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ABSTRACT bold lowercase. Plain uppercases will be mainly used to de-

Blind Identification of Under-Determined Mixtures (UDM) r(:te(zjtglmensmnj.SFor our purposel, q[?]l.y a few Tr(])tatlotns re-
is involved in numerous applications, including Multi-Way (j‘et ?:A;rays[ ' ]?redne;;essgjr\);._ nd IS r;acpCer; jOlJ;rpro-
factor Analysis (MWA) and Signal Processing. In the latter ug ortwo arrayfs Od?airv[ A{;m IS denoted = Ao
case, the use of High-Order Statistics (HOS) like Cumulant&nd 'S anarray ot or R
leads to the decomposition of symmetric tensors. Yet, little 3 — A

. . . Czyméabmd = zymZBabmd- (1)
has been published about rank-revealing decompositions of
symmetric tensors. Definitions of rank are discussed, and useqgr instance, the outer product of two vectotsp v, is a

ful results on Generic Rank are proved, with the help of tOOlﬁnatrix_ Converse|y, the mocte.inner product between two

borrowed from Algebraic Geometry. arrays having the samgh dimension is denoted e, B, and
is obtained by summing over thh index. More precisely, if
1. INTRODUCTION A andB are of ordersVf and N respectively, this yields for

p = 1the array of ordefdd + N — 2:
Several extensions of the Singular Value Decomposition
(SVD) to K—v_vay arrays are.possible, and_ we are interested {A e; B}Z-Z...iM iy = ZAMQ..-Z-M Blj,-jy -
in the Canonical Decomposition &8 D), which allows us to k

define aTensor Rank CAND is essential in the process of For instance, the standard matrix-vector product can be writ-
Blind Identification of Under-Determined Mixtures (UDM), -

: . : . . ten asAu = A" e; u. Note that some authors [6, 4] denote
i.e., linear mixtures with more inputs than observable outputs,[hi contraction oroduct ad <. B. which we find much less
Despite its interest, this subject has not been much addressedS P P

. ; C .—convenient.
in the general literature, and even less in Signal Processing. We shall say that d-way array issquareif all its d dimen-

For instance, for several years, thg_so-called Parafac algorlthgi1onS are identical. A square array will be cal metrigf
is used to fit data arrays to a multilinear model [1, 2]. Yet, the . : Egm. .
.its entries do not change by any permutation ofiiiadices.

minimization of this matching error is an ill-posed problem in . . : ;
. . The linear space of squateway arrays of sizeV is of di-
general, since the set of tensors of rank smaller thesnnot . d
mensionN¢, whereas the space of symmetiiavay arrays
closed, unless = 1. T ) N d 1
of same size is of dimensiof’ /).

o e Sormomesoene VI Tamenor,onyua arays hat njy e
chine Learning, Factor Analysis witki-way arrays (MWAY), linearity propertyby linear change of coordinates will be con-

Biomedical Endineering. Psvchometrics and ChemometricsSidered; they will be referred to asnsors[7]. To illustrate
9 9. sy this property, letI’ be a tensor of third order of dimensions

P, x P, x P3,and letA, B, andC be three matrices of size

2. NOTATION K| x Py, Ky x Py, andK3 x Ps, respectively (in general
K; = P, and matricesA, B andC are invertible, but this
2.1. Arrays is actually not mandatory in most of our discussion). Then
Arrays with more than one index will be denoted in bold up-tensorT’ is tra/nsformed b}’ the multi-linear mgpd, B, C'}
percase; vectors are one-way arrays, and will be denoted IRC & tensofl™ defined by:
This work was supported in part in 2004 by the American Institute of Lk = Z AiaBjsCeTabes 2)
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which may be written in compact form & = T e; A e,  called quanticy, as pointed out in [9]. This allows to talk
Be; C. indifferently either about @D of tensors or quantics.

On the other hand, given a symmetric ten§rone can
compute its @GND eitherin7, orin7. Since the @GND in 7,
is constrained, we obviously also have the inequality between
Any symmetric tensor of orded and dimensionk’ can be rank and symmetric rank:
associated with a unigue homogeneous polynomial of degree
din K variables via the expression [9, 5]: VS € 7, r(S) < rs(S). (5)

2.2. Polynomials

plx) =Y Tzl (3) 4. GENERIC AND TYPICAL RANKS
J

Define the set of tenso®, = {T" € 7 | »(T') < r} with
values inC. Also denote)), its Zariski closure, which is the
smallest variety containingy, [10], andZ, = {T' € 7T :

where for any integer vectgrof dimensiond, one associates
bijectively the integer vectof () of dimensionk’, each en-

try fi of f(j) being equal to the number of times index r(T) = r}. Then we have obviously, for every Y, ; L

appears iry. We have in particularf (j))| = d. We also as- Z =, and the sum; - - + Y, of r times ), is V.
sume the following conventions (rather standard in algebraic " Let LS define the following ranks: "

geometry):zi %' [T, «I* and|f| % S, fr, wherej

and f are integer vectors. The converse is true as well, and e R =min{r | Y, =T},
the correspondence between symmetric tensors and homoge- )
neous polynomials is obviously bijective. e R=min{r |y, =T}
Now for asymmetric tensors, the same association is nqu definition, we havek < R. We shall prove in this section

possible. In order to connect tensor spaces with algebraic g@;at the generic rank exists @and that it is equal t@.
ometry, tensors are associated with multilinear maps [8]. This  pefinition of Typical ranks. An integerr is not a typ-

justifies the use of the Zariski topology. ical rank if Z, has a zero volume, which means tt@t is
contained in a non trivial closed set. Alternativelys a typi-
3. DEFINITION OF RANKS cal rank ifZ,. is dense with the Zariski topology, which means
thatZ, = 7.
Let T be a symmetric tensor as defined in section 2.1. Definition of the Generic rank. When a typical rank is
CaAND andrank. Any tensor can always be decomposedunique, it may be called generic.
(possibly non-uniquely) as: Next, even if we know thay; is closed as a determinantal

_ variety,)),. are generally not closed fer> 1. This is another
RN . , . major difference with matrices, for which &, are closed.
T= Z;u(l) ow(i)o - ow(i). ¥ one can actually prove a simple lemma, that yields a more
= accurate statement.
The Tensor Ranks defined as the smallest integéfl”) such - . :
that this decomposition holds exactly. Among other proper!‘ernma 1. The set9), k > 1, are irreducible.
ties, note that this Canonical Decompositiora(@) holds  proof. Forr > 1, the variety)), is the closure of the image
valid in a ring, and that the AND of a multilinear trans-  y) of the map:
form of T equals the multilinear transform of thea@D of

T. In other words, if(u,v, ..., w) is the CAND of T, then Gy s CrX¥mxd T
(Au, Bv,...,Cw)isthe AND of T'e; A e; B e3 C. (u,...,w)— Zr—lu(i) ov(i)o--ow(i)
If in (4), we haveu(i) = v(i) = --- = w(i) for everysi, =
then we may call it ymmetricCAND, yielding asymmetric  whereu(i), ..., w(i) ared vectorsC" for eachi = 1,...,r.
rank, r(T). Consider now two polynomialg, g such thatfg = 0 on ),

Genericity. A property is referred to atypical if itis  As ), is the Zariski closure q¥/,., this is equivalent tgfg = 0

true on a non zero volume set. On the other hand, a properih .. or

is said to begenericif is true almost everywhere. More formal

definitions will be given in section 4. It is important to distin- (fg)o .= (fod)(god.) =0.

guish between typical and generic properties; for instance, as B

will be subsequently seen, there can be sewgpatal ranks ~ Thus eitherf = 0 or g = 0 on Y. or equivalently ony,,

but only a singlegeneric rank which proves thad/, is an irreducible variety. For more de-
Through the bijection (3), the &ND (4) of symmetric  tails on properties of parameterized varieties, see [10]. See

tensors can be transposed to homogeneous polynomials (a0 the proof [8] for™ order tensors. O



Lemma 2. We haveR = min{r | J, = V,11}. An upper bound has also been derived for real [12] or com-

Proof. Suppose that there exist< R such thafy, = V1. plex [13] tensors:

Then), + Y1 = Y,,1 = Y, so that we also have R < <K +d— 2) @)
_ _ _ o d—1 )
.+ + =Y, + + -+ =Y. . L. .
Vet +h=)r 4+ N=J Because the space of symmetric tens@ysis included in the
As the sum ofR times)); is 7, we deduce thal, = 7 and  subspace of of square tensors, maximal and generic ranks
thatr sz, which contradicts our hypothesis. By definitions are related for every fixed ordérand dimensiors by:
Yr = Yry1 = 7, which proves the lemma. See also the R>R. and R>R ®)
proof of [8]. O - -
o ) ) Note that (8) and (5) are in reverse order, but there is no con-
Theorem 3. The varietiesZ,. can be ordered by inclusion as {ragiction: the spaces are not the same.
follows: It is then legitimate to ask oneself whether the symmet-
: 5 > > > > ric rank and the rank are the same. A partial answer to this
if R < R, then Z, Z, Za 2 2. L :
TS T2 S ST S ri S Sro b SR 2 Zry question is provided by the two results below.

Proof. By lemma 2, we deduce that for< R Theorem 5. Let A be a complex symmetric tensor of dimen-
_ _ 1 < —
AR sionn and orderk. If rs(A) < n, thenrs(A) = r(A)
generically.
As Y, is an irreducible variety, we haveéim(}:) <  Theorem 6. Let A be a complex symmetric tensor of dimen-
dim(Yy41). ASY, U 2,41 = Vr41, We deduce that sionn and orderk. If r,(A) = 1 or 2, thenr,(A) = r(A).
VoUZei1 = Vrg1, For reasons of space, the proof will be reported in a full-length
o , o _ _ version of this paper. A general proof showing thatd) =
which implies by the irreducibility 0,41, that 2,1 = () generically, even for,(A) > n, is being completed.

Yr+1. Consequently, for; < r < R, we have
2=V G2 =V, G 2, =T. 5. TOPOLOGY

Let us prove now that iR < r3, we haveZ,, & 7. These statements extend previous results [14], and prove that
Suppose thag,, = 7, thenZ,, is dense in7 as well as there can be onlgnesubsetZ, of non empty interior, and the
Zp, for the Zariski topology. This implies the,., N Z5z #  latter is dense iff; this result needs however an algebraically
@, which is false because a tensor cannot have two differerflosed field (e.g. the fiel@ of complex numbers).
ranks. Consequently, we ha#g, ¢ 7. O The results of section 4 are indeed not valid in the real
_field. In fact, the conjecture of Kruskal [17] according to

Since the),’s are parameterized and thus are algebra'(@vhich there could be several typical ranks for given order and

constructible sets [11], and since the closure of an algebrai&mensions has been proved recently by Ten Berge [18]. See
constructible set for the Euclidean topology and the Zarisk[he examplé in section 6

topology are the same, the above reasoning holds true for

many other topologies oR or C, and we have in particular:
6. EXAMPLES

Corollary 4. Letu be a measure on Borel subsetsTofwith
respect to the Euclidean topology @n Let R be the generic  Lack of closeness. Let’s give nhow a few examples. It has
rank in 7. If p is absolutely continuous with respect to the been shown [9, 15] that symmetric tensors of order 3 and di-

Lebesgue measure @n then mension 3 have a generic rafk, = 4 but a_maxirT_1aI rank
_ R, = 5. This means that onl{Z, is dense i)y = )5, and
p{T €T [r(T) # R}) = 0. Z3 and Z;5 are not closed and of empty interior. On the other

In particular, this corollary tells us tha, is also dense i~ hand.21 is closed.

with respect to the Euclidean topology, and holds i the In or_der to make this statement even more e_xplicit, let's
Gaussian measure @ In other words, the rank of a tensor now define a sequence of rank-2 tensors converging to a rank-

whose entries are drawn randomly according to an absolutefy "€ This will be a simple proof of the lack of closure)of

continuous distribution (e.g. Gaussian)dswith probability ~ 10f 7 > 1. For this purpose, lefz;,y;} be linearly indepen-
1 dent vectors. Then the following tensor is of rank 2 for any

Other inequalities. A lower bound can be derived: reale > 0:

d
Rs 2 (6) + (@1 +2yy) o (s +eys) 0 My,

(K-‘,—d—l) T.=z10x20 (x5 —c 'y;)
K



But it converges towards a rank-3 tensor wheends to zero. 7. REFERENCES
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