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Abstract. The algorithm proposed aims to identify moving average coefficient matrices of an MA process, not necessarily 
minimum-phase, driven by an unobserved non-gaussian input. It is assumed that the observation available is of limited 
duration, and coefficients are estimated from the set of  fourth order output cumulants. It is shown that much more equations 
than unknowns are available, and that robustness for short data records can be obtained by utilizing them all. 

Zusammenfassung. Der vorgeschlagene Algorithmus dient dazu, die Koeffizientenmatrizen eines mehrdimensionalen nicht 
notwendig minimalphasigen MA-Prozesses, der von einem unbeobachteten Nicht-GauBschen Eingangssignal gespeist wird, zu 
identifizieren. Es wird angenommen, dab die Beobachtung zeitbegrenzt ist und die Koeffizienten aus einem Satz yon Kumul- 
anten vierter Ordnung des Ausgangssignals geschfitzt werden. Es wird gezeigt, dab sich mehr Gleichungen als Unbekannte 
ergeben und dab das Verfahren bei einer geringen Eingangsdatenmenge robust wird, wenn man alle Gleichungen verwendet. 

R~sum~. L'algorithme propose a pour but d'identifier les matrices-coefficient d'un processus MA multivariable, pas n6cessaire- 
ment ~i minimum de phase, et pilot6 par une entr6e non gaussienne non observable. On suppose que l'observation est de dur6e 
limit+e, et que les coefficients sont estim6s fi partir d'un ensemble de cumulants d'ordre quatre des sorties. On montre alors 
qu'il existe plus d'6quations que d'inconnues, et que la robustesse de l'identification s'am61iore si on les utilise toutes. 
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I. Introduction 

Consider the p-channel MA model of known order q: 

q 
y ( t ) =  ~ Bkw(t-k)+v(t),  (1) 

k - 0  

where coefficients Bk are p ×p matrices, B0 is known and regular, Bq is non-zero, w(t) is a zero-mean 
stationary non-gaussian process white up to fourth order with unit covariance matrix, and v(t) is a zero- 
mean Gaussian noise independent of w(t), possibly colored. It is not assumed that this model is minimum 
phase. The case where B0 is unknown regular was first investigated in [3] for instance, and will not be 
addressed here. The way we are going to deal with MA models is inspired from the works of Giannakis 
and others in [4, 6], and some extensions and improvements are presented in this paper. For convenience, 
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we denote vectors with bold lowercases, scalars with plain lowercases, and matrices with plain uppercases. 
In the rest of the paper, it will be extensively resorted to cumulants and notations borrowed from Kronecker 
calculus. For this reason it is convenient to start with some definitions and properties. 

The Kronecker product of two matrices, A and B, of  dimensions p × q and r x s, respectively, is a pr x qs 

block-matrix denoted A ® B  and defined by the generic r × s block, AijB. See for instance [1, 5] for more 
details. Cumulants are known tools in statistics and are usually defined as the coefficients in expansion of 
the second characteristic function. From a practical point of view, they can be calculated from moments 
[2]. Let us insist on the fourth order cumulants of  random vectors, since this will be our main concern. If 
a, b, c and d are four zero-mean random vectors of respective dimension, a, fl, 7/and ~, then the fourth 

order cumulant is the afl~,8 × 1 vector defined as 

cure{a, b, c, d} = E { a ® b ® c ® d }  - E{a®b} ®E{c®d} - E { a ® E { b ® c }  ®d} 

- E { a e l p e c e l ~ }  • E{l~ebebed}, (2) 

where • denotes the termwise product (also sometimes called Hadamard product), and lp is the p-dimen- 
sional vector formed of ones. This expression can be rewritten in a more general (and more complicated) 
form allowing obvious extension to higher orders from the corresponding expressions in the scalar case: 

cum{a, b, c, d} = E { a ® b ® c ® d } - E { a ® b ® l r ® l a  } * E { l ~ ® l a ® c ® d  } 

- E { a ® l e ® l r ® d  } • E{l~ebecel~} 

- E { a ® l p ® c ® l ~ }  • E{l~®b®l~®d}. (3) 

Basic properties of  the Kronecker product and related operators are stated in [1, 5]. We shall recall below 
some of  them for the sake of  clarity. The operator vec is a linear operator mapping any matrix A of size 
p x q to a vector of  dimension pq by stacking its columns one after the other: 

vee(A)= A[2 . (4) 

q 

Note that on most computers matrices are actually stored in this format. This definition induces a 
bijection between the space o f p  × q matrices and the space of vectors of size pq. Consequently, it is possible 
to define the inverse operator as 

Unvecq(U) = U. (5) 

Since there may be several manners to rearrange a vector in a matrix, the index q indicates the number 
of columns desired in U, thus avoiding any ambiguity. Now let A, B, C and D be four matrices with 
compatible dimensions. Then one property of interest is 

( A B ) ®  (CD) = ( A Q C ) ( B Q D ) .  

By induction, this extends easily to 

@= (B,w,)= ,=, Bi wi . (6) 
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Next, if F, G and X are matrices of size p x q, r x s and s x p, respectively, the following property holds 
[1,4]: 

[FT®G] vec{X} = vec{GXF}. (7) 

As a particular case, we have the relation 

GX=C ¢~ [Ip®Glvec{X}=vec{C} (8) 

for F =  lp, the identity matrix of dimension p x p. If X is an unknown and if G and C are given, this last 
property allows to solve for it either as a matrix with the left equation or as a vector with the right one, 

depending on preferences. 

2. Identification of scalar MA models 

The scalar case is really particular insofar as the product is commutative. Moreover, the principles of 
the identification procedure we propose is much easier to understand in that case. As in [4, 6], the goal is 
to obviate the minimum phase condition. The observed process satisfies 

q 

y ( t ) =  ~ bkw(t-k)+v(t) ,  (9) 
k - 0  

where bo is a given non-zero scalar. Additionally, we assume that q denotes the order of  the model, i.e., 
that bq is non-zero. Denote Cy(i,j,q,O)=cum{y(t+i), y(t+j) ,  y(t+q), y(t)} and cw= 
cum{w(t), w(t), w(t), w(t)}. Since the process w(t) is white at the fourth order, we have the relation 

cv( i, j, q, O)=bibjbqbocw. (10) 

Refer to [2] for a proof, or to the next section where it is given under more general assumptions. From 
(10) we deduce the following relations by substitution of Cw [3]: 

bib/cy(k, l, q, O)=bkblcy(i,j, q, O) for any {i,j, k, l}. 

As particular cases, two families of equations follow: 

bicv(k,j,q,O)-bkcy(i,j,q,O)=O Vi, j ,k ,  O<i<k<q, O<j<q, (11) 

b~c,(k, k, q, O)-b~cy(i, i, q, 0 ) = 0  Vi, k, O<i<k<_q. (12) 

Equations (11) and (12) provide us with q(q+ 1)2/2 and q(q+ 1)/2 relations, respectively. Note that 
(12) can hardly be used because of  the sign indetermination. From (11) the vector of coefficients, b =  
[bq . . . . .  b2 ,  bl] T, may be obtained by solving in the least-squares sense an overdetermined linear system of 
the form 

Mb=d, (13) 

where vector d contains only known quantities. In [4, 6], only those q equations where i = j  = 0 were utilized. 
We find it very useful to utilize the complete set of equations (11) as show the subsequent simulations. 
More precisely, simulations suggest to utilize at least the q(q + 1) first rows of M (those equations of (1 l) 
for which i=  O) in order to obtain the best results as demonstrated in Section 4. 
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A s  an example, the system (13) obtained for q = 2  would be of the form 

0 0 0 C(0,0) C(0, 1) C(0,2) C(1,0) 

C(0,0) C(0, 1) C(0,2) 0 0 0 - C ( 2 , 0 )  

=b0[C(1,0) C(I ,1)  C(1,2) C(2,0) C(2,1) C(2,2) 0 

where for simplicity C(i, j )  stands for Cy(i,j, q, 0). 

-C(2, 1) -C(2, 2)J LblJ 

0 0] T, (14) 

3. Identi f icat ion o f  mul t ichannel  M A  m o d e l s  

Now we assume that the reader has become familiar with the problem and we shall address a more 
general case. In this section, we assume that the observed process, y(t),  satisfies the model (1) where w(t) 
and y(t)  are unobservable processes satisfying the assumptions below, for some given integer r >  2: 

w(t) and v(t) are white independent processes at order r, (15) 

w(t) has a finite non-zero cumulant sequence of  order r, (16) 

v(t) has a zero cumulant sequence of order r, (17) 

- matrix B0 is known and regular. (18) 

In other words, strong whiteness and independence are not required. Denote the cumulant 

cy( il , i2 . . . . .  ir) = cum {y(t + il ), y( t + i2) . . . . .  y(  t + it)}. (19) 

Then, from definition (2), property (6), and assumptions (15) and (17): 

Cy(i,,i2 . . . . .  i r ) = ~ "  " " ~ [  + B k , ] c , ( i l - k l , i 2 - k 2  . . . . .  ir-kr) ,  (20) 
kl k2 kr n = 1 

where the left-hand side is a vector of dimension pr for every value of the indices. We assume for simplicity 
that the matrices Bk exist for all k and are null if k < 0 or if k > q. The sums can then be taken over the 
whole set of  integers. Now from assumption (16), the cumulant on the right-hand side is null for all values 
of  the indices that do not satisfy 

i l - k l  = i 2 - k 2  . . . . .  i r -kr .  (21) 

Consider the particular slice {it_ i = q, ir = 0}. The result above yields then that kr = k~_ l - q .  But the only 
possible values of  k~ for which Bkr and Bkr+q may be simultaneously non-zero is kr = 0. Therefore (21) fixes 
all the indices: 

kl - il --k2- i2 . . . . .  k~-2-  i~-2 =k~-I - q =k ,  = 0. (22) 

We obtain by rewriting (20): 

cy(il, i2 . . . . .  i~-2, q, 0) = I rQ 2 Bi,®Bq®Bolcw(O,O . . . . .  0). (23) 
kn= I 3 
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This is the generalization of (10) to the multichannel and order r case. Now, we use property (7) with 

= vee{X}, F=B~,  and - 

which brings 

c,.(/, ,  i2 . . . . .  ir 2, q, 0 ) = v e e { a  Unvecp{cw(0 . . . . .  0)}B~}. (24) 

For the sake of clarity, let us additionally denote 

C.. = Unvecp{ c.,(0 . . . . .  0)}, (25) 

C,(i ,  , i2 . . . . .  ir- 2, q, 0)=  Unvecp{c,(il, i2 . . . . .  ir- 2, q, 0)}. (26) 

So both sides of (26) are p ' -  ~ x p matrices. Then (24) simplifies by applying the Unvec operator on both 

sides 

C~.(i,, i~ . . . . .  i, 2, q, O)=GC~,B~.  (27) 

In order to make it possible to exploit this result, we consider the particular slice il = 0, use assumption 

(18) and get 

C~(0, i2 . . . . .  i, 2, q, 0)Bo T = GCw, 

which yields finally by substituting GCw back in (27): 

C~.(i~ , i2 . . . . .  i~- 2, q, O)= C~.(O, i 2 , . . . ,  i , -2 ,  q, 0)BoTB T • (28) 

This relation holds for any indices satisfying 

l<~il<~q and O<~i~<<,q, with l < s < r - 1 .  

For  a fixed value i of i~, (28) may be seen as a set of (q + 1)r- 3 linear systems, each of size pr-  ~ × P. 
Therefore, matrices B~ can be obtained by solving in the least-squares (LS) sense the following overdeterm- 
ined system : 

M B X i = D i ,  l<~i<~q, 

where M is a (q+ 1 ) ' - ~  r ~ xp  matrix. Since the same matrix M is involved for each B~, it may be cheaper 

regarding computational complexity to compute the pseudo-inverse of M once for all, M - ,  and to compute 
the products M-D~ afterwards. 

Now, possible improvements can be obtained by using total least-squares (TLS) techniques instead of 
LS. With this goal a last operation is necessary, namely to arrange this set of (q + 1)~-3 linear systems in 
a single large linear system that will be soluble by standard computer algorithms. For this purpose, we 
resort to property (8) and get the linear system 

[Ip(~ ( ~ . ( O , j ,  . . . . .  j , -3 ,  q, 0)BoT)] vec{B T} = ey(i, jl . . . . .  J)-3, q, 0). (29) 

Each unknown, bi = vec{B~}, is a vector of dimension p2, and the left-hand side matrix is of size p ' x  p2. 
In other words, each unknown b~ satisfies an overdetermined linear system of equations of the form 

N b i =  di, 1 <~ i <~ q, 

where N is of dimension (q + 1 y-3pr x p2. The TLS solution will minimize IlNb~-d~ll subject to a constraint 
like Hbill2+ [IdiH 2= 1 in the L2-norm. 
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In general there is no advantage to go to large orders, except when assumptions (15) to (18) are not 
satisfied for lower orders. Taking r = 3 may produce an ill-conditioned system if w(t) is almost symmetrically 
distributed. The next value is r = 4 and is very satisfactory in most situations. In that case (28) becomes 

Cy(O,j,q,O)BoTB~=Cy(i,j,q,O), l ~ i~q ,  O<~j<.q. (30) 

Thus relation (28), which is eventually the key relation of the paper, provides when r = 4 q + 1 overdeterm- 
ined matrix-equations for each Bi. They can be noticed to be much fewer than the q(q + 1)2/2 equations 
available in the scalar case. In fact, even if (23) is the multichannel analog of  (10), it is not possible to 
build a multichannel analog of  (11), due to non-commutativity of  the Kronecker and matrix products. 

4. Simulation results 

In this section, we compare three different methods obtained by solving linear systems of equations more 
and more overdetermined' 

Scalar MA models 
Method 1. Use of the equations in (11) for which i = j =  0 and 1 ~ k  ~<q. This is the system of Giannakis 
et al. [4], using q equations (square system of  linear equations). 
Method 2. Use of  the equations in (11) for which i = 0. This system is formed of  the q(q + 1) first equations 
in (11). 
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Fig. 1. Identification of a scalar MA model of  order 2: statisics of  the error [Ib-BII are plotted as functions of the data length, T, 
The three curves correspond to the use of 3, 6 and 9 equations, respectively. (a) Median of the error without gaussian noise and (b) 
in presence of gaussian noise, (c) standard deviation of the error without gaussian noise and (d) in presence of gaussian noise. It is 
clear that the more equations we use, the better results, especially for short data lengths. Performances are however about the same 

for 6 and 9 equations. 
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Method 3. Use of all the q(q+ 1)2/2 equations defined by (11). 

387 

In these simulations, we generate a scalar MA process of order q = 2 with coefficients b = [b2, bl, bo] = 
[0.74, -0.86,1.0]; the driving process w(t) was a zero-mean uniform white noise of unit variance. Denote 

the estimated (q + 1)-vector of coefficients. The performance is measured with the help of the error e = 
Ilb-btl, which was computed for various data lengths, T, and various independent realizations 
{w["](t) I 1 ~< t~< T}, 1 ~<n~< 100. The median,/ t(e) ,  and the standard deviation 

=(1 ,oo (e)]2}) 'j2 
\100,2 (31) 

of the error e were computed over the 100 independent realizations e [n~. Figure 1 shows the results obtained 
in absence of gaussian noise (Figs. l(a) and l(c)), and in the presence of a gaussian noise v(t) of variance 
1/100 (Figs. l(b) and l(d)). Values have been computed for data lengths 150, 250, 500 and 1000. 

For short data lengths, Estimators 2 and 3 perform really better than Estimator 1, whereas for longer 
data records, all methods tend to be equivalent. 

The use of median instead of arithmetic mean has shown to be necessary, especially for short data 
lengths, because of the large variability of the results obtained. When gaussian noise was present however, 
arithmetic mean and median give roughly the same result; in other words, the gaussian noise has a 
'stabilizing' effect. 
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Fig. 2. Identification of an MA model of order 2 and dimension 2: statistics of the error (32) are plotted as functions of the data 

length. The two curves correspond to the use of 8 and 24 equations, respectively. (a) Median of the error without gaussian noise and 
(b) in presence of gaussian noise, (c) standard deviation of the error without gaussian noise and (d) in presence of gaussian noise. 
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Multichannel MA models 
Method 1. Use of the equations in (30) for which j = 0 .  This system has pZq equations, and as many 
unknowns. 
Method 2. Use of all equations in (30). This system is formed ofp2q(q+ 1) equations, and contains pZq 
unknowns. 

In these simulations, we generate a scalar MA process of order q=2  and of dimension p=2.  The 
coefficients were B0 = L B~ = -Diag[0.86, 0.77], B2 = Diag[0.74, 0.59]. The driving input w(t) was composed 
of two independent components, each zero-mean, unit-variance, and uniformly distributed. For each realiza- 
tion and each data length the error was defined as 

q ^ I / 2 

- /  IY~I IIBkll2 / ' (32) 

The interest in normalizing the error is to make it less sensitive to the dimension p (comparisons will be 
possible for different values of p). The results presented in Fig. 2 consist of the median and the standard 
deviation of e, estimated over 100 independent trials as in the scalar case. Here e was computed for data 
length Ts{150, 250, 400, 550, 800, 1000}. 

As in the scalar case, Figs. 2(a) and 2(b) are plots of the median with and without gaussian noise, and 
Figs. 2(c) and 2(d) are plots of the corresponding standard deviations. The gaussian noise v(t) had a 
covariance 1/100 I. 
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