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Abstract— In this paper, we consider the problem of relative
localization in a network of sensors, according to the formula-
tion of Barooah and Hespanha. We introduce a distributed algo-
rithm for its solution, and we study the algorithm performance
by evaluating a suitable performance metric as a function of
the network eigenvalues. Remarkably, the performance analysis
indicates that it is preferable to stop the algorithm before
convergence is reached: an estimate of the optimal stopping
time is provided.

I. I NTRODUCTION

We study in this paper the distributed solution of a problem
of relative localization in a network of sensors. We assume
to have a group of agents organized in a graph and a vector,
indexed over the agents and unknown to them: the agents are
allowed to take relative noisy measurements of their vector
entries with respect to their neighbors in the graph. The
estimation problem consists in reconstructing the original
vector, up to an additive constant. We refer to this problem as
the problem ofrelative localization. Our formulation of the
problem essentially adopts that of Barooah and Hespanha [1],
[2], [3], although these authors assume to have an anchor
node, in order to avoid the uncertainty about the additive
constant, and they resort to infinite graphs as an analysis
and modeling tool.

The main contribution of our paper is an analysis of the
transient performance of a gradient algorithm solving the
problem of relative localization. We define a time-dependent
performance metric, which is then computed as a function of
the eigenvalues of the graph encoding the problem. Remark-
ably, the performance analysis indicates that the expected
performance is optimal at a certain finite time, instead than
asymptotically: consequently we argue that the algorithm
should not be run until convergence, but stopped at a suitable
time. We provide an estimate for the optimal stopping time:
our estimate does not depend on the measurement graph and
is thus of immediate and general application.

Notation

In the paper, we will use the following notation. Vectors
will be denoted with boldface letters, and matrices with
capital letters. By the symbols1 and 0 we denote vectors
having all entries equal to1 and 0, respectively. Given a
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matrixM , we denote bytr(M) its trace, byMT its transpose
and byM † its Moore-Penrose pseudoinverse [4].

II. PROBLEM FORMULATION AND BASIC RESULTS

We consider a set ofN agents, and we endow each of them
with a scalar quantitȳxi ∈ R, for i ∈ {0, . . . , N − 1}. The
ith agent does not know the valuēxi, but has an estimate
xi ∈ R. We shall denote bȳx and x the N -dimensional
vectors whose components arex̄i and xi, respectively. We
suppose that each agenti can take relative measurements
x̄i − x̄j with respect to some neighborsj. An undirected
graph G = ({0, . . . , N − 1}, E) is used to represent the
available measurements. The set of vertices is constituted
by the N agents, and the edges (pairs of agents) inE

correspond to the available measurements. We assume that
there areM available measurements, and that measurements
are symmetrical, meaning that both agents of a pair know the
measurement, with a reversed sign. Furthermore, we assume
that the graphG is connected. On each edge, we choose an
orientation, that is, we define a starting node and an ending
node, in order to encode the measurements by using the
incidence matrixA ∈ RM×N defined as follows

(A)e,i =







1 if i is the terminating edge ofe
−1 if i is the starting edge ofe
0 otherwise.

Measurements are affected by errors, which can be modeled
by independent and identically distributed noises. Letb ∈
RM be the vector of the measurements andn ∈ RM that of
noises. Then, in matrix notation we have

b = Ax̄+ n

with E [n] = 0 andE
[

nnT
]

= σ2I whereI ∈ RM×M is
the identity matrix. It is also useful to define the Laplacian
of G asL = ATA. The LaplacianL is a symmetric matrix,
and beingG connected,L has eigenvaluesλ0 = 0 and0 <

λi ≤ 2dmax for i ∈ {1, . . . , N − 1}, with dmax denoting the
maximum degree of the nodes.

A. Least Squares Performance

We define the best estimate in a least squares sense by
defining the quadratic error functional

Ψ(x) = ‖Ax− b‖22,

where Ax are the measurements corresponding to a
generic configurationx. The set of minimizersX =
argmin

x∈RN Ψ(x) can be computed by equating the gradi-
ent ofΨ(x) to zero. The configurations inX minimize the
quadratic error with respect to the available measurements.



SinceA has rankN − 1 andA1 = 0, the setX is an affine
space parallel to1. This remark is consistent with the fact
that from relative measurements the absolute configuration
can only be inferred up to an additive constant. Then, among
all the optimal configurations, we may definex̂ ∈ X as the
one which satisfies1

N
1T x̂ = 1

N
1T x̄.

III. G RADIENT ALGORITHM AND TRANSIENT

PERFORMANCE

A. Algorithm Definition and Convergence Properties

The gradient of the functionalΨ(x) can be used to
build an iterative distributed estimation algorithm, which
is consistent with the requirements of local communication
and computation. Since the HessianHΨ(x) is positive-
semidefinite, a gradient descent algorithm can be used. Let
the nonnegative integert be the iteration,x[t] ∈ RN be the
collection of node estimates at the iterationt, andx[0] be the
initial condition. Then, we propose the following algorithm

x[t+ 1] = x[t]− τ∇Ψ(x[t]),

where the parameterτ is to be determined for convergence
reasons. The recursive law can be rewritten as:

x[t+ 1] = x[t]− τ(ATAx[t]− ATb)

= (I − τATA)x[t] + τATb

or as
x[t+ 1] = P x[t] + y, (1)

providedP = I − τATA andy = τATb.

It is of note that the matrixP is inherently adapted to the
measurement graphG, in the sense thatPij > 0 only if (i, j)
is an edge inG. This observation is key as it implies that
the algorithm is naturally distributed over the graph which
describes the problem: there isno need for communication
between agents which do not share a measurement.

The convergence properties of the algorithm are summa-
rized in the following result.

Proposition 1 (Convergence):The algorithm (1) is such
that

lim
t→+∞

x[t] = x

with x ∈ X and 1

N
1Tx = 1

N
1Tx[0], provided0 < τ < 1

dmax
,

wheredmax denotes the largest degree inG.
Proof: From the assumption onτ it follows thatP is

a symmetric, irreducible, aperiodic stochastic matrix. Itis a
standard fact that1 is a simple eigenvalue whose eigenspace
is spanned by1, while all other eigenvalues are, in modulus,
strictly less than1. Since1Ty = 0, it then easily follows
thatx[t] converges to a solution of the equationx = Px+
y. Finally, invariance of the barycenter simply follows by
applying1T to both sides of (1).

We observe that, given an initial conditionx[0] the algo-
rithm converges to an optimal estimatex ∈ X , specifically
the estimate with the same average asx[0]. Then, in order
to converge to the best estimatex̂, it would be necessary to
impose the same average ofx̄ to the initial conditionx[0].

B. Transient Performance

To evaluate the algorithm performance, we follow the
approach in [5] and define the performance metric as the
mean square error between the current estimatex[t] and the
true configuration̄x, as follows:

Jt(A) :=
1

N
E‖x[t]− x̄‖22,

where the expectation is taken on the noisen. Interestingly,
this metric can be computed in terms of the eigenvalues of
the matrixP .

Proposition 2 (Transient performance):Under the stand-
ing assumptions on the noisen and on the graphG, for
algorithm (1) it holds

Jt(A) =
1

N
d20 +

1

N

N−1
∑

i=1

µ2t
i d2i + σ2 τ

N

N−1
∑

i=1

(1− µt
i)

2

1− µi

,

whereµi’s are the eigenvalues ofP , M is the matrix whose
column are eigenvectors ofP , andd = MT (x[0]− x̄).

Proof: In order to prove the statement it is necessary
to rewritey as

y = τATb = τATAx̄+ τATn = (I − P )x̄+ τATn

and derive

x[t]− x̄ =P tx[0] +

t−1
∑

n=0

Pny − x̄

=P t(x[0]− x̄) +

t−1
∑

n=0

Pn(τATn).

Plugging this formula into the definition ofJt(A) we get

Jt(A) =
1

N
E‖x[t]− x̄‖2

=
1

N
E
[

tr
[

(x[t] − x̄)(x[t] − x̄)T
] ]

=
1

N
tr
[

P t(x[0]− x̄)(x[0]− x̄)TP t

+ σ2τ2
t−1
∑

n=0

t−1
∑

m=0

PnATAPm
]

=
1

N
tr
[

P t(x[0]− x̄)(x[0]− x̄)TP t

+ σ2τ

t−1
∑

n=0

t−1
∑

m=0

Pn(I − P )Pm
]

.

If we diagonalizeP using the orthonormal matrixM , and
we defineP̃ = MTPM andd = MT (x[0]− x̄), we deduce
that

Jt(A) =
1

N
tr
[

P̃ 2tddT
]

+σ2 τ

N
tr
[

t−1
∑

n=0

P̃n(I−P̃ )
t−1
∑

m=0

P̃m
]

.

Plugging the identity(I − P̃ ) = (I − P̃ )(I − P̃ )†(I − P̃ )
into the previous expression we get

Jt(A) =
1

N
tr
[

P̃ 2tddT
]

+ σ2 τ

N
tr
[

(I − P̃ )†(I − P̃ t)2
]

.

(2)



Since the eigenvalues of(I − P̃ )† are0 and 1

1−µi
for i 6= 0,

we conclude

Jt(A) =
1

N

N−1
∑

i=0

µ2t
i d2i + σ2 τ

N

N−1
∑

i=1

(1− µt
i)

2

1− µi

,

which gives the result.
A few remarks are due about the formula forJt(A)

found in Proposition (2). First of all,Jt(A) depends on the
eigenvalues of the LaplacianL via the relationµi = 1−τλi,
which implies

Jt(A) =
1

N
d20 +

1

N

N−1
∑

i=1

(1− τλi)
2td2i+

+ σ2 1

N

N−1
∑

i=1

(1 − (1− τλi)
t)2

λi

.

This formula is helpful to compute the limit ofJt(A) as
t → +∞. If the initial condition has same average as the
true configuration, namely1

N
1Tx[0] = 1

N
1T x̄, thend0 = 0

and at convergence we have:

J∞(A) := lim
t→∞

Jt(A) = σ2 1

N

N−1
∑

i=1

1

λi

.

Remarkably,J∞(A) does not depend on the algorithm and is
equal to the mean square error of the Best Linear Unbiased
Estimator studied by Barooah and Hespanha, namely

J∞(A) =
1

N
E‖x̂− x̄‖22.

If insteadd0 6= 0, then the corresponding term is constant
in time, that is, the difference between the average ofx[0]
andx̄ has an impact on the estimate at every time step. This
is consistent with intuition, because indeed agents may not
reconstruct the average of̄x. We note that, in order to fix
this degree of freedom, an anchor node can be used as in
the work [1]: our analysis carries on to such case with minor
adaptations.

It is also interesting to discuss the role of the other terms
in the expression ofJt(A). Indeed, the first summation
is due to the difference between the initial condition and
the true configuration. The impact of this difference mono-
tonically converges to zero along the iterations, sinceµis
have modulus less than1. The second sum, instead, encodes
the diffusion of the noise in the estimates: its contribution
converges to a constant.

C. Finite-time Optimality

As Jt(A) contains both decreasing and increasing terms,
it is reasonable to ask whetherJt(A) reaches a minimum at
a finite time. The existence of such a minimum would be
of significant applicative interest, since it implies an optimal
stopping criterion for the algorithm. Intuitively, we expect a
trade-off between increasing and decreasing terms controlled
by the relative magnitude of the initial condition and the
noise.

The analysis ofJt(A) –see formula (2)– is complicated by
the presence of the coefficientsd2i , which depend on the ini-
tial condition. In the following we will make a simplification
and average over the initial conditions assuming the initial
conditionx[0] − x̄ to be a vector of i.i.d. random variables
with zero mean and varianceν2. Sinced = MT (x[0]−x̄), it
easy to show that alsod is a vector of i.i.d. random variable
with the same properties so thatE[d2i ] = ν2 for every i

including 0. So we can consider the expected behavior of
Jt(A) by averaging on the initial condition:

JE

t (A) = E[Jt(A)] =
ν2

N
+
ν2

N

N−1
∑

i=1

µ2t
i +

τσ2

N

N−1
∑

i=1

(1 − µt
i)

2

1− µi

.

Note thatJE

t=0(A) = ν2 and that we have

lim
t→+∞

JE

t (A) = J∞(A) +
ν2

N
.

This formula implies that the component of the error which
is due to the incorrect estimate of the average goes to zero
asN grows.

In order to investigate our insights about the time depen-
dence ofJt(A) we shall make use of the rewriting

JE

t (A) =

= τσ2

∫ 1

−1

dµ

[

αµ2t +
(1− µt)2

1− µ

]

·
[

1

N

N−1
∑

i=0

δ(µ− µi)

]

= τσ2

∫ 1

−1

dµ ft,α(µ) · gN(µ) , (3)

whereδ(µ−µi) is the Dirac delta distribution andα =
ν2

τσ2

is the initial-condition-to-noise ratio. The integrand in (3)
is the product of two essentially independent terms. The
first term is a continuous weight functionft,α(µ), which
depends on the time stept and onα. The second term
is the distribution of the eigenvaluesgN (µ). Indeed, the
integral runs over[−1, 1], which contains the support of
the eigenvalue distribution. Observe thatft,α(µ) andgN(µ)
respectively characterize the estimation problem and the
graph. The algorithm parameterτ , instead, influences both
terms, as bothα andµi depend on it.

By exploiting the above decomposition we can prove
the following theorem, showing thatJE

t (A) is eventually
increasing.

Theorem 3 (Finite-time optimality):For any graph topol-
ogy and any sizeN , and provided0 < τ < 1

2dmax
, the index

JE

t (A) is increasing for allt > α.
Proof: In order to show that the sequenceJt(A)

is eventually increasing, we study the discrete derivative
JE

t+1(A) − JE

t (A) and show that it is eventually positive.
The discrete derivative reads

JE

t+1(A)−JE

t (A) = τσ2

∫ 1

−1

dµ[ft+1,α(µ)− ft,α(µ)] · gN (µ),

which is positive when the integrand is positive. Sinceµi =
1− τλi andλ ∈ [0, 2dmax], the assumption onτ implies that



gN (µ) ≥ 0 in [0, 1]. Next, if we compute

ft+1,α(µ)− ft,α(µ) = αµ2t+2 − αµ2t + 2µt − µ2t − µ2t+1,

it is immediate to check thatft+1,α(0) − ft,α(0) = 0 and
ft+1,α(1)− ft,α(1) = 0. Moreover, we claim that whent ≥
α − 1

2
, we haveft+1,α(µ) − ft,α(µ) > 0 for all µ ∈ (0, 1).

In order to prove this claim, we compute

ft+1,α(µ)− ft,α(µ) = µ2t

(

2

µt
− µ− 1− (α− αµ2)

)

and we definea(µ) = α − αµ2 and b(µ) = 2

µt − µ − 1
as functions on(0, 1]. The following facts are then easy to
verify:

a(1) = 0 b(1) = 0

a′(µ) = −2αµ < 0 b′(µ) = − 2t

µt+1
− 1 < 0

a′(1) = −2α < 0 b′(1) = −2t− 1 < 0

a′′(µ) = −2α < 0 b′′(µ) =
2t(t+ 1)

µt+2
> 0.

These observations imply that the functionsa and b have a
common zero and opposite convexity, asa is convex andb
is concave. Moreover, sinceµ ≤ 1, it holds true that when
−2t− 1 < −2α, i.e., when t > α − 1

2
, thenb′(1) < a′(1).

This fact implies thata(µ) < b(µ) in (0, 1) thanks to the
above discussion. We have then proved that ift ≥ α− 1

2
, then

ft+1,α(µ)−ft,α(µ) > 0, for all µ ∈ (0, 1). Overall, we have
shown that both factors of the integrand are positive, and we
can conclude thatJE

t+1(A) − JE

t (A) ≥ 0 when t ≥ α − 1

2
.

So, clearly, the indexJE

t (A) is increasing for allt ≥ α− 1

2
.

Clearly, the theorem implies thatJE

t (A) has (at least)
a minimum, and that the time step which achieves the
minimum is not larger thanα: this result holds regardless
of the topology and size of the network.

Remark 4 (On the assumption onτ ): The assumption on
τ in Theorem 3 restricts the possible choice ofτ to (0, 1

2dmax
).

The assumption has been made to simplify the proof and is
slightly conservative: the result may actually be extendedto
everyτ ∈ (0, 1

dmax
) by a similar argument. The argument is

however more involved because the sign of the difference
ft+1,α(µ) − ft,α(µ) on (−1, 0) depends on the parity oft
(e.g. notice that[ft+1,α(−1)− ft,α(−1)] = ±2). Hence the
reason for the simplifying assumption onτ .

D. Simulations and Conjectures

In this section we present simulations and numerical
results, which validate our theoretical findings and confirm
their practical interest. Our presentation below assumes the
graphG to have aring topology. Rings are defined as graphs
having node set{0, . . . , N − 1} and vertex setE such that
(i, j) ∈ E if |i− j| = 1 mod N . This simple topology has
been chosen in order to provide useful examples: similar
remarks can be obtained on other families of graphs.

Let us then investigate the dependence ofJE

t (A) on
α = ν2

τσ2 and on the sizeN . In Figure 1 we fixσ = 1,
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Fig. 1. The performance metricJE
t
(A) as a function of time. Plot assumes

α varying andN fixed.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

Ring,  ν = 20 , σ = 1, τ = 0.250 

 

 
N =  10
N =  20
N =  40
N =  80
N = 160
N = 320

t

Fig. 2. The performance metricJE

t
(A) as a function of time. Plot assumes

α fixed andN varying.

τ = 1

4
, while we letN and ν vary. The plot clearly shows

that for high initial-condition-to-noise ratio it is convenient
to use the algorithm and the minimum, always present,
is not very pronounced. Asα decreases, the minimum
becomes prominent, because the noise on the measurements
is comparable with the true information contained in the
initial condition (hereafter i.c.). The latter is thus disguised
by the noise. For very low value ofα, the noise covers the i.c.
so that running the algorithm is practically useless. Clearly,
for what concerns i.c. and noise there is a sort ofcompromise
regulated byα (namely betweenν and σ), that shifts the
location of the minimum in time and justifies or not the use
of the algorithm.

Instead, in Figure 2 we fixα and let the size of the ringN
grow. In this plot, we notice that the curves converge, asN

grows and for everyt, to a limit curve: we actually conjecture
that this convergence is uniform on compact intervals. Inter-
estingly, the optimal timetmin seems to converge to a finite
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Fig. 3. Comparisons between the expected indexJE
t
(A), a few simulated evolutions of1

N
‖x[t] − x̄‖2

2
, and the resulting average evolution. Left plot:

same measurementsb, different initial conditionsx[0]. Right plot: same initial condition, different noise on themeasurements.

value asN grows. We sketch a possible approach to proving
this convergence: detailed proofs are deferred to future work.
In the limit of N → ∞, the decomposition (3) is suitable
for an interpretation with continuous eigenvalues: given a
sequence of graphs, we postulate that thegN(µ) converges
to a continuous functiong(µ). In rings, withτ = 1

3
we have:

g(µ) =
2

4π
3

√

1− 9

4

(

µ− 1

3

)2
.

Suppose thatα ≫ 1, so that the optimal value is not too
small. Thenft+1,α(µ)− ft,α(µ) is only positive forµ close
to 1, and we just need to estimate the principal part of
g(µ) in that neighborhood. Under these assumptions and
with few additional approximations, the integral equation
JE

t+1(A) − JE

t (A) = 0 can be solved analytically, leading
us the following conjecture: on a family of ring graphs and
for τ = 1

3
, it holds

lim
N→∞

tmin =
1

4(
√
2− 1)

α.

Finally, we want to stress that our analysis has focused
on the mean indexJE

t (A), where the expectation is taken
both over the noise and over the initial conditions. As a
consequence, if we are interested in the behavior of the error
‖x[t] − x̄‖2 for a given initial condition and measurement
noise realization, Theorem 3 just suggests that the error
reaches a minimum at a finite time forsomeinitial condi-
tions and measurements. This phenomenon is confirmed by
simulations of algorithm (1): sample evolutions are plotted
in Figure 3.

IV. OPEN PROBLEMS

The analysis presented here opens up a wide range of
research lines. On one hand, several questions are left
unanswered in the current setting, including a finer graph-
dependent analysis of the optimal stopping time, and a more
extended study of the statistical distribution ofJt. On the

other hand, the problem is suitable of useful extensions. The
algorithm which has been proposed is synchronous, in the
sense that all agents simultaneously update their estimates. A
natural research line would thus look for asynchronous and
gossip implementations of the gradient descent algorithm.
Moreover, in this work the quantity of interest was assumed
to be a time-invariant vector: a natural extension involves
distributed filtering of time-dependent signals.
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