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Abstract— In this paper, we consider the problem of relative matrix M, we denote byr(M) its trace, byM T its transpose

localization in a network of sensors, according to the formla- gnd byMT its Moore-Penrose pseudoinverse [4].
tion of Barooah and Hespanha. We introduce a distributed alg-

rithm for its solution, and we study the algorithm performan ce II. PROBLEM FORMULATION AND BASIC RESULTS
by evaluating a suitable performance metric as a function of .
the network eigenvalues. Remarkably, the performance angkis We consider a set a¥ agents, and we endow each of them

indicates that it is preferable to stop the algorithm before ~with a scalar quantitys; € R, for i € {0,..., N — 1}. The
convergence is reached: an estimate of the optimal stopping ith agent does not know the valdg, but has an estimate
time is provided. z; € R. We shall denote by and x the N-dimensional
vectors whose components ate and z;, respectively. We
suppose that each agentcan take relative measurements

We study in this paper the distributed solution of a problen#; — z,; with respect to some neighboys An undirected
of relative localization in a network of sensors. We assumgraphG = ({0,...,N — 1}, F) is used to represent the
to have a group of agents organized in a graph and a vectatailable measurements. The set of vertices is constituted
indexed over the agents and unknown to them: the agents & the N agents, and the edges (pairs of agents)Ein
allowed to take relative noisy measurements of their vect@orrespond to the available measurements. We assume that
entries with respect to their neighbors in the graph. Thehere arelM available measurements, and that measurements
estimation problem consists in reconstructing the originaare symmetrical, meaning that both agents of a pair know the
vector, up to an additive constant. We refer to this problem aneasurement, with a reversed sign. Furthermore, we assume
the problem ofrelative localization Our formulation of the that the graph is connected. On each edge, we choose an
problem essentially adopts that of Barooah and Hespanha [b}ientation, that is, we define a starting node and an ending
[2], [3], although these authors assume to have an anchesde, in order to encode the measurements by using the
node, in order to avoid the uncertainty about the additivincidence matrixd € RM*VN defined as follows
constant, a_lnd they resort to infinite graphs as an analysis 1 if i is the terminating edge of
and modeling tool. _ _ (A)e; =<{ —1 ifiis the starting edge of

The main contribution of our paper is an analysis of the ’ 0 otherwise.
transient performance of a gradient algorithm solving the
problem of relative localization. We define a time-dependerMeasurements are affected by errors, which can be modeled
performance metric, which is then computed as a function &% independent and identically distributed noises. be¢
the eigenvalues of the graph encoding the problem. RemarR’ be the vector of the measurements and R" that of
ably, the performance analysis indicates that the expect8@ises. Then, in matrix notation we have
performance is optimal at a certain finite time, instead than
asymptotically: consequently we argue that the algorithm
should not be run until convergence, but stopped at a sgitabkith E [n] = 0 andE [nn”| = 0% wherel € RM*M is
time. We provide an estimate for the optimal stopping timethe identity matrix. It is also useful to define the Laplacian
our estimate does not depend on the measurement graph afid> as L. = A” A. The Laplacian is a symmetric matrix,

|. INTRODUCTION

b=Ax+n

is thus of immediate and general application. and beingG connected/ has eigenvalues, = 0 and0 <
) Ai < 2dmax fori € {1,..., N — 1}, with dnax denoting the
Notation maximum degree of the nodes.

In the paper, we will use the following notation. Vectors
will be denoted with boldface letters, and matrices with
capital letters. By the symbols and 0 we denote vectors ~We define the best estimate in a least squares sense by
having all entries equal ta and 0, respectively. Given a defining the quadratic error functional

U(x) = [ Ax - b]3,

. Least Squares Performance
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Since A has rankNV — 1 and A1 = 0, the setX is an affine B. Transient Performance

space parallel td. This remark is consistent with the fact 19 eyaluate the algorithm performance, we follow the
that from relative measurements the absolute configurati%proach in [5] and define the performance metric as the

all the optimal configurations, we may defitec X as the (e configuratiorx, as follows:

i ifi Ty 1qTg
one which satisfies;17x = +17%.

1
Ji(A) .= —E||x[t] — x||2,
IIl. GRADIENT ALGORITHM AND TRANSIENT «(4) N It] = %12

PERFORMANCE where the expectation is taken on the naisdnterestingly,
A. Algorithm Definition and Convergence Properties this metric can be computed in terms of the eigenvalues of
the matrix P.

b -,Il-ge gr{:\dienlt ofd_thgbfun;tiona}ﬁl(x) car: be_ huse(é\m:f) Proposition 2 (Transient performanceYnder the stand-
uild an iterative distributed estimation algorithm, wihic ing assumptions on the noise and on the graplG, for

is consistent vy|th thg reqwrements_of local pommqmcaﬂoglgorithm (1) it holds

and computation. Since the Hessidh¥(x) is positive-

semidefinite, a gradient descent algorithm can be used. Let 1 1 = T
NN Lo J(A) = —dy+ = Y pitd; + o0’

the nonnegative integérbe the iterationx[t] € RV be the t TNNT N 2t N

collection of node estimates at the iteratigmndx[0] be the =t

initial condition. Then, we propose the following algorith Wherey;'s are the eigenvalues dt, M is the matrix whose
column are eigenvectors d@t, andd = M T (x[0] — ).

x[t + 1] = x[t] — TV (x[t]), Proof: In order to prove the statement it is necessary

where the parameter is to be determined for convergencetO rewritey as

reasons. The recursive law can be rewritten as: y=7ATb =7ATAz + 7ATn = (I - P)x + 7ATn

= (1 ph)?
1 —pi

)
1=1

x[t + 1] = x[t] — 7(AT Ax[t] — ATb) and derive

= (I —rATAx[t] +7A"Db =
( [ x[t] — x =P'x[0] + Z P'y —x
n=0

or as
x[t+1] = Px[t] +y, Q) i1
=P'(x[0] —=x) + > _ P"(rA"n).
providedP = I — 7AT A andy = 7A”b. —re

It is of note that the matrix is inherently adapted to the
measurement gragh, in the sense that;; > 0 only if (¢, j)
is an edge inG. This observation is key as it implies that Ji(A) = —E|x[t] — x|

Plugging this formula into the definition of,(A) we get

the algorithm is naturally distributed over the graph which N
describes the problem: therern® need for communication - iE[tr [(x[t] — %) (x[t] — X)T] ]
between agents which do not share a measurement. N
The convergence properties of the algorithm are summa- = 1 tr [Pt(x[()] - x)(x[0] —x)T P!
rized in the following result. N R
Proposition 1 (Convergence)fhe algorithm (1) is such 1 o2r2 Z Z PnATAPm}
that n=0m=0
i i) = L ptad0] ) (al0] — )7 P
oo =N tr [P*(x[0] — x)(x[0] — )" P
with x € X and17x = £17x]0], providedo < 7 < Z--, -1 t—1
wheredmax denotes the largest degreen + o7 Z Z P"(I - P)P™].
Proof: From the assumption on it follows that P is n=0m=0

a symmetric, irreducible, aperiodic stochastic matrixsla  |f we diagonalizeP using the orthonormal matri#Z, and
standard fact that is a simple eigenvalue whose eigenspacge define? = M7 PM andd = M7 (x[0] — %), we deduce
is spanned by, while all other eigenvalues are, in modulushat

strictly less thanl. Since1”y = 0, it then easily follows 1 1
thatx[t] converges to a solution of the equatign= Px + Jy(A) = 1 tr [P?da”] 102 ¢r [Z P (I-P) Z .
y. Finally, invariance of the barycenter simply follows by N N e
applying1” to both sides of (1). [
We observe that, given an initial conditiofj0] the algo-
rithm converges to an optimal estimatec X, specifically
the estimate with the same averagexad|. Then, in order Ti(A)
to converge to the best estimateit would be necessary to ¢
impose the same average %fto the initial conditionx[0]. (@)

m=0

Plugging the identity/ — P) = (I — P)(I — P)I(I — P)
into the previous expression we get

_ 1 p2t 19T 2T _ Pyt(r = pt)2
_Ntr[P dd]+aNtr[(1 P)I(1 - P"?].



Since the eigenvalues ¢f — P)t are0 and ﬁ fori # 0, The analysis of/;(A) —see formula (2)- is complicated by
we conclude the presence of the coefficient, which depend on the ini-
N_ tial condition. In the following we will make a simplificatio
il Z ptd? + o 2 T Z (1- “z ’ and average over the initial conditions assuming the Initia
N = 1—-p conditionx[0] — x to be a vector of i.i.d. random variables
with zero mean and varianeé. Sinced = M 7T (x[0] - %), it
easy to show that alsé is a vector of i.i.d. random variable
with the same properties so th&{d?] = 2 for everyi
including 0. So we can consider the expected behavior of
Ji(A) by averaging on the initial condition:

which gives the result. |

A few remarks are due about the formula fdg(A)
found in Proposition (2). First of all/;(A) depends on the
eigenvalues of the Laplaciahvia the relatiory,; = 1—7X;,
which implies

N—-1 E 2t 2 N— (1 - ‘LL;S)Q
Ji(A) = <=dy + E Z i) d2+ Ji(A) =E[J,(A)] = _+N Z T
1=1 o
i=1
E —

, 1 N-log_ 1= A0 Note thatJ ,(A) = v? and that we have

— Ai ' B v?

1_1 t—lg-noo Jt (A) - Joo (A) + N

This formula is helpful to compute the limit of,(A4) a
t — +oo. If the initial condition has same average as th
true configuration, namely- 17x[0] = 417, thendy = 0

This formula implies that the component of the error which
is due to the incorrect estimate of the average goes to zero

and at convergence we have: as v grows. . . _— .
In order to investigate our insights about the time depen-
1 N2y dence ofJ;(A) we shall make use of the rewriting
Joo(A) := lim Jy(A) = 0?— —.
e N A JE(A) =

Remarkably,/..(A) does not depend on the algorithm and is ! 1— put)? 1=
Yoo (4) P 9 - 02/ dp [t + L) ~ D 0n =)
equal to the mean square error of the Best Linear Unbiased _ 1—p N —~

Estimator studied by Barooah and Hespanha, namely B

1
= 70?2 /71d/L Jr.a(pt) : gn (1) ®3)

2
If insteadd, # 0, then the corresponding term is constanwhered (. — ;) is the Dirac delta distribution and = V—Q
in time, that is, the difference between the average[6f s the initial-condition-to-noise ratio The integrand in (3)
andx has an impact on the estimate at every time step. This the product of two essentially independent terms. The
is consistent with intuition, because indeed agents may nfitst term is a continuous weight functiof (1), which
reconstruct the average a&f We note that, in order to fix depends on the time stepand ona. The second term
this degree of freedom, an anchor node can be used asidnthe distribution of the eigenvaluagy(x). Indeed, the
the work [1]: our analysis carries on to such case with mindntegral runs over/—1, 1], which contains the support of
adaptations. the eigenvalue distribution. Observe that, (¢) and g (1)
It is also interesting to discuss the role of the other term&spectively characterize the estimation problem and the
in the expression of/;(A). Indeed, the first summation graph. The algorithm parameter instead, influences both
is due to the difference between the initial condition anderms, as bothv and i; depend on it.
the true configuration. The impact of this difference mono- By exploiting the above decomposition we can prove
tonically converges to zero along the iterations, sipge the following theorem, showing thaff(A) is eventually
have modulus less than The second sum, instead, encodefcreasing.
the diffusion of the noise in the estimates: its contribatio Theorem 3 (Finite-time optimality)For any graph topol-
converges to a constant. ogy and any sizeV, and provided) < 7 < ﬁx, the index
JE(A) is increasing for alk > a.
Proof: In order to show that the sequenck(A)
As J;(A) contains both decreasing and increasing term& eventually increasing, we study the discrete derivative
it is reasonable to ask whethdr(A) reaches a minimum at J7, ,(A) — J(A) and show that it is eventually positive.
a finite time. The existence of such a minimum would b&he discrete derivative reads
of significant applicative interest, since it implies anioyal 1
stopping criterion for the algorithm. Intuitively, we exgiea JtEH(A)—JtE(A) = 702/ dplfis1,0(1) = fra(w)] - gy (@),
trade-off between increasing and decreasing terms cdedrol -1
by the relative magnitude of the initial condition and thewhich is positive when the integrand is positive. Singe=
noise. 1—7X\; and\ € [0, 2dmay, the assumption om implies that

1o
Joo(A) = FEII% — X3

C. Finite-time Optimality



gn(p) > 0in [0, 1]. Next, if we compute _ Ring,0=1,7=0250, N=100

3 =1
frrva(p) = fra(p) = ap® 2 —ap® 4+ 2p" — p®* — p* 4, e I
S s v=4
it is immediate to check thaf;;1,,(0) — f;,o(0) = 0 and T - - v=10
fi+1.0(1) = fi.a(1) = 0. Moreover, we claim that wheh> 0l

a — 5, we havefi 1o (p) = fra(p) > 0 forall € (0,1).
In order to prove this claim, we compute

2
Frorn(i) = fua) =2 (5 == 1= (a - an))
and we defineua(y) = o — ap? andb(p) = % — p — 1 o[

as functions o0, 1]. The following facts are then easy to
verify:

a(l)=0 b(1)=0 t
, , 2t

a'(p) = —2ap <0 b'(n) = _ut+1 —1<0 Fig. 1. The performance metri&(A) as a function of time. Plot assumes
, , « varying andN fixed.

a'(l)=-2a<0 b(1)=-2t—1<0

a”(u):—2oz<0 b”(u): w 0 Ring, v=20,0=1,1=0.250

/’Lt+2

These observations imply that the functiangind b have a
common zero and opposite convexity, @ss convex and

is concave. Moreover, singe < 1, it holds true that when
-2t — 1 < —2a, i.e, whent > o — 3, thent/(1) < a/(1).
This fact implies thata(u) < b(p) in (0,1) thanks to the
above discussion. We have then proved thatif o — % then
fit1,a(p) = fr.a(p) >0, for all € (0,1). Overall, we have
shown that both factors of the integrand are positive, and v
can conclude thafff ; (A) — JF(A) > 0 whent > o — 1.

So, clearly, the index'*(A) is increasing for alt > o — ;
[ |
Clearly, the theorem implies thaf(A) has (at least) - - - — - - \
a minimum, and that the time step which achieves th 10 10 10 k4 10 10 10
minimum is not larger thanmv: this result holds regardless
of the topology and size of the network. Fig. 2. The performance metrif(A) as a function of time. Plot assumes

Remark 4 (On the assumption ejt The assumption on « fixed andV varying.
7 in Theorem 3 restricts the possible choice-db (0, ﬁ).
The assumption has been made to simplify the proof and is
slightly conservative: the result may actually be extensted 7 = %, while we letN and v vary. The plot clearly shows
everyt € (0, ﬁ) by a similar argument. The argument isthat for high initial-condition-to-noise ratio it is cormient
however more involved because the sign of the differende use the algorithm and the minimum, always present,
fist.a() — fr.a(p) on (=1,0) depends on the parity af is not very pronounced. Asy decreases, the minimum
(e.g. notice thaff;1..(—1) — fr.o(—1)] = £2). Hence the becomes prominent, because the noise on the measurements

reason for the simplifying assumption en is comparable with the true information contained in the
) ) ) initial condition (hereafter i.c.). The latter is thus dissed
D. Simulations and Conjectures by the noise. For very low value of, the noise covers the i.c.

In this section we present simulations and numericao that running the algorithm is practically useless. Qyear
results, which validate our theoretical findings and confirmfor what concerns i.c. and noise there is a sot@hpromise
their practical interest. Our presentation below assurhes tregulated bya (namely betweens and o), that shifts the
graphG to have aing topology. Rings are defined as graphdocation of the minimum in time and justifies or not the use
having node sef0,..., N — 1} and vertex sefv such that of the algorithm.

(1,j) € E'if i —j|=1 mod N. This simple topology has Instead, in Figure 2 we fix and let the size of the ringy
been chosen in order to provide useful examples: similgyrow. In this plot, we notice that the curves converge]Nas
remarks can be obtained on other families of graphs. grows and for every, to a limit curve: we actually conjecture

Let us then investigate the dependence &f(A) on that this convergence is uniform on compact intervals.rinte
a = =5 and on the sizeN. In Figure 1 we fixc = 1, estingly, the optimal timé,,;, seems to converge to a finite



Ring, N=80,v=20,0=1,1=0.250 Ring, N=80,v=20,0=1,1=0.250

= = = average
samples |

- = = = average
10 LR —— samples 102

10 10 102t 10 10 10 10 102t 10 10

Fig. 3. Comparisons between the expected indfxA), a few simulated evolutions o%”x[t] — x||3, and the resulting average evolution. Left plot:
same measuremerits different initial conditionsx[0]. Right plot: same initial condition, different noise on theeasurements.

value asN grows. We sketch a possible approach to provingther hand, the problem is suitable of useful extensions. Th
this convergence: detailed proofs are deferred to futumkwo algorithm which has been proposed is synchronous, in the
In the limit of N — oo, the decomposition (3) is suitable sense that all agents simultaneously update their essmate
for an interpretation with continuous eigenvalues: given aatural research line would thus look for asynchronous and
sequence of graphs, we postulate that §Réx) converges gossip implementations of the gradient descent algorithm.
to a continuous functiop(u). In rings, with7 = % we have: Moreover, in this work the quantity of interest was assumed

9 to be a time-invariant vector: a natural extension involves

g(p) = ) distributed filtering of time-dependent signals.
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Finally, we want to stress that our analysis has focused
on the mean index/(A), where the expectation is taken
both over the noise and over the initial conditions. As a
consequence, if we are interested in the behavior of the erro
|x[t] — |2 for a given initial condition and measurement
noise realization, Theorem 3 just suggests that the error
reaches a minimum at a finite time fepmeinitial condi-
tions and measurements. This phenomenon is confirmed by
simulations of algorithm (1): sample evolutions are pldtte
in Figure 3.

IV. OPENPROBLEMS

The analysis presented here opens up a wide range of
research lines. On one hand, several questions are left
unanswered in the current setting, including a finer graph-
dependent analysis of the optimal stopping time, and a more
extended study of the statistical distribution £f On the



