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Abstract

Linear mixtures of independent random variables (the so-called sources) are sometimes referred to as under-determined

mixtures (UDM) when the number of sources exceeds the dimension of the observation space. The algorithms proposed

are able to identify algebraically a UDM using the second characteristic function (c.f.) of the observations, without any

need of sparsity assumption on sources. In fact, by taking higher order derivatives of the multivariate c.f. core equation,

the blind identification problem is shown to reduce to a tensor decomposition. With only two sensors, the first algorithm

only needs a SVD. With a larger number of sensors, the second algorithm executes an alternating least squares (ALS)

algorithm. The joint use of statistics of different orders is possible, and a LS solution can be computed. Identifiability

conditions are stated in each of the two cases. Computer simulations eventually demonstrate performances in the absence

of sparsity, and emphasize the interest in using jointly derivatives of different orders.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Tensor decomposition; Blind identification; Statistical Independence; Linear mixtures; Parafac
1. Introduction

This paper is devoted to underdetermined linear
mixtures (UDM), that is, mixtures of independent
random sources where the number of sources, N,
always exceeds the number of sensors, P. In other
words, underdetermined mixtures do not enjoy
sparsity properties such as disjoint source spectra,
or sources non-permanently present. The latter
property is often exploited in speech applications;
e front matter r 2005 Elsevier B.V. All rights reserved
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see [1] among others. The exploitation of sparsity is
a promising technique, but is not applicable in the
present framework.

Moreover, we are only interested in blind
identification (BI), and not in source extraction.
These two problems are closely related when the
number of sources does not exceed the number of
sensors. In fact, a noiseless linear mixture can then
be linearly inverted, and looking for its inverse is an
equivalent problem [2–4]. Techniques that have
been utilized in this framework, such as second
order pre-whitening, or deflation, are not applicable
for UDM.

Identifiability of linear mixtures received on a
single sensor requires source distributions to have an
indecomposable characteristic function (c.f.) [5,6];
.
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for instance in digital communications, BPSK
sources are indecomposable but QPSK are not.
This condition can be deflated for underdetermined
mixtures received on two sensors [7,8], as subse-
quently pointed out. See [9] for a recent analysis of
UDM identifiability, and uniqueness of source
densities. In contrast, for over-determined mixtures,
the only pathological distributions are Gaussian
[10,11,6]. In the sequel, it is assumed that an UDM
is available on more than one sensor, viz 1oPoN.
In addition, it is not assumed that spectral or multi-
spectral differences can be exploited as in [12] for
instance, and the time dimension is merely ignored,
which is relevant in cases where sources are white
for instance.

Blind source extraction from underdetermined
mixtures is a difficult problem since these mixtures
cannot be linearly inverted [13]. On the other hand,
BI of the mixture matrix can be performed without
extracting the sources (at least in a first stage), as in
[14,13,15–17]. More precisely, the methods pro-
posed in [14,13,15,12] only use the data fourth order
statistics, whereas in [16] or [8], the information
contained in the second c.f. of observations is
exploited. We extend this kind of approach by using
additional equations, which makes the solution
much more stable. Contrary to cumulant based
approaches such as [17] or [13], for a given number
of sensors, the number of sources is theoretically not
limited, which constitutes the main motivation in
using the c.f.

The c.f. has been already utilized in [18] to blindly
separate sources under the assumption that there
are at most as many sources as sensors (i.e. over-
determined mixtures). However, the advantage that
the c.f. may allow to identify linear mixtures where
the number of sources exceeds the number of sensors
has neither been noticed nor exploited therein; hence
the originality of the present contribution.

Some recent works have addressed the case of
under-determined mixtures in a deterministic man-
ner [19]. Such algorithms resort to the so-called
Parafac algorithm, which needs the number of
sources to be smaller than a particular bound (see
[20] and Section 4.2), that depends on both
dimensions and diversity of the data. This bound
turns out to be often largely exceeded for a small
number of sensors. The approach proposed in this
paper allows to circumvent this problem by allow-
ing to build another well-conditioned tensor of
arbitrarily large order, which permits to enlarge that
bound.
2. Assumptions and notation

In accordance with the remarks made in intro-
duction, we assume the observation model below:

x ¼ Asþ w, (1)

where array variables are distinguished from scalars
by bold faces, x and s are random vectors of size P

and N, respectively, A is a P�N full rank matrix,
and w accounts for modeling errors and additive
noise. From now on, its presence is just ignored in
the remaining, except when running computer
experiments. The entries sn of vector s are assumed
to be non-Gaussian and statistically independent.

For simplicity, we shall restrict our attention in
this paper to variables and mixture with values in
the real field, R. As pointed out in [8], the immersion
of a problem defined in the complex field, C, into a
real framework of larger size introduces some
additional constraints, which makes the problem
more difficult, but at the same time allows a better
stability of the solution. In fact, a matrix–vector
product in CP can be written as a matrix–vector
product in R2P, where the latter matrix is con-

strained to be block skew-symmetric. This con-
straint complicates the identification problem [8]
because the mixing matrix has not independent
entries anymore. Nevertheless, most of the reason-
ing developed in this paper applies to the complex
case, up to some complication in notation and
increase in computational complexity.

We also assume the following hypotheses:
H1
 the columns of A are pairwise linearly indepen-
dent;
H2
 source distributions are unknown and non-
Gaussian;
H3
 the number N of sources is known;

H4
 the moments of the sources are unknown, but

finite up to some order larger than N.
Under H1, H2, and H3, A can be shown to be
essentially unique [6].

Two practical algorithms are subsequently de-
scribed. The first is a significant improvement of the
approach described in [16] and [8], and the second is
able to solve the derivative matching problem for
N42 with the help of an ALS algorithm. Both are
based on the core functional equation below, which
is a direct consequence of source independence:

CxðuÞ ¼
XN

n¼1

cn

XP

p¼1

Apnup

 !
(2)
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where CxðuÞ denotes the second c.f. of x defined
as CxðuÞ ¼ log Efexpð| uTxÞg, and where cnðvÞ de-
notes the second c.f. of source sn: cnðvÞ ¼

log Efexpð| vsnÞg, where the dotless | denotes the
square root of �1. This core equation can be used in
an open neighborhood O of the origin where Cx

does not vanish, which always exists.
3. Algorithm ALGECAF: an algebraic solution

3.1. Description of the algorithm

It is easy to verify that any two derivatives of (2)
can be combined in order to cancel the nth term of
the sum. More precisely, for any triplet of indices,
ðn; i; jÞ, npN, i; jpP, define the differential operator:

Dn;i;j ¼
def

Ain

qCx

quj

� Ajn

qCx

qui

.

In other words, Dn;i;jCðuÞ does not depend on cn, for
any values of ði; jÞ. Thus, by applying such an
operator N times for different n’s and for arbitrary
pairs ðin; jnÞ, one eventually gets zero. In order to be
able to estimate A, it is interesting to fix the pair ði; jÞ,
which leads to

YN
n¼1

Dn;i;j

( )
CxðuÞ ¼

XN

k¼0

qk½i; j�
qNCxðuÞ

quN�k
j quk

i

¼ 0,

8u 2 O, ð3Þ

where qk½i; j� are known functions of the (yet
unknown) entries of A. In order to obtain the exact
relation between vector q½i; j� and rows i and j of A, it
suffices to plug equation (2) into (3), which yields:

XN

n¼1

XN

k¼0

qk½i; j�A
N�k
jn Ak

in

" #
cðNÞn

X
p

Apnup

 !
¼ 0, (4)

where cðNÞn denotes the Nth derivative of cn. Since
this holds true for any u 2 O, one can deduce that

XN

k¼0

qk½i; j�A
N�k
jn Ak

in ¼ 0; 8n. (5)

The latter homogeneous polynomial equation has
infinitely many solutions; but this is not a surprise
since matrix A is identifiable only up to post-
multiplication by a diagonal invertible matrix. In
order to cope with this indeterminacy, one can solve
for the ratios Ain=Ajn instead. However, since some
entries can be null, a convenient approach to rooting
homogeneous polynomials in several variables is to
immerse the problem in the projective space (i.e. the
space including infinity) [21].

In these conditions, (5) shows that the N ratios
Ain=Ajn can be obtained as the N roots in the
projective space of a polynomial of degree N, once q
has been obtained. So let us focus on the way to
obtain q½i; j�, and drop indices ½i; j� for the sake of
simplicity, being understood that these indices are
fixed.

Now, imposing (3) to be satisfied on a grid G of K

values fu½1�; . . . ; u½K �g 2 O, one can build the over-
determined linear system H ½N�q ¼ 0, where H ½N� is
the K �N þ 1 matrix of Nth order derivatives given
below

H½N� ¼
def

qNCxðu½1�Þ

quN
j

qNCxðu½1�Þ

quN�1
j

qui
. . . qNCxðu½1�Þ

quN
i

qNCxðu½2�Þ
quN

j

qNCxðu½2�Þ

quN�1
j

qui
. . . qNCxðu½2�Þ

quN
i

..

. ..
. ..

. ..
.

qNCxðu½K �Þ

quN
j

qNCxðu½K�Þ

quN�1
j

qui
. . . qNCxðu½K�Þ

quN
i

0
BBBBBBBB@

1
CCCCCCCCA
.

(6)

Now equations (3), (5), (6) and (8) yield together an
algebraic algorithm to blindly identify any two rows
of matrix A, up to scale and permutation factors

Algorithm ALGECAF(1)
(1)
 Fix the number N of sources sought (the
algorithm can increment on N, starting with
N ¼ P).
(2)
 Select two sensor indices ½i; j�, 1p½i; j�pP.

(3)
 Define a grid G of K values u½m� in a

neighborhood O of the origin in RP, 1pmpK.

(4)
 Estimate the Nth order derivatives of the joint

second characteristic function of observation
½xi; xj�, cxðuÞ on this grid, and store them in a
matrix H ½N� as defined in (6).
(5)
 Compute the right singular vector q of H ½N�
associated with the smallest singular value.
(6)
 Root the Nth degree polynomial whose coeffi-
cients are qk, 0pkpN in the projective space
(that includes infinity if necessary).
(7)
 Associate each root with the ratio Ain=Ajn.
We shall now show that this algorithm, proved to

be unfortunately sometimes rather unstable, can be
made more robust by adding extraneous equations.
In fact, expression (3) is still null if we take further
derivatives:

q
qu‘

XN

k¼0

qk½i; j�
qNCxðuÞ

quN�k
j quk

i

¼ 0; 8u 2 O. (7)
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For instance, for u ¼ 0, P ¼ 2, and N ¼ 3, this
yields the two fourth order cumulant equations used
in [13].

An even more interesting result is that (3) and (7)
involve the same unknown qk, so that they can be
combined to build a single larger over-determined
system. Indeed, denote H ½N þ 1; i� and H ½N þ 1; j�
the two K �N þ 1 matrices built from (7), when
ði; jÞ is fixed and ‘ 2 fi; jg. Then q½i; j� satisfies the
following linear system:

H ½N�

H ½N þ 1; i�

H ½N þ 1; j�

2
64

3
75 � q½i; j� ¼ 0, (8)

where matrices H ½N; ‘�, ‘ 2 fi; jg, are defined by (7).
The corresponding algorithm is given by

Algorithm ALGECAF(2)

Run the same steps as Algorithm ALGECAF(1),
but replace matrix H½N� by the block matrix of (8).

More block equations can be obviously stacked at
the bottom of (8), by adding higher order deriva-
tives. Let us push one step further, and consider also
derivatives of order N þ 2, which will be proved to
be useful especially when P ¼ 2. For fixed ½i; j�, there
are three (N þ 2)nd order derivatives, obtained by
applying operators q2=qu2

i , q
2=quiuj , and q2=qu2

j , to
(3), which leads to three additional block equations,
taking the form below, with obvious notations:

H ½N þ 2; i; i�

H ½N þ 2; i; j�

H ½N þ 2; j; j�

2
64

3
75 � q½i; j� ¼ 0. (9)

We then define a third algorithm
Algorithm ALGECAF(3)

Run the same steps as algorithm ALGECAF(1),
but compute q as the right singular vector associated
with the smallest singular value of the matrix
containing the six blocks defined in (8) and (9).

3.2. Identifiability

Algorithms ALGECAF(k) estimate the ratio of
any two rows i and j of A. If A has only two rows
(P ¼ 2), this means that A is estimated up to a scale
factor, which is part of the inherent indetermination
of the BI problem. We show in this section under
what conditions one can make sure that there is a
unique solution. If A has more than two rows, an
association algorithm is necessary in addition to
algorithms ALGECAF, in order to fix extraneous
permutation indeterminacies, as pointed out in [8].
But the increase in complexity is important, and the
ALESCAF algorithm described in Section 4 should
be preferred in that case. On the other hand,
ALGECAF algorithms are much more attractive
when P ¼ 2. So consider from now on in this
section, that P ¼ 2, so that indices ðj; iÞ may be set
to ð1; 2Þ once for all in this section.

Given a q� 1 vector a, denote by a�k the non-
redundant symmetric Kronecker product of a with
itself k times, as defined in [22]; for instance if a is of
length q, then a�2 is of length qðqþ 1Þ=2 and
contains all distinct degree 2 cross-products between
the entries of a. Also denote A�k the column-wise

non-redundant symmetric Kronecker product of A
with itself k times. If A is of size 2�N for instance,
then A�k is of size k þ 1�N.

Also define the N � K matrix WðMÞs containing in
its ðn; kÞ entry the Mth derivative of the second
characteristic function of source n, cðMÞn ða

T
n u½k�Þ,

1pkpK , taken at the ðn; kÞth point of the dual grid
ATG, where an is the nth column of A. Lastly denote
in bold face wðMÞs ½k� the N-dimensional vector
standing for the kth column of WðMÞs .

Lemma 1. The transpose of the K �M þ 1 matrix

H ½M� defined in (6) can be expressed as

H ½M�T ¼ A�MWðMÞs . (10)

Proof. From the core equation (2), we know that
for every point u½k� of grid G, and 8‘, 0p‘pM:

qMCx

quM�‘
1 qu‘2

ðu½k�Þ ¼
XN

n¼1

AM�‘
1n A‘

2n cnða
T
n u½k�Þ. (11)

Because of the definition of our column-wise non-
redundant Kronecker product, the right-hand side
can be seen to be the ‘th entry of the column vector
A�M wðMÞs ½k�. Now grouping the K block equations
one after the other, 1pkpK , and remarking
that matrix A�M can be factored out on the
left eventually yields the compact expression of
Lemma 1. &

Theorem 2. In addition to hypotheses H1, H2, and

H3, assume hypothesis:
H4a: the source second characteristic functions

admit finite derivatives up to order N at every point of

grid G; in other words, matrix WðNÞs exists and is

finite.
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Then model (1) with P ¼ 2 is identifiable with

algorithm ALGECAF(1) if and only if the two

conditions below hold true
(i)
 matrix A�N is of full rank N,

(ii)
 matrix WðNÞs is of full rank N.
Note that condition (i) above is the same as that

found in Theorem A.3.3 in [6]. Our additional
condition (ii) is necessary because of the use of a
particular numerical algorithm.

Proof. First, by definition (3), H ½N� has N þ 1
columns. Yet, in order for the equation H ½N� q ¼ 0
to have a single solution, H ½N� must admit a one-
dimensional right singular space. This means that
H ½N�must be of rank exactly N. Now, from Lemma
1, H ½N� is the product of two matrices of rank at
most N. It is thus clear that they must both be of full
rank, that is of rank N. The converse is derived
along the same lines. &

One of the consequences of this theorem is that
the number of grid points, K, must be at least as
large as N when using algorithm ALGECAF(1).

The same reasoning can be done with algorithms
ALGECAF(2) and ALGECAF(3). In fact, let
A½N� ¼ A�N , let A½N þ 1; 1� denote the N þ 1�
N sub-matrix of A�Nþ1 formed of its N þ 1 first
rows, and A½N þ 1; 2� the sub-matrix of A�Nþ1

formed of its N þ 1 last rows. Then we have for
instance:

Corollary 3. In addition to hypotheses H1, H2, and

H3, assume hypothesis:
H4b: the source second characteristic functions

admit finite derivatives up to order N þ 1 at every

point of grid G � O; in other words, matrices WðNÞs

and WðNþ1Þs exist and are finite.
Then model (1) with P ¼ 2 is identifiable with

algorithm ALGECAF(2) if the following matrix

product is of rank N:

½A½N�;A½N þ 1; 1�;A½N þ 1; 2��

�

CðNÞs 0 0

0 CðNþ1Þs 0

0 0 CðNþ1Þs

2
664

3
775.

The proof goes along the same lines as in that of
Theorem 2. In practice, because of estimation and
rounding errors, the matrix product above may be
full rank, namely of rank N þ 1. In that case, as
vector q is chosen to be the singular vector
associated with the N þ 1st singular value (the
smallest), uniqueness is still ensured. On the other
hand, the matrix product above should not have a
rank strictly lower than N.

Now, it is important to note that K does not need
to be larger than N anymore, as it was the case in
ALGECAF(1); with ALGECAF(2), the necessary
condition indeed deflates to 3KXN.

Remark 4. Matrix ½A½N þ q; 1�;A½N þ q; 2�; . . . ;
A½N þ q; qþ 1��, qX0, can be rearranged into a
set of Hankel blocks Hn by permuting the columns.
More precisely, Eq. (11) may be rewritten as

½H ½N þ q; 1�T; . . . ;H ½N þ q; qþ 1�T�

¼ ½H1; H2; . . . ;HN � � ðW
ðNþqÞ
s � Iqþ1Þ,

where

Hn ¼
def

A
Nþq
1n . . . AN

1nA
q
2n

A
Nþq�1
1n A2n . . . AN�1

1n A
qþ1
2n

A
q
1nAN

2n . . . A
Nþq
2n

2
66664

3
77775

is clearly of rank 1.

A similar corollary holds true if we also use
derivatives of order N þ 2. The necessary condition
then becomes 6KXN. In order to illustrate this in a
simple manner, just consider the particular case
given by the corollary below when G ¼ f0g. The
extension to K41 is straightforward and would just
complicate the presentation. To simplify the nota-
tion, denote Cðp;qÞx the cumulants of x and KðrÞ

n those
of sn, which are known to be the (weighted)
derivatives of the c.f. at the origin:

Cðp;qÞx ¼
def
ð�|Þpþq q

pþqCx

qu
p
1qu

q
2

ð0Þ; KðrÞ
n ¼

def
ð�|Þr

qrcn

qvr
ð0Þ

with | ¼
def ffiffiffiffiffiffiffi
�1
p

, and define the hypothesis:
H4c: the source second characteristic functions

admit finite derivatives up to order N þ 2 at the
origin; in other words, matrices WðNÞs , WðNþ1Þs , and
WðNþ2Þs exist and are finite.

When G ¼ f0g, then K ¼ 1 and matrices WðrÞs are
merely N � 1 vectors, of the form

WðrÞs ¼ ½K
ðrÞ
1 ; . . . ;K

ðrÞ
N �

T

Then we have the following result:

Corollary 5. Under assumptions H1, H2, H3, and

H4c, ALGECAF(3) solves for q the over-determined
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system in the LS sense; qTCx ¼ 0, where Cx is

formed of three Hankel blocks, each of them

containing cumulants of order N, N þ 1, and

N þ 2, respectively

Cx ¼
def

CðN;0Þx CðNþ1;0Þx CðN;1Þx CðNþ2;0Þx CðNþ1;1Þx CðN;2Þx

CðN�1;1Þx CðN;1Þx CðN�1;2Þx CðNþ1;1Þx CðN;2Þx CðN�1;3Þx

..

.

Cð0;NÞx Cð1;NÞx Cð0;Nþ1Þx Cð2;NÞx Cð1;Nþ1Þx Cð0;Nþ2Þx

2
666664

3
777775.

The solution q is unique if Cx is of rank N, and if

Np6. One can equivalently test the rank of the

product below

½A½N�;A½N þ 1; 1�;A½N þ 1; 2�;A½N þ 2; 1�,

A½N þ 2; 2�;A½N þ 2; 3��

�

WðNÞs 0 0

0 I2 �WðNþ1Þs 0

0 0 I3 �WðNþ2Þs

2
6664

3
7775

or the other form of this product, obtainable with the

help of Remark 4.

Example 6. To make it clear, in order to identify a
2� 3 mixture, one wishes to estimate a vector q of
dimension N þ 1 ¼ 4. To do this, one can either
build a linear system with third order derivatives
taken at (at least) three different points of O, or the
two types of fourth order derivatives taken at (at
least) two different points of O. But one can also
build a system combining both as in (8), including
then both third and fourth order derivatives,
possibly taken at a single point of O (the linear
system needs in fact at least N ¼ 3 rows in order to
have a null space of dimension at most 1). Adding
(9) taken at the origin yields three additional lines to
(8), which makes the null space much more stable.

Example 7. Let us take a more concrete example,
and suppose that all sources are BPSK, that is, they
take their values in the set f�1; 1g with equal
probabilities. Also suppose that we wish to use
only the origin as a grid point. Then 8n,
cnðvÞ ¼ log cos v, and the cumulants of order r

can be calculated as rth order derivatives of c at the
origin, weighted by |r. This yields zero odd order
cumulants, and Kð2Þ

¼ 1, Kð4Þ
¼ �2, Kð6Þ

¼ 16. In
that case, I2 �Wð4Þs and I4 �Wð6Þs are of rank 2 and
4, respectively, but odd order vectors Wð2qþ1Þ

s are
null.
4. Algorithm ALESCAF: an alternating least

squares solution

4.1. Description of the algorithm

As already pointed out, the ALGECAF algo-
rithm is very attractive for the BI of 2�N mixtures,
but more complicated to implement for P42 [8].
Therefore, there is a great interest in looking for
other ways of exploiting the c.f. From (2), one can
easily obtain that

q3CxðuÞ

quiqujqup

¼
XN

n¼1

AinAjnApn c
ð3Þ
n

X
q

Aqnuq

 !
. (12)

Again, take this equation on K points u½k� 2 G � O.
Then, storing the left-hand side of (12) in a family of

symmetric matrices Tij ½p; k�, and denoting Dkn ¼

cð3Þn ð
P

q

Aqnuq½k�Þ, (12) can be arranged in compact

form as

T½p; k� ¼ ADiagfAðp; :ÞgDiagfDðk; :ÞgAT, (13)

with 1pppP; 1pkpK , where Diagfvg denotes the
diagonal matrix whose entries are those of vector v,
and where Aðp; :Þ denotes the pth row of A.
Expression (13) is a four way PARAFAC model and
can be solved using an ALS algorithm described in
Appendix A.1. This procedure constitutes algorithm
ALESCAF (Alternating LEast Squares identifica-
tion based on the ChAracteristic Function) and is
able to compute A and D from symmetric matrices
T½p; k� (the implicit dependence of D on A is
ignored).

4.2. Identifiability

According to [20], essential uniqueness (i.e.
uniqueness up to scale and permutation among
columns) of A is achieved by using the Parafac
algorithm since Kruskal’s inequality is verified

3rkðAÞ þ rkðDÞX2 rankfTg þ 3, (14)

where rkðAÞ is the Kruskal rank [20] of A. This
result can be traced back to 1977, and is not
obvious. It indeed requires tedious calculations; we
refer to [20,23] for more details.

Results are expected to be better when increasing
the order of the statistics as we move away from the
PARAFAC limit, but this needs to be verified by
simulations.

More precisely, we have the theorem below.
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Maximum number of sources, N, as a function of the number of

sensors, P, when PARAFAC is used with third order c.f. derivatives,

P. Comon, M. Rajih / Signal Processing 86 (2006) 2271–2281 2277
Theorem 8. Model (1) is identifiable with the help of

algorithm ALESCAF if the following conditions are

all satisfied:

under the conditions of Theorem 8

P 2 3 4 5 6 7 8
C1
N 3 6 9 12 15 18 21
the unknown second characteristic functions of

the sources and their derivatives up to order 3
exist, are finite and do not vanish in a neighbor-

hood O of the origin;

C2
 the Kruskal rank [20] of the mixing matrix A

verifies rkðAÞ ¼ P;

C3
 rkðDÞ ¼ N;

C4
 for a given P the number of sources must verify:

Np3P� 3.
Proof.
	
 Condition C1 allows us to derive expression (12)
and build the four-way array T.

	
 If conditions C2, C3, and C4 are verified, then:

3rkðAÞ þ rkðDÞX2 rankfTg þ 3 (15)

which means that the uniqueness conditions of
the four-way PARAFAC model is achieved, leading
to the uniqueness of A. &

C3 is easy to achieve by taking a large number
of points on a grid G : KbN. But this increases
the complexity of the ALS algorithm used to fit
the PARAFAC model, as the fourth dimension of the
tensor T will increase, leading to large size of
the data. A good choice of the points of the grid can
lead to an optimal value of K, thus reducing the
complexity of computation.

Condition C2 can be relaxed to
C20
 A is full row rank and its columns are pairwise
linearly independent.
But this implies a limitation on the number of
sources and/or an increase of complexity with the
use of arrays of higher order. Let us take an
example.

Example 9. We consider the following mixing
matrix:

A ¼

1 0 2 0

0 1 1 0

0 0 0 1

0
B@

1
CA,

where A is full row rank (rank(A) ¼ 3) but is not full
Kruskal rank (rkðAÞ ¼ 2). Hence, relation (15),
which ensures uniqueness of A, is no longer verified.
To cope with this problem we build a tensor of
order five, T ð5Þ, by deriving one more time the core
equation (2). Then (15) becomes:

4rkðAÞ þ rkðDÞX2 rankfT ð5Þg þ 4

and uniqueness is achieved. At the same time the
complexity of the PARAFAC model increases, since
tensor T ð5Þ is of higher order (5 instead of 4) as well
as the derivatives (order 4 instead of 3).

In ALESCAF the number of sources N is limited
by condition C4. Table 1 gives the maximum value
of N as a function of P for 2pPp8. In theory N is
not limited when using ALGECAF, but as N

increases the complexity of the algorithm increases
since we need to derive the second joint character-
istic function N times.

5. Computer results

Estimates of matrices H ½�� are computed in the
following manner. First, all derivatives of CxðuÞ of
required order are formally expressed as a func-
tion of moments mðn; u½k�Þ ¼ |nEfxne|x

Tu½k�g; see
Appendix A.3. Then sample moments m̂ðn; u½k�Þ ¼
1

M

PM
m¼1 |

n fx½m�ne|x½m�
Tu½k�g are computed, yielding

eventually estimates of entries of H (here xn stands
for Ppx

np
p ). Other useful expressions are reported in

Appendix A.3. This formal approach to take the
derivatives of CxðuÞ is more accurate, but turns out
to be more sensitive to deviations of the sample
mean from zero. Another possible approach for
computing the derivatives of CxðuÞ is a numerical
one. It consists of estimating the characteristic
function CxðuÞ of the observation on a grid G
containing the origin. We merely utilized the sample
estimate:

ĈxðuÞ ¼ log
1

T

XT
t¼1

expf|RðxðtÞTuÞg

" #
, (16)
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Fig. 1. Gap between estimated and actual mixing matrix for

ðP;NÞ ¼ ð2; 3Þ and block lengths of 1000 samples; median values

over 31 independent trials of sources and noise are plotted.

-20 -10 0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

SNR in dB

A
ve

ra
ge

 g
ap

BPSK:Formal derivatives of order 6 only
BPSK:Formal derivatives of order 6 and 7

4PAM:Formal derivatives of order 6 only
4PAM:Formal derivatives of order 6 and 7

Fig. 2. Gap between estimated and actual mixing matrix for

ðP;NÞ ¼ ð2; 6Þ and block lengths of 10 000 samples; median

values over 21 independent trials of sources and noise are plotted.
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where vectors xðtÞ are realizations of the random
variable x. The successive derivatives can then be
obtained from the values of ĈxðuÞ over a grid
included in G by central finite differences.

The number of sensors is taken to be P ¼ 2, and
the number of sources ranges from N ¼ 3 to N ¼ 6.
Sources are either BPSK (that is, they take their
values in f�1; 1g with equal probabilities), or PAM4
(viz they take their values in f�3;�1; 1; 3g with
equal probabilities).

The 2� 3 mixing matrix is

A ¼
1 0 cosðp=6Þ

0 1 sinðp=6Þ

" #

and in the 2� 6 case, the ith column of A is defined
as ½cosðði � 1Þ 
 p=12Þ; sinðði � 1Þ 
 p=12Þ�T, 1pip6.

The performance criterion is that proposed in
[13], namely the minimum Frobenius distance
between the actual and estimated unit-column norm
mixing matrices over the set of N-dimensional
permutations.

Two types of results are reported for ALGECAF.
First, the influence of the noise alone is analyzed.
For this purpose, a block of BPSK data of length 2N

is generated with exactly all possible combinations
of f�1; 1g; in this manner, sources are always seen
as perfectly independent. Independent realizations
of a Gaussian noise are added, with various noise
level (SNR). Gaps averaged over 21 trials are
reported in Figs. 3 and 4 with the label ‘‘infinite
sample size’’. The same experiment is also run
for PAM4 sources, with blocks of data of length
exactly 4N .

Second, other experiments are reported where
source blocks are also randomly generated; there-
fore sources are seen as statistically independent
only for asymptotically large block lengths. As
reported in Figs. 1 and 2, one can observe a plateau
for high SNRs. This plateau has a strictly positive
level if derivatives of order N only are used in the
presence of N sources (except in Fig. 3 for infinite
data length and 3 sources). The joint use of
derivatives of order N þ 1 decreases significantly
the level of the plateau, as can be seen in Figs. 1, 2,
and 4.

In all these experiments, the grid utilized con-
tained K ¼ 3 points located close to the origin:
ð0:001; 0:01Þ, ð0:01; 0:001Þ, and ð0:01; 0:01Þ. This
particular choice has been guided by the identifia-
bility results proved in Section 4.2.
Now, the influence of noise on ALESCAF
algorithm applied on these ‘‘infinite’’ blocks of data
is also analyzed this way. We start with
SNR ¼ 60 dB, check for convergence, and use the
value of the corresponding loading matrices A and
D to initialize the next ALESCAF algorithm for
SNR ¼ 50 dB and so on. By doing so, one expects
to access ultimate performances (i.e. performances
should be poorer in actual situations). The results
are reported in Fig. 5; they are slightly worse than
for algorithm ALGECAF, which makes sense. But
the advantage of ALESCAF is that it is not limited
to the case of 2 sensors.
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trials of noise are plotted.
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ðP;NÞ ¼ ð2; 3Þ, with algorithm ALESCAF; median gap values

over 21 independent trials.
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6. Concluding remarks

Our contribution was three-fold:
(i) we have demonstrated that it was possible to

derive an algebraic solution to the 2�N BI
problem by simultaneously using derivatives of
different orders, and that it improves the stability
of the solution;

(ii) we have made the connection with cumulant-
based approaches, and proved that improvement (i)
also applies to the joint use of cumulants of different
orders, larger than or equal to N;

(iii) we showed that an ALS algorithm of
PARAFAC type could be utilized to identify a P�N
mixture, and that only third order derivatives of the
c.f. are necessary, although higher orders can also
be used.

Future works include: (a) improvement of the
convergence of ALS algorithms, slow for topologi-
cal reasons (likely because of a lack of closure [24]),
for instance along the lines of [25]; (b) in order to
account for a possibly different variance in esti-
mates of moments of different orders, a weighting
can be rather easily introduced, and may improve
on asymptotic performance; (c) one could try to
take into account part of the symmetry in the
PARAFAC algorithm, for instance as outlined in
Appendix A.2.
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Appendix A

A.1. The PARAFAC algorithm

Minimizing the gap between both sides of (13)
consists of minimizing [26,27]:

U ¼
X
p;k

kT½p; k� � ADiagfCðp; :ÞgDiagfDðk; :ÞgBTk2

(17)

with respect to matrices A; B; C and D, if the
symmetry constraint is relaxed. The set of matrices
T½p; k� defined in (13) can be stored in a tensor
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Tijpk. Then, this problem can be solved with the help
of the Harshman’s PARAFAC algorithm [20,28],
originally developed for third order tensors, im-
proved by Bro [29] and recently accelerated [25].
The computer experiments reported for ALESCAF
in this paper have been run with the Enhanced Line
Search (ELS) algorithm described in [25].

A.2. Towards a symmetric PARAFAC algorithm

Define the family of diagonal matrices
K½p; k� ¼ DiagfAðp; :ÞgDiagfDðk; :Þg. Ignoring the
dependence of K on A, one can try to impose the
symmetry A ¼ B in (17); but things are more
complicated because the optimization criterion
(17) is not quadratic anymore in the unknown
rectangular matrix B. Let k½k� ¼ diagK½k�. Two
writings are derived in order to obtain stationary
values with respect to the rectangular matrix and to
the diagonal one:

U ¼
X

k

kT½k� � BK½k�Byk2 (18)

and, with t½k� ¼ vecT½k� and an appropriate defini-
tion of B:

U ¼
X

k

kt½k� �Bk½k�k2. (19)

Some manipulations would show that the stationary
values k½k� are given by

k½k� ¼ fByBg�1Byt½k�. (20)

Last, the stationary value of each column b½‘� of
matrix B is the dominant eigenvector of the
Hermitian matrix

P½‘� ¼
1

2

X
k

l‘½k�f ~T½k; ‘�y þ ~T½k; ‘�g, (21)

where ~T½k; ‘� ¼
def

T½k� �
P

na‘ ln½k�b½n�b½n�
y. A LS

solution is computed when matrices involved are
singular. This algorithm turns out to have strong
similarities with a work of Yeredor [30], developed
for diagonalizing a set of square matrices by
an invertible transform, i.e. applicable when
rankfTgpP; however, this algorithm theoretically
also works for square tensors of rank larger than P.

A.3. Formal derivatives of the second characteristic

function

Although higher order derivatives have been
considered (and calculated with MAPLE up to
order 7), let us limit our illustration to the third
order derivatives of CxðuÞ, for the sake of simplicity.
Denote by E the first joint characteristic function of
x ¼

def
ðx1;x2Þ at u ¼

def
ðu; vÞ:

E ¼ Fðx1;x2Þðu; vÞ ¼ Efexpð |ux1 þ |vx2Þg,

where the dotless | stands for
ffiffiffiffiffiffiffi
�1
p

.
The successive derivatives of E with respect to u

and v are given by

E1 ¼
qFðx1;x2Þðu; vÞ

qu
¼ Ef |x1 expð |ux1 þ |vx2Þg,

E2 ¼
q2Fðx1;x2Þðu; vÞ

qu2
¼ Ef�x2

1 expð |ux1 þ |vx2Þg,

E3 ¼
q3Fðx1;x2Þðu; vÞ

qu3
¼ Ef�|x3

1 expð |ux1 þ |vx2Þg,

F1 ¼
qFðx1;x2Þðu; vÞ

qv
¼ Ef |x2 expð |ux1 þ |vx2Þg,

F2 ¼
q2Fðx1;x2Þðu; vÞ

qv2
¼ Ef�x2

2 expð |ux1 þ |vx2Þg,

F3 ¼
q3Fðx1;x2Þðu; vÞ

qv3
¼ Ef�|x3

2 expð |ux1 þ |vx2Þg,

D11 ¼
q2Fðx1;x2Þðu; vÞ

quqv
¼ Ef�x1x2 expð |ux1 þ |vx2Þg,

T21 ¼
q3Fðx1;x2Þðu; vÞ

qu2qv
¼ Ef�|x2

1x2 expð |ux1 þ |vx2Þg,

T12 ¼
q3Fðx1;x2Þðu; vÞ

quqv2
¼ Ef�|x1x

2
2 expð |ux1 þ |vx2Þg.

As Cxðu; vÞ ¼ logðFxðu; vÞÞ we have:

qCxðu; vÞ

qu
¼

q logðEÞ
qu

¼
E1

E
,

q2Cxðu; vÞ

qu2
¼

q
qu

E1

E

� �
¼

E2E � E2
1

E2
,

q3Cxðu; vÞ

qu3
¼

q
qu

E2E � E2
1

E2

� �

¼
E3E

2 � 3E2E1E þ 2E3
1

E3
,
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q3Cxðu; vÞ

qu2qv
¼

q
qv

E2E � E2
1

E2

� �

¼
T21E2 � E2F 1E � 2E1D1E þ 2E2

1F1

E3
.

Using the symmetry between the variables u and v
we obtain derivatives with respect to v:

qCxðu; vÞ

qv
¼

q logðEÞ
qv

¼
F 1

E
,

q2Cxðu; vÞ

qv2
¼

q
qv

F 1

E

� �
¼

F2E � F2
1

E2
,

q3Cxðu; vÞ

qv3
¼

q
qv

F 2E � F 2
1

E2

� �

¼
F3E

2 � 3F2F1E þ 2F3
1

E3
,

q3Cxðu; vÞ

quqv2
¼

q
qu

F 2E � F 2
1

E2

� �

¼
T12E2 � F2E1E � 2F 1D1E þ 2F2

1E1

E3
.
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