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ABSTRACT
Linear Mixtures of independent random variables (the
so-called sources) are sometimes referred to as Under-
Determined Mixtures (UDM) when the number of sources
exceeds the dimension of the observation space. The algo-
rithms proposed are able to identify algebraically a UDM
using the second characteristic function of the observations.
With only two sensors, the first algorithm only needs a SVD.
With a larger number of sensors, the second algorithm ex-
ecutes an ALS. The joint use of statistics of different orders
is possible, and a LS solution can be computed.

1. INTRODUCTION

This paper is devoted toUnderdeterminedLinear Mixtures
(UDM), that is, mixtures of independent random sources
where the number of sources,N , always exceeds the num-
ber of sensors,P . In other words, underdetermined mix-
tures do not enjoy sparsity properties such as disjoint source
spectra, or sources non permanently present (this property
is often exploited in Speech applications [15]).

Moreover, we are only interested in Blind Identifica-
tion, and not in Source Extraction. These two problems are
closely related when the number of sources does not exceed
the number of sensors. In fact, the linear mixture can then be
linearly inverted, and looking for its inverse is an equivalent
problem [4] [3] [13]. Techniques that have been utilized
in this framework, such as second order pre-whitening, or
deflation, are not applicable for UDM.

Identifiability of linear mixtures received on a single
sensor requires source distributions to have an indecompos-
able characteristic function (c.f.) [16] [14]; for instance in
digital communications, BPSK sources are indecomposable
but QPSK are not. This condition can be deflated for un-
derdetermined mixtures received on 2 sensors [18] [7]. In
contrast for over-determined mixtures, the only pathologi-
cal distributions are Gaussian [11] [8] [14]. In the sequel,
it is assumed that an under-determined mixture is available
on more than one sensor, viz1 < P < N . In addition, it is
not assumed that spectral or multi-spectral differences can
be exploited as in [12] for instance, and the time dimension
is merely ignored.

Blind source extraction from underdetermined mixtures
is a difficult problem since these mixtures cannot be linearly

inverted [5]. On the other hand, Blind Identification (BI) of
the mixture matrix can be performed without extracting the
sources (at least in a first stage), as in [2] [5] [9] [17] [1].
More precisely, the methods proposed in [2] [5] [9] [12]
only use the data FO statistics, whereas in [17] or [7], the
information contained in the second c.f. of observations is
exploited. We extend this kind of approach by using ad-
ditional equations, which makes the solution more stable.
Contrary to cumulant based approaches such as [1] or [5],
for a given number of sensors, the number of sources is the-
oretically not limited, which constitutes the main motivation
in using the c.f.

2. ASSUMPTIONS AND NOTATION

In accordance with the remarks made in introduction, we
assume the observation model below:

x = A s + w (1)

where Vector, Matrix, or Tensor variables are distinguished
from scalars by bold faces,x ands are random vectors of
sizeP andN respectively,A is a P × N full rank ma-
trix, andw accounts for modeling errors and additive noise.
From now on, its presence is just ignored in the remaining,
except when running computer experiments. The entriessn
of vectors are assumed to be non Gaussian and statistically
independent.

For simplicity, we shall restrict our attention in this pa-
per to real variables and mixture. As pointed out in [7], the
immersion of the complex framework in a real framework
of larger size introduces some additional constraints, which
make the problem more difficult, but at the same time al-
low a better stability of the solution. Most of the reasoning
developed in this paper applies to the complex case, up to
some complication in the notation.

We also assume the following hypotheses:

H1 the columns ofA are pairwise linearly independent.

H2 source distributions are unknown and non Gaussian

H3 the numberN of sources is known

H4 the moments of the sources are unknown, but finite
up to some order larger thanN
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UnderH1, H2, andH3, A can be shown to be essentially
unique [14, pp.311-313].

Two practical algorithms are subsequently described.
The first is a significant improvement of the approach de-
scribed in [17] and [7], and the second turns out to have
similarities with a work of Yeredor [19], developed for di-
agonalizing a set of square matrices by an invertible trans-
form, i.e. applicable only forrs(T ) ≤ P ; however, the
algorithm described here also works for square tensors of
rank rs(T ) ≥ P . Both are based on the core functional
equation below, which is a direct consequence of source in-
dependence:

Ψx(u) =

N
∑

n=1

ψn(

P
∑

p=1

Apnup) (2)

where Ψx(u) denotes the second c.f. ofx defined as
Ψx(u) = log E{exp(uTx)}, and whereψn(v) denotes the
second c.f. of sourcesn: ψn(v) = log E{exp(vsn)}. This
core equation can be used in an open neighborhoodΩ of the
origin, whereΨx does not vanish.

3. ALGORITHM ALGECAF: AN ALGEBRAIC
SOLUTION

It is easy to verify that any two derivatives of (2) can be
combined in order to cancel thenth term of the sum. More
precisely, for any triplet of indices, define the differential
operator:

Dn,i,j
def
= Ain

∂Ψx

∂uj
−Ajn

∂Ψx

∂ui

In other words,Dn,i,jΨ(u) does not depend onψn, for any
values of(i, j). Thus, by applying such an operatorN times
for differentn’s and for arbitrary pairs(in, jn), one eventu-
ally gets zero. In order to be able to estimateA, it is inter-
esting to fix the pair(i, j), which leads to:

{

N
∏

n=1

Dn,i,j

}

ψx(u) =

N
∑

k=0

qk[i, j]
∂Nψx(u)

∂uN−k
j ∂uki

= 0, ∀u ∈ Ω

(3)
whereqk[i, j] are known functions of the (yet unknown) en-
tries ofA. In order to obtain the exact relation between vec-
tor q[i, j] and rowsi andj of A, it suffices to plug equation
(2) into (3), which yields:

N
∑

n=1

[

N
∑

k=0

qk[i, j]A
N−k
jn Akin

]

ψ(N)
n (

∑

p

Apnup) = 0 (4)

whereψ(N)
n denotes theN th derivative ofψn. Since this

holds true for anyu ∈ Ω, one can deduce that

N
∑

k=0

qk[i, j]A
N−k
jn Akin, ∀n (5)

This shows that theN ratiosAin/Ajn can be obtained as
theN roots in the projective space (i.e.including infinity) of
a polynomial of degreeN , onceq has been obtained.

Now, imposing (3) to be satisfied on a grid ofK values
{u[1], . . . ,u[K]} ∈ Ω, one can build the over-determined
linear systemH[N ] q = 0, whereH [N ] is the matrix of
N th order derivatives given below:
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BecauseA can be estimated only up to a scale factor,
it is entirely identified by this procedure if it contains only
two rows (P = 2). If there are more than2 sensors, this al-
gorithm can be adapted to the price of an important increase
in complexity, as shown in [7].

Our contribution here is different: we show that one can
improve on the stability of this solution by adding extrane-
ous equations. In fact, expression (3) is still null if we take
further derivatives:

∂

∂u`

N
∑

k=0

qk[i, j]
∂Nψx(u)

∂uN−k
j ∂uki

= 0, ∀u ∈ Ω (6)

For instance, foru = 0, P = 2, andN = 3, this yields the
two fourth-order cumulant equations used in [5].

An even more interesting results is that (3) and (6) in-
volve the same unknownqk, so that they can be combined
to build a single larger over-determined system. Indeed, de-
noteH[N +1, 0] andH [N+1, 1] the twoK×N matrices
built from (6) when` ∈ {i, j}. Thenq[i, j] satisfies the
following linear system:





H[N ]
H [N + 1, 0]
H [N + 1, 1]



 · q[i, j] = 0

Example: To make it clear, in order to identify a2 × 3
mixture, one wishes to estimate a vectorq of dimension
N + 1 = 4. To do this, one can either build a linear sys-
tem with 3rd order derivatives taken at (at least) 3 different
points ofΩ, or the two types of 4th order derivatives taken
at (at least) 2 different points ofΩ. But one can also build
a system combining both, including then both 3rd and 4th
order derivatives, possibly taken at a single point ofΩ (the
linear system needs in fact at leastN = 3 rows in order to
have a null space of dimension at most 1).

4. ALGORITHM ALESCAF: AN ALTERNATE LS
SOLUTION

As already pointed out, the AICF algorithm is very attrac-
tive for the Blind Identification of2×N mixtures, but more
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Fig. 1. Gap between estimated and actual mixing matrix for
(P,N) = (2, 6), with algorithms ALGECAF with use of
6th and 7th derivatives, and(P,N) = (2, 3) with use of 3rd
and 4th derivatives. Average gap values over 21 indepen-
dent trials are plotted.

complicated to implement forP > 2. Therefore, there is a
great interest in looking for other ways of exploiting the c.f.
From (2), one can easily obtain that

∂2Ψx(u)

∂ui∂uj
=

N
∑

n=1

AinAjn ψ
(2)
n (

∑

p

Apnup) (7)

Again, one can take this equation onK pointsu[k] on a grid
of Ω. With obvious notations, the result can be arranged in
compact form as

T [k] = AΛ[k] AT, 1 ≤ k ≤ K (8)

We describe in appendix two ALS algorithms able to com-
puteA and diagonal matricesΛ[k] from symmetric matri-
cesT [k]. This procedure constitutes algorithm ALESCAF
(Alternate Least Squares Identification based on the Cha-
racteristic Function).

Now in some cases, in particular in the presence of
strong additive Gaussian noise of unknown covariance, it
may be attractive to use only statistics of order greater than
2. It turns out that this is also possible with quite minor
modifications, as reported in [6]. MatricesΛ[k] then de-
pend on thekth column ofA, but this is ignored, hence the
suboptimality of the algorithm.

5. COMPUTER RESULTS

Estimates of matricesH [·] are computed in the follo-
wing manner. First, all derivatives ofΨx(u) of required
order are formally expressed as a function of moments

µ(n,u[k]) = E{xnex
T
u[k]}. Then sample moments

µ̂(n,u[k]) = 1
M

∑M

m=1 x[m]nex[m]Tu[k]} are computed,
yielding eventually estimates of entries ofH . (herexn

stands forΠpx
np

p ).
The number of sensors is taken to beP = 2, and the

number of sources ranges fromN = 3 toN = 6. Sources
are BPSK, that is, they take their values in{−1, 1} with
equal probabilities. Two types of results are reported. First,
the influence of the noise alone is analyzed. For this pur-
pose, a block of data of length2N is generated with ex-
actly all possible combinations of{−1, 1}; in this manner,
sources are always seen as perfectly independent. Indepen-
dent realizations of a Gaussian noise are added, with various
noise level (SNR). Gaps averaged over 21 trials are reported
in figure 1 with the label “infinite sample size”. Second,
other experiments are reported where source blocks are also
randomly generated; therefore sources are seen as statisti-
cally independent only for large block lengths. As reported
with the curves labeled “1000 samples” in figure 1, one can
observe a plateau for high SNR’s.

6. CONCLUDING REMARKS

Our contribution was three-fold: (i) we have demonstrated
that it was possible to derive an algebraic solution to the
2×N Blind Identification problem by simultaneously using
derivatives of different orders, and that it improves the sta-
bility of the solution, (ii) we have made the connection with
cumulant-based approaches, and proved that improvement
(i) also applies to the joint use of cumulants of different or-
ders, larger than or equal toN ; (iii) we showed that an ALS
algorithm of PARAFAC type could be utilized to identify a
P × N mixture, and that only second-order derivatives of
the c.f. are necessary, although higher orders can also be
used.

Future works include: (a) the proof of identifiability
when using only derivatives of given orders of the c.f.;
(b) improvement of the convergence of ALS algorithms,
slow for topological reasons (likely because of a lack of
closure [6]); (c) in order to account for a possibly differ-
ent variance ion estimates of moments of different orders, a
weighting can be rather easily introduced, and may improve
on asymptotic performance.

7. APPENDIX

Asymmetric ALESCAF Given a set of (possibly rectan-
gular) matricesT [k] (typically tensor slabs), the algorithm
aims at minimizing

Υ =
∑

k

||T [k] − B Λ[k] C†||2 (9)

with respect to matricesB andC, where matricesΛ[k] are
diagonal. In the present framework however, even if matri-
cesT [k] are all square symmetric, it might still be of interest



to run asymmetric iterations. This criterion can alternatively
be written in the form of a distance between vectors as

Υ =
∑

k

||t[k] −
∑

n

λn[k] c[n]∗ ⊗ b[n]||2

wheret[k] = vec(T [k]), b = vec(B), andc = vec(C).
By introducing aP 2 ×N matrixM, whosenth column is
c[n]∗⊗b[n], it is possible to obtain a more compact expres-
sion:

Υ =
∑

k

||t[k] −Mλ[k]||2 (10)

Stationary values ofB andC are given by

B = {
∑

k

T [k]CΛ[k]}{
∑

`

Λ[`]C†CΛ[`]}−1 (11)

C = {
∑

k

T [k]†BΛ[k]}{
∑

`

Λ[`]B†BΛ[`]}−1(12)

whereas stationary values of the diagonal ofΛ[k] are given
by the vectors

λ[k] = {M†M}−1M†t[k] (13)

The ALS algorithm ALESCAF1 consists of executing alter-
natively (13), (11), and (12). When matrices involved in a
system solution are singular, a LS solution is computed.

Symmetric ALESCAF In the symmetric case, things
are more complicated because the optimization criterion is
not quadratic anymore in the unknown rectangular matrix.
Again, two writings are derived in order to obtain station-
ary values with respect to the rectangular matrix and to the
diagonal one:

Υ =
∑

k

||T [k] − BΛ[k]B†||2 (14)

and, with an appropriate definition ofB similar as above:

Υ =
∑

k

||t[k] − Bλ[k]||2 (15)

Some manipulations would show that the stationary values
λ[k] are given by

λ[k] = {B† B}−1B† t[k] (16)

Last, the stationary value of each columnb[`] of matrix B

is the dominant eigenvector of the Hermitian matrix

P [`] =
1

2

∑

k

λ`[k]{T̃ [k; `]† + T̃ [k; `]} (17)

whereT̃ [k; `]
def
= T [k] −

∑

n6=` λn[k]b[n]b[n]†. The ALS
algorithm ALESCAF2 consists of executing successively
(16) and the calculation of the dominant eigenvector of the
K matrices (17). As before, a LS solution is computed
when matrices involved are singular.
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