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ABSTRACT

Blind Identification of Under-Determined Mixtures (UDM)
is involved in numerous applications, including Multi-Way
factor Analysis (MWA) and Signal Processing. In the latter
case, the use of High-Order Statistics (HOS) like Cumulants
leads to the decomposition of symmetric tensors. Yet, little
has been published about rank-revealing decompositions of
symmetric tensors. Definitions of rank are discussed, and use-
ful results on Generic Rank are proved, with the help of tools
borrowed from Algebraic Geometry.

1. INTRODUCTION

Several extensions of the Singular Value Decomposition
(SVD) to K-way arrays are possible, and we are interested
in the Canonical Decomposition (CAND), which allows us to
define aTensor Rank. CAND is essential in the process of
Blind Identification of Under-Determined Mixtures (UDM),
i.e., linear mixtures with more inputs than observable outputs.
Despite its interest, this subject has not been much addressed
in the general literature, and even less in Signal Processing.
For instance, for several years, the so-called Parafac algorithm
is used to fit data arrays to a multilinear model [1, 2]. Yet, the
minimization of this matching error is an ill-posed problem in
general, since the set of tensors of rank smaller thanr is not
closed, unlessr = 1.

See [2, 3, 4, 5] and references therein for a list of applica-
tion areas, including Speech, Mobile Communications, Ma-
chine Learning, Factor Analysis withK-way arrays (MWA),
Biomedical Engineering, Psychometrics and Chemometrics.

2. NOTATION

2.1. Arrays

Arrays with more than one index will be denoted in bold up-
percase; vectors are one-way arrays, and will be denoted in
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bold lowercase. Plain uppercases will be mainly used to de-
note dimensions. For our purpose, only a few notations re-
lated to arrays [4, 5] are necessary. In this paper, the outer pro-
duct of two arrays of orderM andN is denotedC = A ◦B
and is an array of orderM + N :

Cij···` ab···d = Aij···`Bab···d. (1)

For instance, the outer product of two vectors,u ◦ v, is a
matrix. Conversely, the mode-p inner product between two
arrays having the samepth dimension is denotedA•p B, and
is obtained by summing over thepth index. More precisely, if
A andB are of ordersM andN respectively, this yields for
p = 1 the array of orderM + N − 2:

{A •1 B}i2 ···iM
,j2 ···jN

=
∑

k

Aki2 ···iM
Bkj2 ···jN

.

For instance, the standard matrix-vector product can be writ-
ten asAu = AT •1 u. Note that some authors [6, 4] denote
this contraction product asA×pB, which we find much less
convenient.

We shall say that ad-way array issquareif all its d dimen-
sions are identical. A square array will be calledsymmetricif
its entries do not change by any permutation of itsd indices.
The linear space of squared-way arrays of sizeN is of di-
mensionNd, whereas the space of symmetricd-way arrays
of same size is of dimension

(
N+d−1

d

)
.

In this framework, onlyd-way arrays that enjoy themulti-
linearity propertyby linear change of coordinates will be con-
sidered; they will be referred to astensors[7]. To illustrate
this property, letT be a tensor of third order of dimensions
P1 × P2 × P3, and letA, B, andC be three matrices of size
K1 × P1, K2 × P2, andK3 × P3, respectively (in general
Ki = Pi and matricesA, B andC are invertible, but this
is actually not mandatory in most of our discussion). Then
tensorT is transformed by the multi-linear map{A,B,C}
into a tensorT ′ defined by:

T ′
ijk =

∑
abc

AiaBjbCkcTabc, (2)



which may be written in compact form asT ′ = T •1 A •2

B •3 C.

2.2. Polynomials

Any symmetric tensor of orderd and dimensionK can be
associated with a unique homogeneous polynomial of degree
d in K variables via the expression [9, 5]:

p(x) =
∑

j

Tjx
f(j) (3)

where for any integer vectorj of dimensiond, one associates
bijectively the integer vectorf(j) of dimensionK, each en-
try fk of f(j) being equal to the number of times indexk
appears inj. We have in particular|f(j))| = d. We also as-
sume the following conventions (rather standard in algebraic

geometry):xj def=
∏K

k=1 xjk

k and |f | def=
∑K

k=1 fk, wherej
andf are integer vectors. The converse is true as well, and
the correspondence between symmetric tensors and homoge-
neous polynomials is obviously bijective.

Now for asymmetric tensors, the same association is not
possible. In order to connect tensor spaces with algebraic ge-
ometry, tensors are associated with multilinear maps [8]. This
justifies the use of the Zariski topology.

3. DEFINITION OF RANKS

Let T be a symmetric tensor as defined in section 2.1.
CAND and rank. Any tensor can always be decomposed

(possibly non-uniquely) as:

T =
r∑

i=1

u(i) ◦ v(i) ◦ · · · ◦w(i). (4)

TheTensor Rankis defined as the smallest integerr(T ) such
that this decomposition holds exactly. Among other proper-
ties, note that this Canonical Decomposition (CAND) holds
valid in a ring, and that the CAND of a multilinear trans-
form of T equals the multilinear transform of the CAND of
T . In other words, if(u,v, . . . ,w) is the CAND of T , then
(Au,Bv, . . . ,Cw) is the CAND of T •1 A •2 B •3 C.

If in (4), we haveu(i) = v(i) = · · · = w(i) for everyi,
then we may call it asymmetricCAND, yielding asymmetric
rank, rs(T ).

Genericity. A property is referred to astypical if it is
true on a non zero volume set. On the other hand, a property
is said to begenericif is true almost everywhere. More formal
definitions will be given in section 4. It is important to distin-
guish between typical and generic properties; for instance, as
will be subsequently seen, there can be severaltypical ranks,
but only a singlegeneric rank.

Through the bijection (3), the CAND (4) of symmetric
tensors can be transposed to homogeneous polynomials (also

called quantics), as pointed out in [9]. This allows to talk
indifferently either about CAND of tensors or quantics.

On the other hand, given a symmetric tensorS, one can
compute its CAND either inTs or inT . Since the CAND in Ts

is constrained, we obviously also have the inequality between
rank and symmetric rank:

∀S ∈ Ts, r(S) ≤ rs(S). (5)

4. GENERIC AND TYPICAL RANKS

Define the set of tensorsYr = {T ∈ T | r(T ) ≤ r} with
values inC. Also denoteȲr its Zariski closure, which is the
smallest variety containingYr [10], andZr = {T ∈ T :
r(T ) = r}. Then we have obviously, for everyr, Yr−1 t
Zr = Yr and the sumY1 + · · ·+ Y1 of r timesY1 isYr.

Let us define the following ranks:

• R̄ = min{r | Ȳr = T },

• R = min{r | Yr = T }.

By definition, we havēR ≤ R. We shall prove in this section
that the generic rank exists inC and that it is equal tōR.

Definition of Typical ranks. An integerr is not a typ-
ical rank if Zr has a zero volume, which means thatZr is
contained in a non trivial closed set. Alternatively,r is a typi-
cal rank ifZr is dense with the Zariski topology, which means
thatZr = T .

Definition of the Generic rank. When a typical rank is
unique, it may be called generic.

Next, even if we know thatY1 is closed as a determinantal
variety,Yr are generally not closed forr > 1. This is another
major difference with matrices, for which allYr are closed.
One can actually prove a simple lemma, that yields a more
accurate statement.

Lemma 1. The sets̄Yk, k ≥ 1, are irreducible.

Proof. For r ≥ 1, the varietyȲr is the closure of the image
Yr of the map:

φr : Cr×n×d → T
(u, . . . ,w) 7→

∑r
i=1u(i) ◦ v(i) ◦ · · · ◦w(i)

whereu(i), . . . ,w(i) ared vectorsCn for eachi = 1, . . . , r.
Consider now two polynomialsf, g such thatfg ≡ 0 on Ȳr.
As Ȳr is the Zariski closure ofYr, this is equivalent tofg ≡ 0
onYr or

(fg) ◦ φr = (f ◦ φr)(g ◦ φr) ≡ 0.

Thus eitherf ≡ 0 or g ≡ 0 on Yr or equivalently onȲr,
which proves that̄Yr is an irreducible variety. For more de-
tails on properties of parameterized varieties, see [10]. See
also the proof [8] for3rd order tensors.



Lemma 2. We haveR̄ = min{r | Ȳr = Ȳr+1}.

Proof. Suppose that there existr < R̄ such thatȲr = Ȳr+1.
ThenȲr + Y1 = Ȳr+1 = Ȳr so that we also have

Ȳr + Y1 + Y1 = Ȳr + Y1 + · · ·+ Y1 = Ȳr.

As the sum ofR timesY1 is T , we deduce that̄Yr = T and
thatr ≥ R̄, which contradicts our hypothesis. By definitions
ȲR̄ = ȲR̄+1 = T , which proves the lemma. See also the
proof of [8].

Theorem 3. The varietiesZ̄r can be ordered by inclusion as
follows:

if r1 < r2 < R̄ < r3 ≤ R, then Z̄r1  Z̄r2  Z̄R̄ ! Z̄r3 .

Proof. By lemma 2, we deduce that forr < R̄

Ȳr 6= Ȳr+1.

As Ȳr is an irreducible variety, we havedim(Ȳr) <
dim(Ȳr+1). AsYr ∪ Zr+1 = Yr+1, we deduce that

Ȳr ∪ Z̄r+1 = Ȳr+1,

which implies by the irreducibility ofȲr+1, that Z̄r+1 =
Ȳr+1. Consequently, forr1 < r2 < R̄, we have

Z̄r1 = Ȳr1  Z̄r2 = Ȳr2  Z̄r2 = T .

Let us prove now that ifR̄ < r3, we haveZ̄r3  T .
Suppose that̄Zr3 = T , thenZr3 is dense inT as well as
ZR̄ for the Zariski topology. This implies thatZr3 ∩ ZR̄ 6=
∅, which is false because a tensor cannot have two different
ranks. Consequently, we havēZr3  T .

Since theYr ’s are parameterized and thus are algebraic
constructible sets [11], and since the closure of an algebraic
constructible set for the Euclidean topology and the Zariski
topology are the same, the above reasoning holds true for
many other topologies onR orC, and we have in particular:

Corollary 4. Let µ be a measure on Borel subsets ofT with
respect to the Euclidean topology onT . LetR̄ be the generic
rank in T . If µ is absolutely continuous with respect to the
Lebesgue measure onT , then

µ({T ∈ T | r(T ) 6= R̄}) = 0.

In particular, this corollary tells us thatZR̄ is also dense inT
with respect to the Euclidean topology, and holds ifµ is the
Gaussian measure onT . In other words, the rank of a tensor
whose entries are drawn randomly according to an absolutely
continuous distribution (e.g. Gaussian) isR̄ with probability
1

Other inequalities. A lower bound can be derived:

R̄s ≥

⌈(
K+d−1

d

)
K

⌉
. (6)

An upper bound has also been derived for real [12] or com-
plex [13] tensors:

R̄s ≤
(

K + d− 2
d− 1

)
. (7)

Because the space of symmetric tensors,Ts, is included in the
subspace ofT of square tensors, maximal and generic ranks
are related for every fixed orderd and dimensionK by:

R̄ ≥ R̄s, and R ≥ Rs (8)

Note that (8) and (5) are in reverse order, but there is no con-
tradiction: the spaces are not the same.

It is then legitimate to ask oneself whether the symmet-
ric rank and the rank are the same. A partial answer to this
question is provided by the two results below.

Theorem 5. LetA be a complex symmetric tensor of dimen-
sion n and orderk. If rs(A) ≤ n, then rs(A) = r(A)
generically.

Theorem 6. LetA be a complex symmetric tensor of dimen-
sionn and orderk. If rs(A) = 1 or 2, thenrs(A) = r(A).

For reasons of space, the proof will be reported in a full-length
version of this paper. A general proof showing thatrs(A) =
r(A) generically, even forrs(A) > n, is being completed.

5. TOPOLOGY

These statements extend previous results [14], and prove that
there can be onlyonesubsetZr of non empty interior, and the
latter is dense inT ; this result needs however an algebraically
closed field (e.g. the fieldC of complex numbers).

The results of section 4 are indeed not valid in the real
field. In fact, the conjecture of Kruskal [17] according to
which there could be several typical ranks for given order and
dimensions, has been proved recently by Ten Berge [18]. See
the example in section 6.

6. EXAMPLES

Lack of closeness. Let’s give now a few examples. It has
been shown [9, 15] that symmetric tensors of order 3 and di-
mension 3 have a generic rank̄Rs = 4 but a maximal rank
Rs = 5. This means that onlyZ4 is dense inȲ4 = Ȳ5, and
Z3 andZ5 are not closed and of empty interior. On the other
hand,Z1 is closed.

In order to make this statement even more explicit, let’s
now define a sequence of rank-2 tensors converging to a rank-
3 one. This will be a simple proof of the lack of closure ofYr

for r > 1. For this purpose, let{xi,yi} be linearly indepen-
dent vectors. Then the following tensor is of rank 2 for any
realε > 0:

T ε = x1 ◦ x2 ◦ (x3 − ε−1y3)

+ (x1 + εy1) ◦ (x2 + εy2) ◦ ε−1y3.



But it converges towards a rank-3 tensor whenε tends to zero.
This becomes clear by rewritingT ε as:

T ε = [x1 ◦ x2 ◦ x3 + y1 ◦ x2 ◦ y3 + x1 ◦ y2 ◦ y3]
+ εy1 ◦ y2 ◦ y3.

CanD in the real field. Now for real tensors, if the
CAND is sought inR, the rank can be found to be larger than
the value found inC, as pointed out in [17]. In other words,
we have actually the (rather natural) inequality, for any tensor
T :

rC(T ) ≤ rR(T ). (9)

Example 7. In order to demonstrate that the equality does
not always hold, define the square symmetric real tensorT of
order 3 and dimension 2 as:

T (:, :, 1) =
[
−1 0
0 1

]
, T (:, :, 2) =

[
0 1
1 0

]
,

If decomposed inR, it is of rank 3:

T =
1
2

[
1
1

]◦3
+

1
2

[
1
−1

]◦3
− 2

[
1
0

]◦3
whereas it admits aCAND of rank 2 inC:

T =


2

[
−
1

]◦3
− 

2

[

1

]◦3
, with 

def
=
√
−1

These decompositions can be obtained with the help of the
algorithm described in [9], for instance. Alternatively, this
tensor is associated with the homogeneous polynomial in two
variablesp(x, y) = 3xy2 − x3, which can be decomposed in
R into

p(x, y) =
1
2
(x + y)3 +

1
2
(x− y)3 − 2x3.

In the case of2×2×2 symmetric tensors, or equivalently
in the case of binary cubics, the CAND can always be com-
puted [9]. Hence, the rank of any tensor can be calculated,
even in the real field. In that case, it can be shown that the
generic rank inC is 2 whereasthere are two typical ranksin
R, which are 2 and 3. Kruskal already noticed that fact, with
arrays with random Gaussian inputs.

In fact, in the2 × 2 × 2 case, there are two2 × 2 matrix
slices, that we can callA andB. Since the generic rank in
C is 2, the CanD is obtained via the EVD of the matrix pen-
cil (A,B), which generically exists and whose eigenvalues
are those ofA B−1. By generating (four) independent real
Gaussian entries, it can be easily checked out with a simple
computer simulation that one gets real eigenvalues in52% of
the cases. This means that the real symmetric rank is 3 in48%
of the remaining cases. For asymmetric tensors, the same
simulation yields (by generating 8 independent real Gaussian
entries) real ranks of 2 and 3,78% and22% of the time, re-
spectively. This is the simplest example that can evidence
the existence of typical ranks (and hence the lack of generic
rank).
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