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ABSTRACT

This paper is devoted to under-determined linear mixtures
of independent random variables (i.e. with more inputs than
outputs). Blind identifiability of general under-determined
mixtures is first discussed, and the maximum number of
sources is given, depending on the hypotheses assumed.
Then an algorithm proposed by Taleb, essentially usable for
2-dimensional mixtures, is extended to the complex field.
A procedure is proposed in order to avoid the enormous in-
crease in complexity. Computer simulations demonstrate
the ability of the algorithm to identify mixtures ofN QPSK
sources received on 1 or 2 sensors.

1. INTRODUCTION

ConsiderN statistically independent zero-mean random
variables, which will be referred to as sources,s1, . . . , sn,
andP linear mixtures defined as:

x = As (1)

wherex is the column vector formed ofxp =
∑

nApnsn,
A denotes theP ×N mixing matrix, ands the source col-
umn vector. WhenP ≥ N , the mixture is said to be over-
determined, whereas in the case we are interested in, namely
P < N , the mixture is referred to as under-determined.

There exists now a large literature on Over-Determined
Mixtures (ODM), and we shall not even review basic point-
ers because of lack of space. On the other hand, much less
attention has been drawn on Under-Determined Mixtures
(UDM). Under particular hypotheses, UDM can be some-
times deflated to ODM, for instance with the help of sparse
decompositions in overcomplete bases [12]. On the con-
trary, we shall focus our attention to UDM that cannot be
deflated. In the Statistics community, the first basic theo-
rems can be traced back to the fifties, and can be found in
[10] for instance. The Blind Identification of UDM’s can be
viewed as a problem of Factor Analysis, in which the num-
ber of factors exceeds the dimension [5]; as such, it has been
addressed in the seventies, but under restricting assumptions
[11] [13]; the decomposition is then known as PARAFAC. In
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the Signal Processing community, the problem has been ad-
dressed only ten years ago [3] [2]. Several approaches are
possible, under various assumptions [6] [5] [16] [15] [7].
This will be briefly surveyed in the next section.

2. IDENTIFIABILITY AND SEPARABILITY

We are interested in the blind identification of the mixing
matrix A; if the solution is unique, thenA is identifiable.
But we may also want to uniquely determine source dis-
tributions [14] [8]. It turns out that a unique solution forA

indeed does not always yield a unique set of source distribu-
tions. Under hypothesisH1 for instance, this holds true only
for over-determined mixtures. Uniqueness should be under-
stood throughout this paper up to a permutation among the
sources, and up to a scale factor; because of this inherent
indeterminacy, we shall rather talk aboutessentially unique
solutions.

It is then useful to introduce the following hypotheses:

H1 the columns ofA are pairwise linearly independent.
H2 source distributions are unknown and non Gaussian
H3 the numberN of sources is known
H4 the characteristic function ofx does not vanish
H5 for a given orderr > 2, all source marginal cumulants

of orderr are unknown but finite, and it is known that
at most one of them is null

H6 source cumulants are all known up to some orderr.
H7 source distributions are known, discrete, and indecom-

posable

AssumptionH1 is not restrictive; in fact, if two columnsi
andj of A are proportional, then we can add sourcessi and
sj to form a new source, still independent from the others,
and model (1) holds with merelyN − 1 sources instead of
N .

AssumptionsH1 andH2 together yield the unicity ofA
if it is known to be invertible [10, pp.89-90]. But this cannot
be the case whenN > P . So consider now 6 distinct in-
stances of the problem, each leading to identifiability prop-
erties of various strengths.

P1 underH1, H2, andH3, A can be shown to be essen-
tially unique [10, pp.311-313].



P2 underH1, H2, andH4, A and theN source distribu-
tionspsn

are essentially unique, provided [10, pp.470-
471]:

N ≤ P (P + 1)/2 (2)

P3 under assumptionsH1, H3, and H6, A and theN
source distributionspsn

are essentially unique, pro-
vided the condition below holds true [14]

N ≤

(

P + r
r + 1

)

(3)

P4 under assumptionsH1, H3, andH5 for some even or-
derr > 3, and ifP > 1, A is essentially unique pro-
vided the sufficient condition below is satisfied [4]:

2N ≤ r(P − 1) + 2 (4)

If in addition sources are complex and non circular at
orderr, then the bound in the right hand side can be
made larger [6].

P5 if sources and mixture are real, then under assumptions
H1, H3, andH5, A is essentially unique the number
of sources is small enough to verify [11] [13]:

2N ≤ r(P − 1) + 1 (5)

P6 underH1 andH7, thenA is essentially unique, and
for any finiteP , there is no upper bound onN , except
for rare ambiguous mixtures [9]; see also references
quoted in [6].

If (N,P ) = (3, 2), then (2) holds true, as well as (3) and
(4) for r = 4, but not (5). This is why PARAFAC methods
are considered to be restrictive, even if they are recognized
to useful for largeP .

3. SINGLE COMPLEX SENSOR

Our concern is essentially to solve the Blind Identification
problemP1, and we suppose that the corresponding iden-
tifiability conditions are verified. Taleb proposed in [15]
an algorithm for the blind identification of real mixtures
of N independent real source signals received on 2 sen-
sors. The algorithm is based on a partial differential equa-
tion verified by the joint second characteristic function of
the 2 sensors,ψx(u, v). A complex mixture ofN complex
sources received onP sensors can be viewed as a particu-
lar real mixture of2N real sources received on2P sensors.
The latter real sources are independent provided the original
complex sources have independent real and imaginary parts.
We briefly review in the subsection below the algorithm al-
lowing to identify1×N complex mixtures, or equivalently
2×2N real mixtures.

Real 2×N mixture.

Restricting our attention to the case ofP = 2 sensors, (1)
can be rewritten as:

x1 = a1s1 + a2s2 + ...+ aNsN
x2 = b1s1 + b2s2 + ...+ bNsN (6)

The joint second characteristic function ofx1 andx2 can be
written as:

ψx(u, v) = logE[exp(iux1 + ivx2)], (u, v) ∈ Ω (7)

whereΩ is the largest subset ofR
2 containing the origin and

where the characteristic function of the pair(x1, x2) does
not vansih. As the sources are independent, we can write:

ψx(u, v) =

N
∑

n=1

ψsn
(anu+ bnv) (8)

It is assumed thatψsn
has derivatives up to theN th order,

that is,E{|sn|
k} exists and is finite for allk ≤ N . Then

define the differential operatorDn as:

Dn = bn
∂

∂u
− an

∂

∂v
(9)

WhenDn is applied to (8), itsnth term is canceled. By
applying successively operatorsDn, n = 1, ..., N , all the
terms are eventually canceled and we get:

{

N
∏

n=1

Dn

}

ψx(u, v) = 0 ⇒

N
∑

j=0

qj
∂Nψx(u, v)

∂uN−j∂vj
= 0

(10)
whereqn are known functions of thean’s and thebn’s. Us-
ing (8) hence yields:

N
∑

n=1

N
∑

j=0

qj a
N−j
n bjn ψ

(N)
sn

(anu+ bnv) (11)

This states the relation betweenqn and(an, bn) [6] [15]:

N
∑

j=0

qj a
N−j
n bjn = 0, ∀n = 1, .., N (12)

It is thus possible to estimatêq = [q0, q1, ...qN ]T from
(10). In order to do this, start by selectingK points
(uk, vk) ∈ Ω, and estimate for each of these points all the
N th order derivatives; there areN +1 of them. This allows
to form aK×(N+1) matrixH defined as:

H=













∂Nψ
x

(u1,v1)
∂uN

∂Nψ
x

(u1,v1)
∂uN−1∂v

. . .
∂Nψ

x
(u1,v1)

∂vN

∂Nψ
x

(u2,v2)
∂uN

∂Nψ
x

(u2,v2)
∂uN−1∂v

. . .
∂Nψ

x
(u2,v2)

∂vN

...
...

...
...

∂Nψ
x

(uK ,vK)
∂uN

∂Nψ
x

(uK ,vK)
∂uN−1∂v

. . .
∂Nψ

x
(uK ,vK)
∂vN















Now, to solveHq = 0, it suffices to compute the right
singular vectorq̂, associated with the smallest singular
value of H. Once q̂ has been computed, it can be seen
from (12) that(ân, b̂n) can be readily obtained as roots of
the homogeneous polynomialF (x, y) =

∑N

j=0 q̂jx
N−jyj ,

as already suggested in [6] [15]. Note thatK should be
large enough to ensure that the null space ofH is one-
dimensional, and to avoid finding complex solutions foran
andbn when they are actually real.

The previous algorithm is valid for real sources and mix-
ture. In the next sections, an algorithm is described that can
be used to identify complex mixtures.

4. TWO COMPLEX SENSORS

When sources and mixture are complex, one may separate
real and imaginary parts to carry out the computations.

For a complex variablex, denotex̄ and x̃ the real and
imaginary parts ofx, respectively. Then, (6) becomes:

x̄1 =
∑N

n=1(āns̄n − ãns̃n), x̃1 =
∑N

n=1(ãns̄n + āns̃n)

x̄2 =
∑N

n=1(b̄ns̄n − b̃ns̃n), x̃2 =
∑N

n=1(b̃ns̄n + b̄ns̃n)
(13)

Suppose again that the real and imaginary parts of the
sources are independent, which is satisfied for numerous
basic modulations, as QPSK. Then, the joint second char-
acteristic function of(x̄1, x̃1, x̄2, x̃2) can be written, for
(u1, v1, u2, v2) ∈ Ω:

ψx̄1,x̃1,x̄2,x̃2
(u1, v1, u2, v2) =

∑N
n=1 ψs̄n

(ānu1 + ãnv1 + b̄nu2 + b̃nv2)

+ψs̃n
(ānv1 − ãnu1 + b̄nv2 − b̃nu2)

(14)

Define differential operatorDn as:

Dn = −(b̄2n+b̃
2
n)∂v1+(ãnb̄n−ānb̃n)∂u2+(ānb̄n+ãnb̃n)∂v2

(15)
By applyingDn we remove thenth term of the sum in (14).
When applying all theDn’s, n = 1, ..N , we obtain:

N
∑

n=0

n
∑

k=0

dnk
∂Nψx̄1,x̃1,x̄2,x̃2

(u1, v1, u2, v2)

∂vN−n
1 ∂un−k2 ∂vk2

= 0 (16)

By replacingψx̄1,x̃1,x̄2,x̃2
(u1, v1, u2, v2) by its expression

(14) we get:

N
∑

j=1

N
∑

n=0

n
∑

k=0

dnk ã
N−n
j b̄n−kj b̃kjψ

(n)
s̄j

(āju1 + ãjv1 + b̄ju2 + b̃jv2)

+dnkā
N−n
j (−b̃j)

n−k b̄kjψ
(n)
s̃j

(ājv1 − ãju1 + b̄jv2 − b̃ju2)=0

which implies:
N

∑

n=0

n
∑

k=0

dnkã
N−n
j b̄n−kj b̃kj = 0

N
∑

n=0

n
∑

k=0

dnkā
N−n
j (−b̃j)

n−k b̄kj = 0, (17)

∀j = 1, ..N . In a similar manner, one can define 3 other
differential operatorsQi,Ri andTi as follows:

Qn = −(ānb̄n+ãnb̃n)∂u1+(ānb̃n−ãnb̄n)∂v1+(ā2
n+ã

2
n)∂u2

Rn = −(b̄2n+b̃
2
n)∂u1+(ānb̄n+ãnb̃n)∂u2+(ānb̃n−ãnb̄n)∂v2

Tn = (ãnb̄n−ānb̃n)∂u1−(ānb̄n+ãnb̃n)∂v1+(ā2
n+ã2

n)∂v2

As forDn, each of the previous operators gives 2 equations
in 3 unknowns,∀j = 1, .., n:

N
∑

n=0

n
∑

k=0

qnkā
N−n
j ãn−kj b̄kj = 0

N
∑

n=0

n
∑

k=0

qnk(−ãj)
N−nān−kj (−b̃j)

k = 0

N
∑

n=0

n
∑

k=0

rnkā
N−n
j b̄n−kj b̃kj = 0 (18)

N
∑

n=0

n
∑

k=0

rnk(−ãj)
N−n(−b̃j)

n−k b̄kj = 0

N
∑

n=0

n
∑

k=0

tnkā
N−n
j ãn−kj b̃kj = 0

N
∑

n=0

n
∑

k=0

rnk(−ãj)
N−nān−kj b̄kj = 0

As a consequence, by computing directly the joint sec-
ond characteristic function of(x̄1, x̃1, x̄2, x̃2), we end up
with an over-determined system of 8 homogeneous equa-
tions of the form:

∑

n

∑

k αnkx
N−nyn−kzk = 0, that we

are hardly able to solve. General Gröbner bases approaches
are indeed rather impracticable for such systems in 12 vari-
ables of degree larger than 3; special purpose algebraic ap-
proaches are being investigated, and will be the subject of
a future paper. We propose in the next section another ap-
proach to the problem.

5. A SOLUTION WITH REDUCED COMPLEXITY

The idea consists of solving three2×2N real identification
problems instead of a single2×N complex one. These are:

(

x̄1

x̃1

)

= A1 s
′,

(

x̄2

x̃2

)

= A2 s
′,

(

x̄1

x̄2

)

= AR s
′,

wheres
′ is the2N×1 real source vector defined ass′n = s̄n

and s′N+n = s̃n, for 1 ≤ n ≤ N . With the algorithm

described in section 3, we obtain2 × 2N matricesÂ1,
Â2, andÂR, which are estimates ofA1Λ1P 1, A2Λ2P 2,
ARΛRPR, respectively, where theΛ’s are diagonal regu-
lar matrices andP ’s are permutations. MatriceŝAk contain
N pairs of orthogonal vectors. First delete in each pair the
vector of the form(−q, r)

T

and retain the other of the form
(r, q)

T

, in order to get2×N matrices. Then define the two



1×N vectors below, by taking the ratios of their first and
second lines:

Ra(k) =
Â1(1, k)

Â1(2, k)
, Rb(`) =

Â2(1, `)

Â2(2, `)

and the1×2N vectorρ(m) = ÂR(1,m)

ÂR(2,m)
.A careful inspection

of the theoretical values of these terms shows thatRa(k) ∈

{ān/ãn, 1 ≤ n ≤ N}, Rb(`) ∈ {b̄n/b̃n, 1 ≤ n ≤ N},
ρ(m) ∈ {ān/b̄n, ãn/ibn, 1 ≤ n ≤ N}. This reveals a
simple algorithm to recoverA up to the inherent indeter-
minacies of the original complex identification problem. In
fact, form the1×N2 ratio vectorRab(k, `) = Ra(k)/Rb(`),
and the1×(N2 −N) ratio vectorρab(j,m) = ρ(j)/ρ(m),
j 6= m. Next detect theN best index quadruplets that mini-
mize the distance|Rab(k, `)− ρab(j,m)|. This distance in-
deed becomes null when̄akb̃`/ãkb̄` = āj b̃m/b̄jãm. Thus,
it can be seen that this association procedure has fixed the
permutation and scale ambiguities, and that the columns
[āk, ãk, b̄k, b̃k] and [1, 1/Ra(k), 1/ρ(j), 1/w] are pro-
portional, wherew is taken to be eitherρ(m)Ra(k), or
ρ(j)Rb(`), or their average. Note that this holds true as
long asāk is not null. Should̄ak = 0, the same procedure
can be run by setting another of the 4 entries to 1 (the four
are not allowed to be all zero). We skip the programming
details.

As a conclusion, we have obtained an estimate of each
column ofA up toN×N permutation and scale ambiguities,
as requested.

6. COMPUTER RESULTS

Sources that have been generated are i.i.d QPSK, and have
therefore independent real and imaginary parts. Their
whiteness has little influence on the results, but the corre-
lation between real and imaginary parts obviously does, if
any, up to some extent.

There are at least two ways to implement the algorithms
previously described, depending on the estimator of deriva-
tives ∂k+`ψ/∂uk∂v`. The first approach consists of es-
timating the characteristic functionψ

x
of the observation

over a set(u, v) ∈ Ω containing the origin. We merely uti-
lized in figure 1 the sample estimate:

ψ̂
x
(u, v) = log

[

1

T

T
∑

t=1

exp{i<(u∗x1(t) + v∗x2(t))}

]

(19)
where vectorsx(t) are realizations of the random variable
x. The successive derivatives can then be obtained from the
values ofψ̂

x
(u, v) over a grid included inΩ by central finite

differences.
The second approach is theoretically more accurate, but

turned out to be more sensitive to deviations of the sample
mean from zero. It consists of computing the theoretical
expressions of the requested derivatives ofψ

x
as a func-

tion of successive derivatives ofφ
x

. This rather cumber-
some calculation has been carried out by Maple once for
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Fig. 1. 1 × 3 complex mixture. Average gap obtained over
41 independent trials, (top) for data lengths of 1000 sam-
ples, as a function of SNR, and (bottom) for a SNR of 15dB
as a function of the sample size.

all. Then, one can eventually replace the terms involved in
the latter expressions by their sample estimates. As an ex-
ample in the real case,∂ψ

∂u
= ∂φ

∂u
1
φ

, and a sample estimate

of ∂k+`φ/∂uk∂v` is:

ik+`
1

T

T
∑

t=1

x1(t)
kx2(t)

` exp{i(x1(t)u+ x2(t)v)} (20)

This implementation has been chosen for obtaining figures
2 and 3.

6.1. 1×3 complex mixture of 3 complex sources

In this subsection, the mixture is received on a single sensor
and is taken to be:

A = [ 1 cosπ/6 + i sinπ/6 cosπ/3 + i sinπ/3 ]
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Fig. 2. 1 × 3 complex mixture. Average gap obtained over
11 independent trials as a function of SNR, using theoretical
expressions of successive derivatives.

The SNR is varied between -20dB and 60dB. The gap crite-
rion measures the Froebenius norm between the estimated
mixture and the actual one,A, for the most favorable scale
and permutation3×3 ambiguities, as in [6] for instance.
Figure 1 reports the median of the gap values obtained with
41 independent trials, plus or minus the standard deviation.
This gap has a maximal value of 6 for 2x3 mixtures, be-
cause it is insensitive to scale. A value below 0.3 can be
considered as quite good in the present framework.

6.2. 2×3 complex mixture of 3 complex sources

Now the mixture has two rows. The first is the same as in
the previous subsection, and the second is:

[ cos 2π/5 + i sin 2π/5 cosπ/5 + i sinπ/5 1 ]

The performance criterion used in this section is that de-
scribed in [1] forP × N mixtures, and is suboptimal. In
fact, computing the optimal scale and permutation ambigu-
ities would be too computationally costly. The performance
obtained is reported in figure 3 as a function of SNR, and
becomes acceptable above 20dB.
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