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Abstract—In this paper we study two related iterative random-
ized algorithms for distributed computation of averages. The first
algorithm is the Broadcast Gossip Algorithm, in which at eat
iteration one randomly selected node broadcasts its own g to
its neighbors. The second algorithm is a novel variation oftie for-
mer, in which at each iteration every node is allowed to broadast:
hence this algorithm, which we call Collision Broadcast Gosip
Algorithm (CBGA), is affected by interference among messags.
The performance of both algorithms is evaluated in terms of ate
of convergence and asymptotical error: focusing on large Ablian
Cayley networks, we highlight the role of topology and of deign
parameters. We show that on fully-connected graphs the ratef
convergence is bounded away from one, whereas the asymptl
error is bounded away from zero. On the contrary, on sparse
graphs the rate of convergence goes to one and the asymptatic
error goes to zero, as the size of the network grows larger. Qu
results also show that the performance of the CBGA is close to
the performance of the BGA: this indicates the robustness of
broadcast gossip algorithms to interferences.

I. INTRODUCTION

When it comes to perform control and monitoring taskr'se
through networked systems, a crucial role has to be pIayg

by algorithms for distributed estimation, that is algomith

Paolo Frasca

broadcastcommunication over networks. The paper [3] is
devoted to study the so-called Broadcast Gossip Algorithm
(BGA): at each time step one node, randomly selected from
a uniform distribution over the nodes, broadcasts its cirre
value to its neighbors. Each of these neighbors, in turn,
updates its value to a convex combination of its previous
value and the received one. In [3], the authors prove that the
BGA converges almost surely to a consensus value, which is,
in expectation, the average of the initial node values. They
also show that the mixing parameter of the algorithm can
be suitably used to trade-off between convergence rate and
accuracy of the computation in a mean squared error sense.
More recently, the paper [2] considers a related commuipicat
model, leading to a Probabilistic Broadcast Gossip Aldonit
(PBGA): the broadcasted values are received or not with a
probability which depends on the transmitter and receiver
nodes, or equivalently on the graph edge. In [2] it is shovat th
also the PBGA converges almost surely to a consensus value
whose expectation is the average of initial node valuess@he
ults suggest the robustness of BGA to independent random
munication failures. A few other randomized “gossip”
algorithms have been proposed and studied in the literature

to collectively compute aggregate information from |0ya"including 5], [4], [11], [18], [9], [14]; see [10] for a rece

available data. Among these problems, a prototypical ottesis

survey, and [1] for general theoretical results.

distributed computation of averages, also known as theageer-l-he BGA is distributed and requires minimal synchronizatio

consensus problem. In the average consensus problem €ggla it is observed in [3] that the BGA communication
node of a network is given a real number, and the goal for t'ﬂ‘?odel is equivalent, up to a suitable scaling of time, to

nodes is to itgra}t?vely converge to a good estimate ‘,Jf tr,"'}avﬁssuming that each node broadcasts at time instants sklecte
age o_f these_ initial values, by repe_atedly pommumcatlmj; aBy a private Poisson process. Nevertheless, this equialen
updating the|_r states. Recently, an mcreasmg_mteresblean_ is no longer true if broadcasting takes a finite duration of
devoted within the control and signal processing commesiiti; . ¢ this happens, a node can be with non-zero probgbilit
to randomizedhlgorithms able to solve the average consensys, target of more than one simultaneous communication
problem, because randomlzeq algorithms may offer ,k_’e,ttfﬁd destructive interference may occur. This issue is mostl
performance and robustness V_V'th respe_ct to their detes'mlm relevant in wireless networks, which have to share their-com
counterparths. A§ W?”* randomlzr?d alg(;)rlthms may reqlﬂ’::LSIhmunication medium. Hence, the practical applicability st

0][ no 33%”0 Ironlzat|0n amonrg]] the nlo €s, a przpertyfw 1N dRyorithm in a distributed system resides either on thedlitsti
often |”|cut| to ensur:e in the applications. -L ese da‘;]ﬁoaf)f the assumption that communications are instantaneaus, o
especially re evant when commumcatmp IS 0 tained throug, e possibility to incorporate some nontrivial collisio

a wireless network. For these reasons, In this paper we styflye ion scheme. The role of interference, messageioakis
the performance of two notable algorithms based on fa”d%{ﬁd packet losses in consensus problems, and the effezdiven

broadcast communication. of countermeasures, has already been investigated in {8] fo
consensus problems in a finite state space, and for readeralu
Related works consensus in a few papers, including [19], [22], [15]. Hoarev
In latest years, the interest for wireless networks has lew our knowledge there is no contribution yet about the role
the researchers to consider averaging algorithms based oftinterference in broadcast gossip algorithms.
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Contribution Notations

: - - Given a setV of finite cardinality|V| = N, we define a

In this paper, we study averaging algorithms based on ) B
broadcasting communication. In order to investigate tiiecef graph on this S?t aﬁ I_ (V. ), wh?rei < V?V (we e>(<;c_lude
of interference in the BGA, we propose and study a novg]e pr?}se_?ceo seéoops,hnalllme ytiag?SO t()zpet)).ht)lvenf
averaging algorithm, which we call Collision Broadcast &ps u,v €V, if (v, u) € £, we shall say IS an in-neighbor o

. . . u, and conversely is an out-neighbor of. We will denote by
Algorithm (CBGA). In this algorithm, we allow more than ., and/N,, the set of, respectively, the out-neighbors and the

one node to broadcast at the same time, possibly ca . .
! possily cau |n9"|e|ghbors ofu. Also, d = |N,;}| andd;, = |N, | are said

the destructive interference of attempted communicatiand th t-d dthe in-d f nod tivel
message loss. Instead, when a node properly receives a %g_e € out-degree and the In-gegree of NodeSpectively.
graph whose nodes all have in-degreés said to bek-

sage, it updates its state as in the BGA. It is of note tha lar. A hi 4 to be (st | ted if f
this communication model can not be understood as a speé?agu ar. A graph Is said to e_(s rongly) connected It for any
Ir of nodes(u, v), one can find a path, that is an ordered

case of the PBGA in [2], because in the CBGA the events t of ed f t A hi i to b i
ineffective communication are not independent among edg g+ Of €0ges, Tromu 1o v. A graph 1S said 10 be symmetric
(u,v) € € implies (v,u) € £. In a symmetric graph, being

Our results show that, just like the BGA, also the CBGt {ahborhood relati wrical th . ditit
algorithm converges almost surely to a random variable,sahob € neighborhood retation symmetrical, there 1S no d
etween in- and out-neighbors and we will drop, consequentl

expectation is the average of initial values. . .
. . . the index+ or —. We let1 be theN —vector whose entries are
Besides convergence, we are then interested in the sp ﬁq I be theN x N identity matrix, and? := I — N—111*

a_nd the accuracy of the.al_gorlthms. In-particular, we ¢ iven aN-vectora, we denote byliag(a) the diagonal matrix
bias the variance of the limit value, and we want to know

. ; . . whose diagonal is equal te. The adjacency matrix of the
whether the algorithms arasymptotically unbiasedhat is raph G, denoted byAg, is the matrix in{0,1}**¥ such
whether the accuracy can be arbitrarily improved by taking ' g .

. : o : that A = 1 if and only if . We also defi
larger network. This analysis question is motivated becaua & Aguy It and only if (v,u) € £ We also define

. . . S @'e out-degree matrix aié);r = diag (A51), the in-degree
although in most applications the size of the network is f'xematrix asD :— diag (Ag1), and the Laplacian matrix as
during operation, network design typically requires to ab® Lo — D- _QA' Given agma'trixM c RV*V. we define the
the size and topology of the network. In classical (certeal) rg hgg _ (Vg'g ) by putting (v, w) € £ ,iff v+ w and
estimation, average is a natural estimator, and we know tﬁ%?p #Ag A m’at]rtifx J\/}/ |F')s saig ‘o bea daA{e dto the araph
increasing the number of samples is a way to improve tfée“;” (v 5') if Gy C G, that is if £1y C gp When it c%mpes
accuracy of the estimate. In a network, when each sampl (%Scomr’)are Wo sgquénce{a ! and {b. ) we shall
available to only one node and the average is computed Yoo thata. — ofb.) if I " ”% — 0 tnh "teN’ o0
a distributed procedure, we possibly introduce an errocthi Ve Natdn = 0(bn) if limsup,, o7 = 0, thatas, = O(bn)
depends on the network and in particular on its size. Then/fiflimsup,, I\a:\l < 400, and thata, = ©(b,) if a, = O(bn)

such error does not decrease to zero when the size grows,and b, = O(a,). Given a linear operatof from a vector

are wasting the advantage of using more samples — see [3F@ce to itself, for instance represented by a square matrix
for a related discussion. we denote byr (L) its spectral radius, that is the modulus of

Our results are based on the technical assumption that §$elargest in magnitude eigenvalue. Wheneugr) = 1, we
network topology has certain structural symmetries, ngmeihall define assr(£) the modulus of the second largest in
that the network is the Cayley graph of an Abelian grouplagnitude eigenvalue.

Under this assumption we prove that on sparse graphs with
bounded degree, both the BGA and the CBGA are asymp- !l. BROADCAST GOSSIP AVERAGING ALGORITHMS
totically unbiased. Instead, both algorithms are biased onin this section we present the averaging problem and the
complete graphs. As a byproduct of our analysis, we proggyorithms we are going to study. Let us be given a connected
a decomposition formula for the mean square evolution of tiggaphg = (V, £), and one real valug, for each node» € V.
BGA and CBGA, which shows that the performance of th€hen, the averaging problem consists in approximating the
two algorithms is close on large networks: this suggests thaa/erage% > vey Yo, With the constraint that at every time
the BGA is robust to non-independent communication falurgtep each node can communicate to its out-neighbors only.
due to interferences. Typically, this is solved by linear iterative algorithmscéuthat
z(0) =y, and for allt € Z>q, z(t + 1) = P(t)z(t), where
the matrix P(t) € RV*V is adapted tdj.
Paper structure We start_by recalling the_Broadc_ast Gossip Algqrithm as
presented in [14], [3]. In this algorithm, at every time step

After presenting in Section Il the averaging problem and thane node, randomly selected from a uniform distributionrove
algorithms under consideration, we develop our analysitstothe nodes, broadcasts its current value to its neighbas. It
in Section lll, including the mean square analysis theory ameighbors, in turn, update their values to a convex comiginat
the Abelian Cayley graph model. Later, Sections IV and ¥f their previous values and the received ones. More fogmall
are devoted to analyze the Broadcast Gossip Algorithm ang can write the algorithm as follows. Note that the only
the novel Collision Broadcast Gossip Algorithm, respeadtiv design parameter is the weight given to the received value in
Some concluding remarks are presented in Section VI.  the convex update, which we catlixing parameter




4: for u € V do

Broadcast Gossip Algorithm — Parametersy € (0, 1)

5 if u € Rec then

For allt € Z>,, 6 Ty (t +1) = (1 = @)xu(t) + qTow)(t)
1: Sample a node from a uniform distribution oved’ 7. else
2: for w €V do 8 Ty (t+ 1) = xy(2)
3 if we N then 9: end if
4 Tu(t+1) = (1 — @)zu(t) + qzo(t) 10: end for
5. else ) . . .
6 Tu(t+1) = 2, (t) Also the_ Iz_ﬂter algorithm can be written as matrix multiplic
7 end if tion, defining
8: end for P(t)=T+g Z (cuc® — eue’). @

. . . . . . A
This algorithm can be written in the form of iterated matrix ()€ Act x Rec

multiplication. Letv be the broadcasting node which has been Both algorithms can actually be rewritten in the following

sampled at time. Then,z(t + 1) = P(t)x(t), where graph-theoretic way. Lef(¢) be the subgraph of depicting
the communications taking place at a certain instatite pair

P(t)=1+q Z (euey — euey), (1) (u,v) is an edge irG(t) iff v successfully receives a message
weNF from v at timet. Denote byA(t), D(t), L(t) the adjacency,

degree and Laplacian matrices, respectivelyg@f). Clearly,

and e; is the ¢-th element of the canonical basis &". for both algorithms:

Clearly, at each time, the matrix P(¢) is the realization of
a uniformly distributed random variable, depending on the P(t) =1—qL(t). 3)
stochastic choice of the broadcasting node. The Broadcas

Gossip algorithm has been thoroughly studied in [3], unde ge\_/eral questlons are na’FuraI for the collision-prone C.BGA
. S . algorithm, in comparison with the BGA. Does the algorithm

the assumption that the communication graph is symmetric: :
. o . . converge? How fast? Does it preserve the average of stdtes? |

In this paper we shall focus on one specific analysis question

| , ' 2 inter-
regarding the accuracy of the algorithm. We know that t ot, how far it goes? Is performance poorer because of inter

: . - rences? We are going to answer the analysis questions we
expectation of the convergence value is the initial averagi1 . going . YSIS Ques

o : . : . ave posed, via a mean square analysis of the algorithm. Our

which is its variance? In particular, how does this variance

depend on the size and topology of the graph? Interest will be mostly devoted to the properties of aldoris

. . . . . fpr large networks. To this goal, we shall often assume t@hav
As we noted in the introduction, the practical interes ; :
a sequence of graplisy of increasing ordeV € N, and we

e S aorinn dpends on e ssumpten et G rsonorcac < . econespondng
- - ' which depends oy and then onN. Thus we will focus on
towards more realistic communication models, we propose £dvina th totical " f the algorithma\a
modification of the Broadcast Gossip Algorithm, which has grpudying the asymptotical properties ot the algorithmsias
feature of dealing with the issue of finite-length transiniss, goes to infinity.

and consequent message losses due to collisions. At emagy ti

step, each node is allowed to wake up, independently with '/l M ATHEMATICAL MODELS AND TECHNIQUES
probability p, and broadcast its current state to all its out- In this section we lay down some mathematical tools
neighbors. Itis clear that some nodes can be the target &f mtirat can be used to analyze gossip and other randomized
than one message: in this case, we assume that a destru@igerithms. Namely, in Section IlI-A we review the Mean
collision occurs, and no message is actually received bsethéquare Analysis (MSA) in [14], which is going to be applied
nodes. As well, interference prevents the broadcastingsodo the BGA and CBGA algorithms in Sections IV and V,
from hearing any othets|f a nodeu € V is able to receive respectively. Later, in Section Ill-B we introduce Abelian

a message from node, it updates its state to a convexCayley graphs and their properties.

combination with the received value, similarly to the st

BGA. More formally, the algorithm is as follows. A. Mean square analysis

Collision Broadcast Gossip Algorithm— Parameters:  Motivated by the interpretation of the broadcast algorghm
g€ (0,1),pe(0,1) as iterated multiplications by random matrices, given in&q
For all t € Z, tions (1) and (2), in this subsection we shall recall from][14

some definitions and results for the analysis of a generic
algorithm, in which the vector of stategt) € RY evolves
2 let Rec = {u € V : |N=Act| = 1,u & Act} in time following an iteratex(t + 1) = P(t)x(t), where
3 for all u € Rec. let U(Z) be the on’lyv € V such that {P(t)}tezzo_ is a sequence of |.|.d._stochastlc—matnx—valued
v e Act AN~ ' random variables. Consequenthyt) is a stochastic process.
“ In this context, the sequenc®(t) is said to achieveprob-

S . Vo .
1This half-duplex constraint is assumed throughout the paper: howeve*?",b'“StIC Consensusﬁ for any x(O) € RY, it exists a scalar
dropping it would imply minimal changes in the analysis. random variablex such that almost surelym;_,, z(t) = 1.

1: let Act be the random set defined by: for everye V,
Plv € Act] =p



Assuming that the algorithm achieves probabilistic cosesn Lemma 4] into the bound presented in [3, Proposition 3] we
we describe its speed of convergence as follows. We define tigain that
current averagerae(t) := + >,y %o (t), the disagreement

A1 1
N1 _ 2 trB<(1-— , 8
d(t) :== N=1|x(t) — zave(t)1]|2, and the rate of convergence < < 1o %%/\N_l) (8)

as
R := sup lim sup E[d(t)]*/*. where {\;}N! are the eigenvalues af, with 0 = )\ <
z(0) t—+oo A < ... < (1= g)Av—1 < 2N. By the latter inequality,
the right-hand-side in (8) can be lower boundediby 2

If we consider the (linear) operatadl : RV>*Y — RV>*Y such . S S AN 1
that Since on several graphs of applicative interest, includings,

B . bidimensional grids and random geometric graphs, the ratio
L(M) =E[P(t)"MP(1)], /\:{171 does not go to one as the size grows, the bound in (8)
we can notice thak[d(t)] = E[z*(t)Qxz(t)] = 2*(0)A(¢)x(0), cannot be effectively used to prove asymptotical unbiasssin
with A(t) = £*(Q) defined by applying times the operator In view of these remarks, and in order to prove unbiasedness
L. Then, R is the spectral radius af, and it has been provedresults, in this paper we apply the mean square analysis to
in [14, Proposition 4.4] that class of graphs with structural symmetries, the Abeliani€ay
graphs, which we define in the next section.

est(P)? < R < sr(L£(Q)), (4)

where P = E[P(t)]. It is clear that, if all P(¢) matrices are B. Abelian Cayley graphs

doubly stochastic;(¢) converges to the initial average of states A special family of graphs is that of Abelian Cayley graphs,
rave(0). If they are not, as in the cases we are studying in thighich are graphs representing a group, as followsd.ée an
paper, it is worth asking how far is the convergence valumfroAbelian group, considered with the additive notation, atd|
the initial average. To study this bias in the estimationhaf t be a subset ofy. Then, theAbelian Cayley graplyenerated
average, we le3(t) = |zave(t) — zave(0)|?, and we define a by S in G is the graphG(G, S) having G as node set and

matrix B such that & ={(9,h) € GxG : h—ge S} as edge set. In words,
. . two nodes -i.e. two group elements- are neighbors if their
Jim E[5(t)] = (0)" Bx(0). ) gifference is inS. As well, a notion of Abelian Cayleynatrix

Let Q(t) = P(t —1)--- P(0). Then, there exists a randomcan be defined. Given a group and a generating vector

variablep, taking values irRY, such thatim;_,.c Q(f) — 15* of length |G|, we shall define the Ceyley matrix generated by
anda — p*z(0). This implies that T as_cayl(w)hg = Th_g. Corresj,\g)ondmgly, for_ a given Cayley
matrix M, we shall denote by the generating vector of the
B =E[pp*] - 2N*1E[p]1* + N211%, Cayley matrixM . Clearly, the adjacency matrices@fCayley
graphs are7-Cayley matrices.
whereE[p] and E[pp*] are the eigenvectors relative to 1 of cayley graphs have a long history in abstract mathematics,
P andZ, respectively. In particular, if> is doubly stochastic, and have been recently used in control theoretical apjditsit
then for instance in [21], [17], to describe communication netigo
. o 1 . o Assuming Abelian Cayley topologies is motivated both by
B = Elpp"|-N""11" = 1*A1l tlggo L(A)=N"117, (6) their algebraic structure, which allows a formal matheoati

for any N-dimensional matrixA. Instead of computing3, treatment —we r_efer the_reader_ to _[23], [6] for more eletaiIS—
it may be easier and significant to obtain results about sorff\'ed alsohby their pof[entllil_l z:\jppluijat_lgnsi_ Inc;eed, Abeha:y-C
functional of B, for instance the spectral norfiB||, or the '€Y 9rapns are a simpliiied and idealized version ot com-

trace tr(B). The latter figure is of interest because, if wdnhunications scenarios of practical interest. In partir;t.tl@ey
assume that the initial values(0) are i.i.d. random variables capture the effects on performance ofthe strong c_onslimln,t
with zero mean and varianee. then for many networks of interest, communication is local, not

only in the sense of a little number of neighbors, but alsdwit
E[z(0)* Bz(0)] = o* tr (B). (7) a bound on the geometric distance among connected nodes.
This constraint is abstracted into the edge set definitivargi

Motivated by our interest in the properties of the algoriﬂwrrﬁbove- These constraints are especially relevant for egsel

on large networks, and by Equation (7), we state the fongwi,petv_vorks: ind_eed, Abelian Cayley graphs have beer! related,
definition. for instance in [5], [20], [7], to other models for wireless

networks, as random geometric graphs or disk-graphs [16].
Abelian Cayley graphs encompass several important example

Definition 1ll.1 Given a sequence of grapldsy, a random-
ized algorithmP(t) is said to beasymptotically unbiased

J\}im tr(B) = 0. Example 1ll.1 Let Z, denote the cyclic group of integers
—00

modulon.

One would like to use the MSA results in [3] to obtain 1) Thecompletegraph onV nodes, that is the graph where
unbiasedness results for the BGA on some sequences of €ach node is directly connected with every other node,
graphs. If we plug the formulas from [3, Lemma 2 and 1S G(Zn,Zn \ {0});



2) Thecirculantgraphs (resp. matrices) are Abelian Caylefence, M,, > 0 implies that there existd: such that
graphs (resp. matrices) on the graddR; we denote the P(t)j4v,. > 0 @and P(t)yo. If k£ = 0, this yieldsA,, > 0. If
circulant matrix generated by ascirc(r). For instance, k+ v = u, thenA,_, o > 0 or alsoA,, > 0. Finally, if both
hering graph is the circulant grapfi(Zy,{—1,1}); its cases above do not happen, thdp,., ., > 0 and A4, , > 0
adjacency matrix isd = cire([0, 1,0, ...,0,1]) and its which yields (A*A),, > 0. The second inclusion is thus
Laplacian isL = circ([2,-1,0,...,0,—1]). For a ring, proven. To prove the first one, notice that, by the assumption
the eigenvalues of are{2(1 —cos (%F1))}iezy, and in - made,M,, > 6 E[P(t),.]. This completes the proof. =
particular\; = %VL; +o (%) asN — +oo0. Notice that in the BGA and CBGA examples we can always

3) The squaregrids on a d-dimensional torus are apply Lemma 1.3 withé =1 — q.

G(74 , {e;, —eitie{1,...dy), Wheree; are elements of the

canonical basis oR?. In particular, then-dimensional IV. BROADCAST WITHOUT COLLISIONS

hypercubegraph isG(Z5, {ei}ic1,...n})- In this section we present a comprehensive analysis of
Notice how all examples above are naturally forming the Broadcasting Gos_5|p Algorithm, n terms of both rgte
of convergence and bhias. The following result characterize

sequence of graphs indexed by the number of nodfes ; . .
Special cases for which we will be able to prove asymptotichl® Convergence properties of the algorithm, extending (3,

unbiasedness in the following, are when the generating set-€Mmas 2 and 4] to directed networks. We omit a detailed
is finite and “kept fixed” as in the ring graph. Precisely waroof, which can be obtained by direct computation.

consider the following general example. . )
Proposition IV.1 (Convergence of BGA algorithm)

Example 1Il.2 Start from an infinite lattice) = Z¢ and fix Consider the BGA algorithm. L&l be any connected graph,
a finite S C 7% \ {0} generatingZ® as a group. For every and Ie.t A and_ L respectively denote its adjacency and
integern, let V,, = [-n, n]¢ considered as the Abelian group-aplacian matrices. Then
74, ., and letG™ be the Cayley Abelian graph generated by P=1-qN-'L (10)
S, = SN [—n,n]% Notice that all graphg ™) have the same
generating sef for n §uﬁ|C|entIy Iarge_, in pa_rtlcular they haveﬁ(Q) Q- gl —)N"Y(L + L") + gN“2(L*11* + 11°L)
the same degree. Rings and grids fit in this framework.

—¢*N73(DT — A)(DT — A%). (12)

A G-Cayley structure for the communication gragh In particular, the BGA algorithm achieves probabilisticrco
has important consequences on the mean square analysi§edSus.
randomized consensus algorithms. In particular, it is dasy
see that ifC' is a G-Cayley matrix, then alsaC(C) is G-
Cayley. Then, for every € Zx(, the matricesA(¢) = £1(2)
are G-Cayley. Thus, the sequena®(t) can be equivalently arollary IV.2 ([3], Lemma 4) Under the assumptions of

seen as the sequence of the corresponding generatingsvezg?o osition V.1 ifG is symmetric, then
m(t) = e A(t), whereey is the indicator vector corresponding P o Y ’

to the group elemerd. We shall refer to the vector(t) as P=I—-gN 'L
the MSA v_ector Sincel is_ Iinear_, the MSA vector evolution L£(Q) =0 —2¢(1 — )N'L — ¢*N"2L2.
can be written as a matrix multiplication(t + 1) = M= (¢).
Clearly, R = esr(M). Moreover,M is x-stochastic, and if we In particular, the convergence rate can be estimated as
let 7’ to be the invariant vector af/, that is 2(1 —
q(1—q)
N

2q
1——= )\ <R<1-
{ﬂ"—MW’ NS

The next result provides explicit bounds on the convergence
rate, assuming the communication graph to be symmetric.

Alv

1% = where )\, is the smallest positive eigenvalue fof

- )

then, Equation (6), implies that

1 1 1 For the rest of this section, we focus @elian Cayley
B = & cayl (W' - Nl)’ tr B =7 — ~ (9) graphs The next result shows that the linear operathr
) ) which encodes the MSA evolution of the algorithm, can be
wherer; is the component of” corresponding td) € G decomposed into a “simple” operator, which is essentidiy t
The following simple result will be useful later on. Laplacian of the communication graph, plus a perturbation,

Lemma I3 LetG be G-Cayley, and suppose th&()u, > which is a sparse matrix if the graph is sparse.

0 > 0 almost surely. Then, Lemma IV.3 Consider the BGA algorithm and let the com-

GaA CGOnm- CGata1aa munication graphg be an Abelian Cayley graph generated by
S C G, with degreed = |S|. Then, the MSA vector evolves
as

Proof: A straightforward computation shows that



where Theorem V.4 (Unbiasedness of BGA)Fix a finite S C Z4\

C=1- i(L +L¥) {0} generatingZd as a group. For every integet, let V,, =
[—n,n]? considered as the Abelian grod, ,, and letG™
be the Cayley Abelian graph generated $y = SN |[—n,n]?.
and T is a matrix such thatl’ = —T where T' does not Then on the sequence 6™ the BGA is asymptotlcally

depend neither oy nor explicitly on N but only onS, and | npiased.
is such that the number of non-zero rows is at méstand
non-zero columns is at mogt — d + 1. Proof: The idea is to apply the perturbation result Theo-
rem A.1 to the sequence of matric€$ and(C' +T')*. Notice
Proof: Using the fact that all matrices are Abelian Cayleyhat G- = G while Gorry 2 G™ by Lemma IlI.3.

and the notation in (3), we obtain Hence,Gc- and Gc41)- are both strongly connected. This
(t 1) = E[P(H) AR P(H)] also implies that the limit graph of? of the two sequences
Gc+ and Gicy )~ both containG(>) which is simply the
=A(t) — qE[L()"A(t)] — gE[A(t)L(t)] Abelian Cayley graph ofi generated bys which is strongly
+ *E[L(t)* A(t)L(t)] connected by the assumption made. Finally, notice @ats
q Abelian Cayley, hence obviously weakly democratic, while
( -y &L )) At) Lemma IV.3 guarantees th&at’ +T')* is a finite perturbation
. .. of C*in the sense of Appendix A. Hence al$6' + T)* is
+ Z Z (eger, — enep) At)(ereg — exey,) weakly democratic. This yields, by (9), oD

€G h:h—g€eS k:k—ges
. . . trB=|N"!'—x)| < Nt 47x) —0.
Slncew(t) = A(t)ep (being A(t) symmetric for everyt),

we easily obtain from above that ]
Theorem V.4 tells us that the BGA is asymptotically un-
m(t+1)=(1 - I (L + L*))7(t) biased on sparse Abelian Cayley graphs. More precise sesult
can be obtained by computing the matfixn some examples:
+ qu Z Z Z Th—k(t) for instance, we consider ring graphs and complete graphs,
g€G h:h—g€eS k:k—geS which show opposite behaviors.

X (eg g — €€l — eney + eney)eo
Example IV.5 (Ring graph) On ring graphs, Corollary 1V.2

= a5y (L+L ) (t) implies that, forV large enough,
2 2
£l S mesbien e 1% cR<1-g0 -9
h:h€S k:k€S N N
+ 3> mt)(en —eg)]. and namely R =1— (). Specializing the proof of
g€—S h:h—g€S Lemma IV.3, the evolution ofr(¢) can be written as

From this we immediately see that the non-zero elemens of mit+1) = (1 g n fwAz)w-(t)
J J

have row indices IS — S)US and column indices it$ — S, N N

whereS—S ={g € G : Js1,s2 € S such thaty = s; —s2}. 9 g_f A " /
Hence the result follows. * 2(N N )(773*1( )+ 7 (t))
" + L (2o (t) + mat) + 7_a(t)) S0y,

This lemma has a few interesting consequences. Note that N
the entries of the matri” in (12) are proportional taV=' that ism(t+1) = (C + T)x(t), with
and, moreover, the number of the non-zero entries is upper 4
bounded by(1 + d?)?, whered is the degree ofg. This C = circ (1 — —q,2i,0,...,0,2i)
implies that, if the degree is small, i.e., the graph is spars NN N
then also the matrif” is sparse In particular, if we consider and

a sequence of graphs of increasing size with fixed degree, we 4 0 1 0 ... 0 1 0
expect that, a® diverges;I’ would become negligible, and the -2 0 -2 0 0
MSA would depend on the matri& only?. This would imply 0O 0 1 0 0
the unbiasedness of the algorithm, because it is immediate t q? 0 0
remark that the invariant vector @f is N~'1. This property -N 0 0
of asymptotical unbiasedness can be actually stated as the 0 ... 0
following result. 0o ... ... 0 1 o0

-2 0 ... ... 0 =20

) _ _ , o Thanks to these explicit formulas, we can numerically cotapu
Note that, in general’' is not a stochastic matrix since it may be negatlve[h d bi N | b h b h
on the diagonal, however for large enough(andd fixed) C is a stochastic ("€ rate and bias. Namely, about the rate we o tain that

matrix. esr(C) < est(C +T), andesr(C +T) = 1 — O(N~3). This



means that the perturbatidhdoes not significantly affect the
rate for largeN. Moreover, sincesr(C) = 1 — (N 3) and

est(C +T) —esr(C) = 1 — ©(N—*) we argue that actually —e—Ring graph
9 1 10tk —%— Random Geometric
87T —&— Complete

On the other hand, about the bias we obtain thdtB) =
©(N~1). This is confirmed by the simulations reported ir
Fig. 1. O

Example 1V.6 (Complete graph) Let G be a complete graph,
and consider the BGA algorithm. In this case, the degn
is proportional to N, and Theorem IV.4 does not apply.
From [13] we know that

R=1-q(2-q)
q 1 ]_]_>k 10°
=——(I- ).
2—qN N
_ q 1 i
Then, tr B = 52 (1 o W) and hence theBGA is not Fig. 1. The plot shows the asymptotical bjass a function ofV, computed

. 9
asymptotically unbiased on the complete graph LI by simulations on sequences of complete, random geomatritring graphs.
Plotted values are the average over 1000 runs. See text fi@ imformation.

In order to take into account the locality constraint on
connectivity in real-world networks, several models ofdam

geometric graphs have been proposed, as accounted in [%ﬁl)position V.1 (Convergence of CBGA algorithm)

Such models are not in general Abelian Cayley: hence #ynsider the CBGA algorithm. Le§ be any connected
the next example we study one such model by means gﬁ%ph andL its Laplacian matrix. Then

simulations.

_—— N
Example 1V.7 (Random geometric graph) In this example P=I-q(l-p~ L (14)

we consider sequences of random geometric graphs, based on e D and i

the following construction. For alV € N, we sampleV points Where((1 —p)™ )i; = (1 —p)~w for everyi and ;. In par-
{2i}icz,, from a uniform distribution over a unit squaie 1]2, ticular, the CBGA algorithm achieves probabilistic conses.
and we draw an edgg, j) between nodes,j € Zy when

2i— 2] < 08\/@ On these realizations we run the BGAtran Proof: The probability of having at time a successful

. o . = e
algorithm until con]\iergence is reached, up to a small tolega enirglssmn from 10 w is PlAuy(t) = 1] = p(1 = ) Aue.
threshold, and in this way we compute an approximation '6%‘ ' -

limy_,» 3(t). The results are plotted in Fig. 1, in comparison E(A(t)) =p(1—p)* A. (15)
with the analogous quantity on the complete and ring graph. | -

appears from simulations that, Asdiverges3 is ©(1) onthe Now, P = E[P(t)] = E[I + q(A(t) — D(t))] = I +
complete graph, whereas it&N ') on the ring graph, and gp(1 — p)” [A — D~]. Note that the induced grap@is is
O(N~1/2) on the random geometric graph. These evidencsetongly connected: by [14, Corollary 3.2], we can conclude

are in accordance with the theoretical results, and sudigeist the convergence of the CBGA. [ ]
extension to other families of geometric graphs. O Formula (14) is simpler if the graph igregular, because
in that case
V. BROADCAST WITH COLLISIONS P =1—qgp(1-p)iL.

In this section we present a comprehensive analysis, irsterm
of both rate of convergence and bias, of the Collision Broad@hen, provided the graph is symmetrisy(P) = 1 — gp(1 —
cast Gossip Algorithm. We recall that in this algorithm gverp)?\;, and this together with (4) leads to
node is allowed to broadcast at every time step with some
probability p. After proving a general convergence result, we R>1—2gp(1 —p)i\
focus on Abelian Cayley graphs in Subsection V-A, and study
ring and complete graphs as examples in Subsection V-B. Qug a lower bound for the rate of convergence. As a function
main finding is that the behavior of the CBGA, in terms 0bf p, this lower bound is minimal ip is equal top* = #1-
both speed and bias, is close to the behavior of the BGA: iI’lHence’ natural questions are: is this bound tight@*ishe
this sense we may claim the robustness of broadcast gogs#gt choice to improve the convergence rate? Section V-B
algorithms to local interferences. will answer positively these questions for complete and rin
graphs.



A. Abelian Cayley graphs proportional toq. This implies that by changing we can

From now on we consider the CBGA on Abelian Cayle}ade'(’ﬁq between speed and accuracy of both algorithms.
graphs. The next result, analogous to Lemma IV.3, chard@" the BGA, this trade-off has been studied in [3], and we

terizes the mean square analysis of the algorithm, giving2s8ue from Lemma V.2 that such analysis can be promptly
decomposition into a “simple” operator plus a perturbation extended to the CBGA. The simplicity of this extension regat

to the robustness of BGA to collisions. Moreover, Lemma V.2
Lemma V.2 Consider the CBGA algorithm and let the comStates the sparsity property @} which is the key to infer an

munication graphG be Abelian Cayley with degre¢ Then, unbiasedness result analogous to Theorem IV.4.

the MSA vectorr evolves as
Theorem V.3 (Unbiasedness of CBGAJix a finite S C

m(t+1) = (C+T)n(t), (16) 77\ {0} generatingZ? as a group. For every integen,
where let V,, = [-n,n]¢ considered as the Abelian groufs,, .
and let G be the Cayley Abelian graph generated by
C=1-qp(l—p)(L+L")+¢°p*(1 —p)*'LL* S, = SN [-n,n] On the sequence @™ the CBGA is

and T = ¢*T, with T does not depend neither op nor asymptotically unbiased.

gxplicitly onN, and is such that the number pf NoN-zero rows  praof: The idea is to apply the perturbation result Theo-
is at mostd*(d + 1)? and non-zero columns is at mast. rem A.1 to the sequence of matric€$ and(C +T')*. Notice
that Go+ = Gara-ta-4 2 G while Goirye 2 G by
Lemma I11.3. HenceGc- andG 1)~ are both strongly con-
nected. As in the proof of Theorem IV.4, connectivity imglie
A(t4+1) = (I—gp(1—p)Y(L+L*)A(t)+¢*E[L(t)*A(t)L(t)] that the limit graph onz? of the two sequence§c- and
G(c+1)- are also strongly connected. Finally, notice that
is Cayley Abelian, hence obviously weakly democratic, @hil
m(t+1) = (I —qp(l — p)d(L + L')7(t) + > f(x(t)) (17) LemmalV.3 guarantees thet'+7")* is a finite perturbation of
C* in the sense of Appendix A. Hence alg8+7)* is weakly
where democratic. This yieldsr B = [N~' —7)| < N~! + 71} — 0.
., * [ |
f(8)) =ELLE ADLleo With this result, we have shown that also the CBGA is
asymptotically unbiased on sparse Abelian Cayley graphs.

Proof: Using commutativity of Abelian Cayley matrices
and (15), we obtain that

Passing to the generating vector,

B. Ring and complete graphs

=if2(m(1)) To begin with, we specialize the results in Section V-A to
Now, the case of ring graphs.The following result can be proven by
fi(m(t)) = p*(1 — p)*?L* L= (t) (18) computingT’; the detailed derivation is omitted.

and Proposition V.4 (Ring graph - Rate) Given a ring graph

[fa(m()]e = [BILE)nL(t)ko] and the CBGA algorithm, we have

hk 5

~ ELL(0u B Oroln(n-i] o
B == 2L —q)p{L —Pp —qgp\l—p
~ 2 [FH 0 1) + (1 — PN peirc(r),

— E[L(t) k44,1 JE[L () ko] (t):] where

Notice now that, by the way the model has been defineg,:[z(p_ 2),6 — dp + p?, —3(2 — 2p + p?), 2 — 4p + 3p,
we have thatd;;(t) and A;x(¢t) are independent whenever 0 0.9 — dp+ 302 —3(2 — 2 2y 64 9
N~(i)nN~(h) = 0 or equivalentlyi—h ¢ S—S. In this case, o2 0,2 = dp+3p7, —3(2 = 2p+p7), 6 — dp + 7).
alsoL;;(t) and Ly (t) are independent. Therefore, the doublgy particular, for V large enough,
summation in (19) can be restricted toc S U {0} andt €

S —S. Consequently, the values bfor which [f2(7(¢))]; # 0 I —qp(1— P)Qg—z <R<1-—¢q(1-q)pQ —p)28—7T2.

can be restricted tgSU{0})+S—S—(SuU{0}). Plugging (18) N N

into (17) and using the information on the structure'sifr(t)) This result in particular shows that the bound on the
obtained above, the result follows. B convergence rate based dhis asymptoticallytight for the

Note that, as for the BGA, the matrik is responsible for ring graph. Note that the speed of convergence for the CBGA
the bias of the algorithm, and the mixing parametgslays is one order faster than the BGA: this is not surprising, einc
the same role in both algorithms. The matfikis roughly in the former case the average number of activated nodes per
proportional tog?, and (for smallg) the matrix I — C is round isNp, instead ofl.



Remark V.5 (Large N) Based on the formulas in Proposi-Hence the application ol keeps invariant the subspaces
tion V.4, the performance for larg&y can be numerically generated byl and 11*, and the linear operatof can be
investigated, showing thatr(C) < esr(C'+T'), andesr(C' + represented by the matrix

T) =1— ©(N~2). This means that the perturbati@Ghdoes _ B L \N-1 9 _\N-1

not significantly affect the rate for largh’. Moreover, since ( 1 9 2&@ )}J\)[Né)(i )Zﬁf)_l 1 z ]\2]%(1(1 f) JN-1 )
esr(C) = 1-O(N %) andesr(C+T)—esr(C) = 1-O(N 3), a VNP b P b

we argue that actually The eigenvalues of this matrix aleand R = 1 — ¢(2 —
q)Np(1—p)N~1 and the eigenspace relative to eigenvalue 1 is
87T2 1 *
R=1-g(-pP> 10 (_3) | spanned by the vector!) = gNp(1 —p)¥ " (4,2(1 — q))"
N N Since E[pp*] belongs to this eigenspace, ahtE[pp*|1 = 1,

This formula is very close to Eq. (13) about the BGA. On thwe conclude that
other hand, one has(B) = ©(N 1), that is the asymptotical
error has the same dependenceldras for the BGA.

1 11*

B=E[pp]-N11" =L —(1-=).
[op*] 5 7

o _ [

Remark V.6 (Optimization - Ring) Remarkably, for large  Some remarks are in order about the parameteysn the

N both the upper and the lower bound on the rate in PropgBGA algorithm on complete graphs.

sition V.4 show the same dependenceonThus, they can

be simultaneously optimized by taking = 1/3. Instead, the Remark V.8 (Optimization - Complete) The convergence
dependence op of the asymptotical error is negligible. Thisrate R as a function ofp is optimal for p* = 1/N. Note
implies, from the design point of view, thatcan be chosen that R(p*) = 1 — ¢(2 — ¢)(1 — LN=1 51— ¢(2 -9}t
to bep* = 1/3, optimizing the convergence rate, whereas byhen N goes to infinity, while if we fixp = 5 € (0, 1), then
choosingg we trade off asymptotical error and convergencg(p) — 1. On the other handB is independent of. From
rate, as done for the BGA in [3]. the design point of view, it is clear that has to be chosen
equal toN !, optimizing the speed. Instead, choosingve
As for the BGA, a more precise analysis can be pursued Bade off speed and asymptotic displacement: if we recall th
complete graphs. formulas for the BGA in Example IV.6, it is clear that the
optimization problem is the same for both algorithms.

Proposition V.7 (Complete graph) Let z(¢) evolve follow-

ing the CBGA algorithm. Then, VI. CONCLUSION

N1 This paper has been devoted to study gossip algorithm for

R=1-q(2-q)Np(l—-p) the estimation of averages, based on iterated broadcasting

Li(] . 11*)_ of current estimates. We presented a novel broadcast gossip

2—qN N algorithm, dealing with communication interference, whos

Namely, tr(B) — Q%q( — 1) and then theCBGA is not effect is studied iq the Eaper.hOur resuklts, otl)tainedII under

asymptotically unbiased on the complete graph symmgtry assump_tlons a.out t. e network topology, allow us
to conjecture an interesting picture of the performance of

Proof: It is immediate that in the complete graph eitheProadcast gossip algorithms on real world networks, in germ

one node communicates to every others, or no node comrffiaccuracy and of robustness to interference. In broadsierm
nicates. The®[P(t) = I] = 1— Np(1—p)¥~! andP[P(t) = We claim that the BGA is robust to interferences. As expected

Py) = Np(1—p)N~', whereP, = I+ 3", ,(euel —euey), interferences have a negative effect on the rate of conueege
and v is the realization of a random variable uniformlywhich can be mitigated by a suitable choice of the broadugsti
distributed over the nodes. We note that probability p. Instead, interferences have on the asymptotical
. error a small effect, which is negligible on large networks.
11* = NI : : ; _
- The size of the network is also important for accuracy: on
N large highly connected graphs, both algorithms providedia
which implies that estimations, whereas on sparse graphs the estimationdriss g
) to zero as the network grows larger. On the other hand, the
E[P(t)"P()] rate of convergence degrades on large sparse graphs, which i
=Np(1—p)N'E[P;P]+ (1 - Np(1—p)"~")I  a general feature of consensus algorithms based on diffusio
=[1 —2¢(1 — q)Np(1 —p)N "I The results of this paper have been obtained under two
11* simultaneous technical assumptions: the graphs are Abelia
_IT. Cayley, thus in particular vertex-transitive, and in the@B
each node broadcasts with the same probability. Future work
and should consider non-vertex-transitive networks of nodéh w
EIP(H11*P(t)] = 2 N2p(1 — p)V-17 _non-unlform broadcasting probabllltle_s. A better uncdamst
P(t) D) =" N"p( ) p) Nedvaas ing of the role of the network topology in the trade-off beéme
+ (1 =g Np(l—p)" )11" speed and achievable precision may come from such extension

ElP]=1+q

+2¢(1 — q)Np(1 — p)



Acknowledgements: The authors wish to thank Sandro [7]
Zampieri for many fruitful discussions on the issues stddie
in this paper. (8]

APPENDIX

In this appendix we recall a perturbation result from [12][9]
about the limit of the invariant vectors of sequences of
stochastic matrices, which is used in our paper to estimz{\_{g]
the trace of the matrixs.

We assume we have fixed an infinite universe Betan
increasing sequendg, of finite cardinality subsets of such
that U,V,, = V and a sequence of irreducible stochastic
matrices P(") on the state space, with the following [12]
stabilizing property: for every € V, there existn(i) € N
such thati € V,,(; and

[11]

(23]

pl(@)

pgz) =P n > (i), Vi€ Vi,

[14]
This property allows us to define, in a natural way, a limit
stochastic matrix oV, For everyi, j € V, we define [15]

{ PO i e Vi

pleo) _
0 otherwise.

)

20

(20) (6]
The sequence of stochastic matrid@$) is said to beveakly [17]
democratidf the corresponding invariant vector§™) are such
that, for alli € V, 7™ — 0 for n — +oo. Fix now a [1g]
finite subseti’ C N,,V,, and another sequence of irreducible
stochastic matrice®(™ on V,, such that
PI =P WieV,\W, VjeV,

PO

j

[19]

= (n) , . [20]
P = VieW,VvjeV,

- [21]
In other termsP(™ can be seen as a perturbed versior6f

with the perturbation confined to the fixed subBétand stable

(it does not change as increases). Also for this perturbed
sequence we can define, following (20), the asymptotic chain

P(>) The following result has been proven in [12]. (23]

Theorem A.1 Suppose tha(>) and P(>) are both irre-
ducible. Then, ifP(") is weakly democratic, als®™ is
weakly democratic.
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