
Consider the CBGA algorithm. LetG be any connected
graph, andL its Laplacian matrix. Then,

P̄ = I − qp(1− p)D
−

L, (14)

where((1 − p)D
−

)ij = (1 − p)D
−
ij for everyi and j. In par-

ticular, the CBGA algorithm achieves probabilistic consensus.

Proof: The probability of having at timet a successful
transmission fromv to u is P[Auv(t) = 1] = p(1− p)d

−
u Auv.

Hence,

E(A(t)) = p(1− p)D
−

A . (15)

Now, P̄ = E[P (t)] = E[I + q(A(t) − D(t))] = I +
qp(1 − p)D

−

[A − D−]. Note that the induced graphGP̄ is
strongly connected: by [14, Corollary 3.2], we can conclude
the convergence of the CBGA.

Formula (14) is simpler if the graph isd-regular, because
in that case

P̄ = I − qp(1− p)dL.

Then, provided the graph is symmetric,esr(P̄ ) = 1− qp(1−
p)dλ1, and this together with (4) leads to

R ≥ 1− 2qp(1− p)dλ1

as a lower bound for the rate of convergence. As a function
of p, this lower bound is minimal ifp is equal top∗ = 1

d+1 .

Hence, natural questions are: is this bound tight? isp∗ the
best choice to improve the convergence rate? Section V-B
will answer positively these questions for complete and ring
graphs.
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A. Abelian Cayley graphs

From now on we consider the CBGA on Abelian Cayley
graphs. The next result, analogous to Lemma IV.3, charac-
terizes the mean square analysis of the algorithm, giving a
decomposition into a “simple” operator plus a perturbation.

Lemma V.2 Consider the CBGA algorithm and let the com-
munication graphG be Abelian Cayley with degreed. Then,
the MSA vectorπ evolves as

π(t+ 1) = (C + T )π(t), (16)

where

C = I − qp(1− p)d(L+ L∗) + q2p2(1− p)2dLL∗

and T = q2T̃ , with T̃ does not depend neither onq nor
explicitly onN , and is such that the number of non-zero rows
is at mostd2(d+ 1)2 and non-zero columns is at mostd2.

Proof: Using commutativity of Abelian Cayley matrices
and (15), we obtain that

∆(t+1) = (I−qp(1−p)d(L+L∗))∆(t)+q2E[L(t)∗∆(t)L(t)]

Passing to the generating vector,

π(t+ 1) = (I − qp(1− p)d(L+ L∗))π(t) + q2f(π(t)) (17)

where

f(π(t)) :=E[L(t)∗∆(t)L(t)]e0

=E[L(t)]∗∆(t)E[L(t)]e0
︸ ︷︷ ︸

=:f1(π(t))

+ E[L(t)∗∆(t)L(t)]e0 − E[L(t)]∗∆(t)E[L(t)]e0
︸ ︷︷ ︸

=:f2(π(t))

Now,
f1(π(t)) = p2(1− p)2dL∗Lπ(t) (18)

and

[f2(π(t))]l =
∑

hk

[
E[L(t)hlL(t)k0]

− E[L(t)hl]E[L(t)k0]π(t)h−k

]

=
∑

tk

[
E[L(t)k+t,lL(t)k0] (19)

− E[L(t)k+t,l]E[L(t)k0]π(t)t
]

Notice now that, by the way the model has been defined,
we have thatAij(t) and Ahk(t) are independent whenever
N−(i)∩N−(h) = ∅ or equivalentlyi−h 6∈ S−S. In this case,
alsoLij(t) andLhk(t) are independent. Therefore, the double
summation in (19) can be restricted tok ∈ S ∪ {0} and t ∈
S−S. Consequently, the values ofl for which [f2(π(t))]l 6= 0
can be restricted to(S∪{0})+S−S−(S∪{0}). Plugging (18)
into (17) and using the information on the structure off2(π(t))
obtained above, the result follows.

Note that, as for the BGA, the matrixT is responsible for
the bias of the algorithm, and the mixing parameterq plays
the same role in both algorithms. The matrixT is roughly
proportional toq2, and (for smallq) the matrix I − C is

proportional toq. This implies that by changingq we can
trade-off q between speed and accuracy of both algorithms.
For the BGA, this trade-off has been studied in [3], and we
argue from Lemma V.2 that such analysis can be promptly
extended to the CBGA. The simplicity of this extension relates
to the robustness of BGA to collisions. Moreover, Lemma V.2
states the sparsity property ofT , which is the key to infer an
unbiasedness result analogous to Theorem IV.4.

Theorem V.3 (Unbiasedness of CBGA)Fix a finite S ⊆
Z
d \ {0} generatingZd as a group. For every integern,

let Vn = [−n, n]d considered as the Abelian groupZd
2n+1

and let G(n) be the Cayley Abelian graph generated by
Sn = S ∩ [−n, n]d. On the sequence ofG(n) the CBGA is
asymptotically unbiased.

Proof: The idea is to apply the perturbation result Theo-
rem A.1 to the sequence of matricesC∗ and(C+T )∗. Notice
that GC∗ = GA+A∗+A∗A ⊇ G(n) while G(C+T )∗ ⊇ G(n) by
Lemma III.3. Hence,GC∗ andG(C+T )∗ are both strongly con-
nected. As in the proof of Theorem IV.4, connectivity implies
that the limit graph onZd

n of the two sequencesGC∗ and
G(C+T )∗ are also strongly connected. Finally, notice thatC∗

is Cayley Abelian, hence obviously weakly democratic, while
Lemma IV.3 guarantees that(C+T )∗ is a finite perturbation of
C∗ in the sense of Appendix A. Hence also(C+T )∗ is weakly
democratic. This yieldstrB = |N−1−π′

0| ≤ N−1+π′
0 → 0.

With this result, we have shown that also the CBGA is
asymptotically unbiased on sparse Abelian Cayley graphs.

B. Ring and complete graphs

To begin with, we specialize the results in Section V-A to
the case of ring graphs.The following result can be proven by
computingT ; the detailed derivation is omitted.

Proposition V.4 (Ring graph - Rate) Given a ring graph
and the CBGA algorithm, we have

P̄ =I − qp(1− p)2L

L(Ω) =Ω− 2q(1− q)p(1 − p)2L− q2p(1− p)2N−1L2

+ q2p(1− p)2N−1p circ(τ),

where

τ =[2(p− 2), 6− 4p+ p2,−3(2− 2p+ p2), 2− 4p+ 3p2,

0, . . . , 0, 2− 4p+ 3p2,−3(2− 2p+ p2), 6− 4p+ p2].

In particular, for N large enough,

1− qp(1− p)2
8π

N2
≤ R ≤ 1− q(1− q)p(1 − p)2

8π

N2
.

This result in particular shows that the bound on the
convergence rate based on̄P is asymptoticallytight for the
ring graph. Note that the speed of convergence for the CBGA
is one order faster than the BGA: this is not surprising, since
in the former case the average number of activated nodes per
round isNp, instead of1.
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Remark V.5 (Large N ) Based on the formulas in Proposi-
tion V.4, the performance for largeN can be numerically
investigated, showing thatesr(C) < esr(C+T ), andesr(C +
T ) = 1 − Θ(N−2). This means that the perturbationT does
not significantly affect the rate for largeN . Moreover, since
esr(C) = 1−Θ(N−2) andesr(C+T )−esr(C) = 1−Θ(N−3),
we argue that actually

R = 1− qp(1− p)2
8π2

N2
+O

(
1

N3

)

.

This formula is very close to Eq. (13) about the BGA. On the
other hand, one hastr(B) = Θ(N−1), that is the asymptotical
error has the same dependence onN as for the BGA.

Remark V.6 (Optimization - Ring) Remarkably, for large
N both the upper and the lower bound on the rate in Propo-
sition V.4 show the same dependence onp. Thus, they can
be simultaneously optimized by takingp∗ = 1/3. Instead, the
dependence onp of the asymptotical error is negligible. This
implies, from the design point of view, thatp can be chosen
to bep∗ = 1/3, optimizing the convergence rate, whereas by
choosingq we trade off asymptotical error and convergence
rate, as done for the BGA in [3].

As for the BGA, a more precise analysis can be pursued on
complete graphs.

Proposition V.7 (Complete graph) Let x(t) evolve follow-
ing the CBGA algorithm. Then,

R = 1− q(2− q)Np(1− p)N−1

B =
q

2− q

1

N
(I −

11
∗

N
).

Namely,tr(B) = q
2−q

(
1− 1

N

)
and then theCBGA is not

asymptotically unbiased on the complete graph.

Proof: It is immediate that in the complete graph either
one node communicates to every others, or no node commu-
nicates. ThenP[P (t) = I] = 1−Np(1−p)N−1 andP[P (t) =
Pb] = Np(1−p)N−1, wherePb = I+ q

∑

u6=v(eue
∗
v−eue

∗
u),

and v is the realization of a random variable uniformly
distributed over the nodes. We note that

E[Pb] = I + q
11

∗ −NI

N
,

which implies that

E[P (t)∗P (t)]

=Np(1− p)N−1
E[P ∗

b Pb] + (1−Np(1− p)N−1)I

=[1− 2q(1− q)Np(1− p)N−1]I

+ 2q(1− q)Np(1− p)N−111
∗

N
.

and

E[P (t)∗11∗P (t)] = q2N2p(1− p)N−1I

+ (1 − q2Np(1− p)N−1)11∗.

Hence the application ofL keeps invariant the subspaces
generated byI and 11

∗, and the linear operatorL can be
represented by the matrix
(

1− 2q(1− q)Np(1− p)N−1 q2Np(1− p)N−1

2q(1− q)Np(1− p)N−1 1− q2Np(1− p)N−1

)

.

The eigenvalues of this matrix are1 and R = 1 − q(2 −
q)Np(1−p)N−1, and the eigenspace relative to eigenvalue 1 is
spanned by the vectorv(1) = qNp(1− p)N−1 (q, 2(1− q))

∗
.

SinceE[ρρ∗] belongs to this eigenspace, and1∗E[ρρ∗]1 = 1,
we conclude that

B = E[ρρ∗]−N−2
11

∗ =
q

2− q

1

N

(
I −

11
∗

N

)
.

Some remarks are in order about the parametersp, q in the
CBGA algorithm on complete graphs.

Remark V.8 (Optimization - Complete) The convergence
rate R as a function ofp is optimal for p∗ = 1/N. Note
that R(p∗) = 1 − q(2 − q)(1 − 1

N )N−1 → 1 − q(2 − q)1e
whenN goes to infinity, while if we fixp = p̄ ∈ (0, 1), then
R(p̄) → 1. On the other hand,B is independent ofp. From
the design point of view, it is clear thatp has to be chosen
equal toN−1, optimizing the speed. Instead, choosingq we
trade off speed and asymptotic displacement: if we recall the
formulas for the BGA in Example IV.6, it is clear that the
optimization problem is the same for both algorithms.

VI. CONCLUSION

This paper has been devoted to study gossip algorithm for
the estimation of averages, based on iterated broadcasting
of current estimates. We presented a novel broadcast gossip
algorithm, dealing with communication interference, whose
effect is studied in the paper. Our results, obtained under
symmetry assumptions about the network topology, allow us
to conjecture an interesting picture of the performance of
broadcast gossip algorithms on real world networks, in terms
of accuracy and of robustness to interference. In broad terms,
we claim that the BGA is robust to interferences. As expected,
interferences have a negative effect on the rate of convergence,
which can be mitigated by a suitable choice of the broadcasting
probability p. Instead, interferences have on the asymptotical
error a small effect, which is negligible on large networks.
The size of the network is also important for accuracy: on
large highly connected graphs, both algorithms provide biased
estimations, whereas on sparse graphs the estimation bias goes
to zero as the network grows larger. On the other hand, the
rate of convergence degrades on large sparse graphs, which is
a general feature of consensus algorithms based on diffusion.

The results of this paper have been obtained under two
simultaneous technical assumptions: the graphs are Abelian
Cayley, thus in particular vertex-transitive, and in the CBGA
each node broadcasts with the same probability. Future work
should consider non-vertex-transitive networks of nodes with
non-uniform broadcasting probabilities. A better understand-
ing of the role of the network topology in the trade-off between
speed and achievable precision may come from such extension.
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APPENDIX

In this appendix we recall a perturbation result from [12]
about the limit of the invariant vectors of sequences of
stochastic matrices, which is used in our paper to estimate
the trace of the matrixB.

We assume we have fixed an infinite universe setV , an
increasing sequenceVn of finite cardinality subsets ofV such
that ∪nVn = V and a sequence of irreducible stochastic
matricesP (n) on the state spacesVn with the following
stabilizing property: for everyi ∈ V , there existn(i) ∈ N

such thati ∈ Vn(i) and

P
(n)
ij = P

(n(i))
ij , ∀n ≥ n(i) , ∀j ∈ Vn(i).

This property allows us to define, in a natural way, a limit
stochastic matrix onV . For everyi, j ∈ V , we define

P
(∞)
ij =

{

P
(n(i))
ij if j ∈ Vn(i)

0 otherwise.
(20)

The sequence of stochastic matricesP (n) is said to beweakly
democraticif the corresponding invariant vectorsπ(n) are such
that, for all i ∈ V , π

(n)
i → 0 for n → +∞. Fix now a

finite subsetW ⊆ ∩nVn and another sequence of irreducible
stochastic matrices̃P (n) on Vn such that

P̃
(n)
ij = P

(n)
ij ∀i ∈ Vn \W , ∀j ∈ Vn

P̃
(n)
ij = P̃

(1)
ij ∀ i ∈ W , ∀j ∈ V1

In other terms,̃P (n) can be seen as a perturbed version ofP (n)

with the perturbation confined to the fixed subsetW and stable
(it does not change asn increases). Also for this perturbed
sequence we can define, following (20), the asymptotic chain
P̃ (∞). The following result has been proven in [12].

Theorem A.1 Suppose thatP (∞) and P̃ (∞) are both irre-
ducible. Then, ifP (n) is weakly democratic, alsõP (n) is
weakly democratic.
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