
Tracking a Few Extreme Singular Values and 
Vectors in Signal Processing 

In various applications, it is necessary to keep track of a low-rank 
approximation of a covariance matrix, R(t), slowly varying with time. 
It is convenient to track the left singular vectors associated with 
the largest singular values of the triangular factor, L(t), of its Cho- 
lesky factorization. These algorithms are referred to as “square- 
root.” The drawback of the Eigenvalue Decomposition (€VD) or 
the Singular Value Decomposition (SVD) is usually the volume of 
the computations. Various numerical methods carrying out this task 
are surveyed in this paper, and we show why this admittedly heavy 
computational burden is questionable in numerous situations and 
should be revised. Indeed, the complexity per eigenpair is gener- 
ally a quadratic function of the problem size, but there exist faster 
algorithms whose complexity is linear. Finally, in order to make a 
choice among the large and fuzzy set of available techniques, 
comparisons are made based on computer simulations in a rele- 
vant signal processing context. 

I. INTRODUCTION 

Computing a few of the largest eigenvalues and asso- 
ciated eigenvectors is necessary to approximate a linear 
hermitian operator by another of lower rank. This occurs 
in the computation of principal components in data anal- 
ysis [I], the approximate solution of huge systems in seis- 
mics, image processing and coding [2], or model reduction 
[3], Karhunen-Loeve truncated expansions in estimation 
and detection theory [4] and in pattern recognition [5], min- 
imal realizations in system theory [6], [7], dominant eigen- 
modes enhancement in mechanics, resolution of shift-in- 
variant differential equations [8 ] ,  geophysics [9], [IO], spec- 
tral analysis [Ill-[13], or antenna array processing [14], [15]. 
In other applications the Generalized Eigenvalue Problem 
(GEP) i s  frequently solved; the most well known case occurs 
in mechanics [16]. But it also arises in signal subspace meth- 
ods when the background noise i s  not homogeneous and 
isotropic [14], [17], [18]. A recent formulation of this probem 
using a Total Least Squares (TLS) approach (see [25] for def- 
inition) requires thesolution of a largegeneralized Singular 
Value Decomposition (SVD) problem [19], [20]. For the sake 
of convenience, the generalized problems will not be dis- 
cussed in this paper. 
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The matrices involved in these problems are hermitian 
(or real symmetric) positive definite, and frequently struc- 
tured. For instance they can be sparse, banded [21], [22], 
Toeplitz or Hankel [23], [24], possibly by blocks. It i s  desir- 
able to take advantage of the existing structure of the matri- 
ces when computing the eigenpairs. With this purpose, it 
will be shown subsequentlywhythe so-called Lanczosalgo- 
rithms [22], [25] are useful, and may be considered as ref- 
erence methods for adaptive computation. Application to 
the so-called signal subspace methods, and particularly to 
MUSIC [14], [I51 and ESPRIT [19], [20] methods, will be 
focused in this paper. As mentioned above, the smallest 
eigenvalue may be also of interest, or equivalently the 
smallest singular value when operating on the data matrix 
directly, and this computation may be handled as well. 

Moreover, the problem of tracking these eigenpairs, 
when the matrix i s  slowly varying in time, turns out to be 
central to these types of adaptive antenna array processing 
techniques, and some numerical methods have already 
been proposed [26]-[29]. Some of these methods take into 
account the fact that the hermitian matrix varies by a rank 
one modification, from one time step to the next, in order 
to speed up the computational time. Therefore, other well- 
known numerical methods could be used for this purpose 
[25], [30], [31], but they turn out to be less attractive under 
their original form since they require computing al l  the 
eigenpairs, and thus increase the computational complex- 
ity. The adaptive methods described in this paper are 
grouped into two families, according to their complexity. 
In the first one, the algorithms require O(dn2) operations 
to compute the d extreme eigenpairs of a full matrix and 
O(dn log n)  for Toeplitz or Hankel matrices, whereas they 
require O(nd2) flops in the second. Algorithms of the sec- 
ond family converge much more slowly, but it turns out to 
be sufficientwhen theeigenpairsof interest varyslowlywith 
time (e.g., see algorithms F2 and G).  In the first family, the 
method giving the best accuracyicomplexity ratio seems to 
be the Lanczos-based approach. 

A table of contents i s  included below to enable the reader 
to quickly locate various techniques: 

A. Observation Model 
B. Covariance Matrix Updates 
C. Use of the Data Matrix 
D. Operation Counts 

II. The observation model 
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111. Basic algorithms 
A. Standard Iterative Algorithms 
B. Appending a Column to a Matrix (Bunch eta/.) 
C. Lanczos-type Bidiagonalization Algorithms (block- 

Lanczos, BSR). 
D. Ritz Triplets and Accuracy in Exact Arithmetic 
E. Block-Bidiagonalization 
F. Reorthogonalization Versus Size Reduction 

A. Lanczos-based Recursions (algorithm A) 
B. Subspace Iteration with Ritz Acceleration (algorithm 

SIR) 
C. Gradient-based Algorithms (algorithm C) 
D. A Hybrid Method (algorithms D1 and D2) 

E. Approximate Subspace Iteration (algorithm E) 
F. Modeling of Class F (algorithms F1 and F2) 
G. Modeling of Class G (algorithm G, Karasalo, Schrei- 

ber) 
H. Instantaneous Stochastic Gradient Methods (algo- 

rithms HI and H2) 

IV. Adaptive algorithms with O(m*d) complexity 

V. Adaptive algorithms with O(mda) complexities 

VI. Computer simulations 
Appendix: Complexities of QR and SVD Factorizations 

In this paper, we frequently refer to matrix decompositions, 
which are described in [25]. The programs for performing 
them are available in Linpack and Eispack [32], [33]. We have 
found it useful and concise to express our algorithms in a 
Matlab-like language. See [34] for further details on this 
helpful package. 

II. THE OBSERVATION MODEL IN ANTENNA ARRAY 
PROCESSING 

A. Observation Model 

The observation model generally assumed in antenna 

(1 ) 

In this linear statistical model, then x 1 vector r ( k )  denotes 
the observation, A(k) i s  a deterministic n x d matrix, s ( k )  
i s  a random d x 1 vector (the "source" vector) and n(k) 
stands for a noise disturbance; k denotes a discrete fre- 
quency variable [15], [14]. In these problems, the relevant 
unknowns to compute are as follows: (1) the matrices A(k) 
under the constraint that they belong to a given parame- 
trized manifold; (2) the covariance matrix of the signal com- 
ponent (the entries in s (k) ) ,  sometimes assumed to be diag- 
onal; (3) the covariance matrix of the noise n(k) (4) possibly 
an estimateof thesignal vectors(k)called the"signa1 copy" 
is also of interest; (5) sometimes, the size d of the vector s (k)  
may be unknown, and even varying with time. 

In order to solve this estimation problem, an additional 
knowledge of the noise covariance matrix N(k) = E{n(k)  
n (k IH}  is required ((H) denoting hermitian transposition). 
Generally, N(t) is assumed to be of the form: 

array processing has the following form: 

r (k )  = A(k) s ( k )  + n(k). 

N(k) = p2(k) G ( k )  (2) 

wherep2(k) is the noise level (a scalar unknown parameter), 
and G ( k )  i s  a known fixed positive definite matrixwhich has 
been estimated beforehand with the help of a parametric 
model [35]. Since signals and noise are uncorrelated, the 
following relation between covariance matrices may be 
deduced: 
- 
R(k) = E { r ( k )  r(k)H} = A(k)  S(k)  AH(k) + p2(k) G ( k ) .  (3) 

A spatial prewhitening of the data allows us to deal only 
with the case C(k)  = I, the identity matrix [14], [15]. 

We see that estimating the covariance m_atrix of the sig- 
nals consists of approximating the matrix R(k) by another 
of lower rank, namely A(k) S(k)AH(k) ,  provided we eliminate 
the constraints upon the matricesA(k). In the so-called sub- 
space methods (esp. MUSIC), the determination of the 
Directions Of Arrival (DOA) proceeds in two steps [14], [15]. 
In order to remove the noise effect and estimate the signal 
subspace spanned by the columFs of A, a low rank approx- 
imate to R(k) i s  found, denoted R'(k). Second, the param- 
etrized antenna manifold, A, is searched in order to pick 
up the fewadmissiblevaluesforthedirections in the signal 
subspace (linear space spanned by the columns of A), and 
then deduce the parameters of interest (including the 
DOAs). We do not go further into these details since it i s  
out of the scope of the paper, and restrict ourselves to the 
computiltion of RS(k) .  The point to consider now is  the way 
the matrix varies. 

B. Covariance Matrix Updates 

For notational convenience, we drop the variable k, it 
being understood that every variable depends on the fre- 
quency,orequivalently, that the processingactson narrow- 
band objects. Special techniques matched to wide-band 
DOA estimation [36] will not be considered in this paper, 
although they have many similarities. Now, in practice the 
matrix R i s  itself unknown so that an estimate of it must be 
used. Commonly, estimates of the covariance matrix are 
made as an average of outer products of observations such: 

M 

R = CM pF, r&r;, cM = a given scalar, 

where the rp are different snapshots of observations sat- 
isfying the model (1). Now, thegoal i s  to trackatime-varying 
system, so that the covariance function also depends on a 
time matrix. However, we shall still use the "covariance 
matrix" E, noting that it approximates the second order 
moment of theobserved processon a restricted time range. 
Additionally, we have not at our disposal several snapshots 
of the same phenomenon, but a single realization of the 
random vectors, r(t), having statistics close to each other. 
For instance, among the possible estimates of the matrix R, 
that - appears convenient to write a time-dependent form 
R(t). One is widely used and has the form: 

(4) 

In otherwords,ateach timestep t, the matrixR(t) i s  updated 
via an additive rank-one modification. This averaging is 
referred to as exponential (since it indeed i s  when a(t) i s  
constant); R(t )  contains an infinite memory of the past of the 
system, which i s  weighted by the coefficients a(t) and P(t 
- p), p E N. The better these coefficients are chosen, the 
closer the covariance R(t) to the local "true" covarianceR(t). 
Our purpose is  not to propose better estimates (and there 
are indeed other ways of defining the matrix R), but describe 
how to track extreme eigenpairs of a matrix R(t)  which i s  
subject to small variations with time. 

R(t) = p(t) R(t - 1) + a(t) r(t) doH. 

C. Use of the Data Matrix 

where L(t) i s  lower triangular; then, the eigenpairs of the 
hermitian matrix R(t)  correspond to the left singular pairs 
ofthetriangular matrixL(t). It isconvenienttogivean updat- 

Consider the Cholesky decomposition R(r) = Ut) 
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ing formula for matrix L(t), that i s  equivalent to (4). Let H be 
the upper (n + 1) x n Hessenberg matrix defined by: 

HWH = [J;;(t) r(t), 4Ct) L(t - I)]. (5) 

It i s  easily seen that R(t)  = H(t)” H(t). We desire L( t )  to be 
lower triangular and to have the same dimension as R(t). We 
generate L(t) such that H(t)H Q(t) = [L( t ) ,  01, where Q(t) i s  a 
unitarytransformation which eliminates the superdiagonal 
of H(QH. A Q R  factorization of the Hessenberg matrix H(t) 
i s  calculated, and this takes order of 2n2 multiplications and 
n2 additions using Jacobi rotations since the matrix Q(t) i s  
not required [25; p. 2201. 

It is in fact more numerically stable to update L(t) rather 
than R(t)  [37. The idea of using a square root of the matrix 
R(t) is  not new to the signal processing audience. In fact, 
this is used in state-space algorithms [38]-[40] to preserve 
the positivityofthe innovation matrix, and improvethecon- 
ditioning and rounding errors. In addition, it has been 
recently used in fast transversal filters [41], [42] to reduce 
the complexity. 

D. Operation Counts 

The number of floating pointoperations(f1ops) isdefined 
as the number of multiplications, and for the sake of sim- 
plicity, we will make no distinctions between real and com- 
plex numbers. For instance, the product between a com- 
plex n x 1 vector and a scalar (either real or complex) will 
be said to require n (complex) flops. In other words, the 
operation count is carried out as if all the numbers involved 
were real. In order to have an idea of the volume of com- 
putation in the algorithms presented in terms of real flops, 
one may consider that one complex flop is  worth three or 
four real flops. The result will be slightly pessimistic. 

Ill. BASIC ALGORITHMS 

In this section, we shall focus on the computation of sin- 
gular triplets of a fixed matrix (viz, singular values and asso- 
ciated left and right singular vectors). The basic algorithms 
are briefly reviewed, and the problems in using them for 
computing a few extreme triplets are emphasized. 

A. Standard Iterative Algorithms 

The Golub-Kahan-Reinsch algorithm has become a stan- 
dard method for computing the SVD of a matrix on a serial 
computer [43].The Kogbetliantz and Jacobi algorithms used 
earlier are also of great interest again after a long period 
because they can be often parallelized. Nevertheless, these 
three iterative algorithms are not well suited for the com- 
putation of a restricted subset of singular values. Thus, other 
procedures must be sought. Since H(t) has been perturbed 
as indicated by (5), and in particular if a(t) i s  close to zero, 
one can attempt to compute the new set of singular triplets 
by noting that they have been only slightly perturbed. But 
this i s  not necessarily satisfied in practice, especially if non- 
stationary phenomena are tracked (one could have a(t) = 
0.2). Moreover, in order to compute the new singular trip- 
lets of the perturbed matrix, the knowledge of all the sin- 
gular triplets of the original matrix is  required [44; chap. 21, 
[45]. If we have the goal of tracking, the complete eigen- 
structure must be computed at each time step. These two 
remarksdoadisservicetothisapproach.Asecond approach 

to speed up the determination of some extreme singular 
values is to take into account the rank-one modification, 
and this is developed in the next subsection. 

B. Appending a Column to a Matrix 

The rank-one updating of the eigenproblem and related 
special algorithms have been proposed and studied in the 
symmetric case [30], [31]. The principle i s  summarized as 
follows. Let: 

M = BABH, and R = M + p2uuH, 

where U i s  of unit norm and 6 is  unitary. 

We seek the eigenvectors x and eigenvalues p such that: 

( B A B ~  + p 2 ~ ~ H ) ~  = p ~ .  

Equivalently, denoting y = B H x  and z = BHu, we wish to 
compute the pairs { y, p }  such that: 

(A + p2zzH)y = py, 

This leads to the system: 

(A - p l  + p2zzH)y = 0. (6) 

The eigenvalues pi may be obtained from the secular equa- 
tion by finding the roots of the function [30]: 

where the z/’s denote the entries of z. The computation of 
one eigenvalue takes roughly O(n) multiplications, and var- 
ious algorithms have been proposed [30], [31]. Once the 
eigenvalues are known, the eigenvectors can be computed 
via inverse iteration [45b]. This awkward procedure would 
take O(n3) multiplications which is too much. But there i s  
a better way to do this computation. The relation (6) may 
be rewritten as: 

(A - p,l)y, = y,z; where y, = -p2zHyl, 1 5 i 5 d. 

This yields immediately: 

y, = y,(A - p,l)- ’z. (8a) 

Ignoring the scalar, y I ,  the eigenvector i s  normalized with 

IIy,I12 = zH(A - p,l)-*z = f ’ (p,) /p2, (8b) 

which (except for the square root) i s  previously computed 
in the root finder part of the abovementioned method. The 
complexity of the computation of d eigenvectors, y,, from 
zand pl  takes about 2dn multiplications. The determination 
of the eigenvectors x ,  of the original matrix requires one 
additional matrix-vector product. Therefore, computing d 
eigenpairsof a matrix perturbed bya rank-one modification 
requires O(dn2) multiplications. Note that if the smallest 
eigenvalue were repeated (n - d )  times, deflation would 
be possible and would decrease the complexity to O(d2n). 
This can be exploited in adaptive algorithms of class G [46]. 

As explained in the previous section, adding a rank-one 
modification to an hermitian matrix has the same effect as 
appending acolumn to the triangular matrix of its Cholesky 
factorization. Thus, a similar algorithm can be derived for 
the update of the left singular pairs, the determination of 
the right singular vector being more complicated. Let N be 

II YIII, 
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a general square matrix, and consider the SVD of N: 

N = BACH, with A = diag {&, - 
HH = [pu, NI, and [L, 01 = HHQ, 

, E&}, B, C unitary, 

where Q denotes a unitary matrix. 

According to results in Section II, L is thus the updated 
squarematrix.Thesingularvaluesof L, ui, areagain the solu- 
tions of the secular equation 

n - 2  

and the left singular vectors of L may be obtained by solving 
the diagonal system 

(9) 

and then computing x = By/\ly\l. The first step has O(n) 
complexity and the second O(n2). 

The complexity of the algorithms proposed above is  
attractive, but misleading. In fact, computing d left singular 
pairs takes O(dn2) operations, but requires the knowledge 
of all the left singular pairs before perturbation (because 
of the use of B) [31], [47. In other words, these procedures 
cannot apply to successive rank-one modifications without 
saving all the previous updates. The same remark holds for 
updates of different nature [48], [49]. So, let us turn to other 
methods. Another efficient way to compute some singular 
triplets of a matrix, given ad hoc initial guesses, i s  to min- 
imize I1LLHx - ~ ~ 1 1 ~  by using an iterative method. A good 
way to do this is to use the conjugate gradient algorithm, 
which leads to the Lanczos procedures. 

C. The Lanczos- Type Bidiagonaliza tion Algorithm 

The Lanczos algorithms for symmetric matrices were 
introduced in the 1950s and are described, for instance, in 
[22], [25], [50]. The algorithms have received more attention 
following Paige's results [51], and have been studied in 
details during the last decade [52]. Thus there i s  no need 
to introduce the methods in detail here. The main advan- 
tages of the Lanczos methods come from the following: (1) 
the original matrix i s  not overwritten and (2) little storage 
i s  required since only matrix-vector products are com- 
puted. This makes the Lanczos procedures interesting for 
large matrices, especially if they are sparse or i f  there exist 
fast routines for computing matrix-vector products, such 
as for Toeplitz or Hankel matrices. The running of a Lanczos 
procedure applied to a symmetric matrix, R, yields a tri- 
diagonal matrix, T; extreme eigenvalues close to those of 
the original matrix can be calculated from a submatrix of 
T, T o .  Approximations to the eigevectors of R require the 
storage of the Lanczos vectors generated, and the com- 
putation of the eigenvectors of the matrix T o  (which can be 
obtained cheaply by inverse iteration). These approximants 
are called Ritz vectors. The other advantage is  that in exact 
arithmetic, the eigenpairs of T coincide with those of M if 
at most n iterations are performed. In otherwords, thealgo- 
rithm terminates as soon as n (or fewer) orthogonal Lanczos 
vectors have been generated. In each step, the complexity 
i s  dominated by one matrix-vector product. If K steps are 
run, this yields a global complexity of O(Kn log n) for Toe- 
plitz or Hankel matrices. Actually, because of roundoff 
errors, a loss  of orthogonality among the computed Lan- 

( A A ~  - a;i)y, = z 

czos vectors occurs when some eigenpairs have already 
converged, and several undesirable phenomena may be 
observed [22], [25], [52]. This i s  usually coped with by intro- 
ducing a reorthogonalization procedure which, of course, 
increases the complexity. If this is not done, then spurious 
eigenvalues may appear, and it is necessary to detect them. 
We will discuss this issue later. 

In the applications to signal subspace methods, we seek 
the largest eigenvalues, and they are often well separated 
from the others. In this case, they will emerge before n iter- 
ations are performed, and typically after O(1) iterations [53], 
[54]. We wish to make use of this in the design of our pro- 
cedure. As pointed out earlier, we prefer to work on the 
data matrix directly and compute i ts  singular triplets rather 
than the eigenpairs of the covariance matrix. In this case, 
a bidiagonalization may be carried out instead of a tridi- 
agonalization. The algorithm, referred to as the Golub- 
Kahan algorithm is  summarized in the following steps [55]: 

(1 0) 
Start with a given vector of size m, u(1) 
% initialization 
Normalize ~(1);  
tr = L"*u(I); a(l) = norm(tr); 
v(1) = tr/a(l); 
% next steps Complexity 
fo rk  = 1: K - 1 

mn + 2m 
m 

mn + 2n 
n 

Bidiagonalization of a m x n matrix L: 

t/ = L*v(k) - a(k)* u(k); b(k) = norm(tl1; 
u(k + 1) = t//b(k); 
tr = LH*u(k + 1) - b(k)* v(k); a(k + 1) = norm(&); 

v(k + 1) = tr/a(k + 1); 
end 

In the above algorithm, notations trand t l  stand for tem- 
porary right and temporary left vectors. The k x k bidi- 
agonal matrix generated i s  then defined by: 

The algorithm above is more convenient if m I n. But, 
if m 2 n, a similar algorithm may be used, starting with an 
initial right vector v(l), and yielding an upper bidiagonal 
matrix. One can deal with L or L"; in our case, either one 
or the other starting vector i s  acceptable since we deal with 
a square matrix. The Lanczos bidiagonalization was first 
introduced by Golub and Kahan [55]; some useful prop- 
erties were later pointed out by Paige [56]. 

D. Ritz Triplets and Accuracy in Exact Arithmetic 

For the sake of convenience, define the matrix 

&k) = ( B(k) ); note that B(k) = 
0 : b(k) 

In the recursion, a(k )  and b(k) are in turn computed so that 
B(k) and b(k)  are consequently determined. Let n ( k )  e ( k )  
,k(k)H and I I ( k )  8 ( k )  q(k)H be the SVD of &k) and B(k), 
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respectively; G(k)  being a k x (k  - 1) matrix with one row 
of zeros. At any step k,  the following relations are always 
satisfied, and characterize the recursion of the Lanczos 
bidiagonalization algorithm: 

LHU(k) = V(k)  B(k)H and LV(k) = U(k + 1) B(k)  (11) 

where U(k) and V(k) represent the matrices of stacked left 
and right Lanczos vectors, u(k) and v(k). Substituting the 
SVD of B(k)  in (11) gives: 

n (klH u(kP L v(k)  \~r ( k )  = w k ) ,  

which shows that the k vectors contained in the matrices 

W(k) = U(k) I I ( k )  and X(k)  = V(k)  ? ( k )  (12) 

are approximations to left and right singular vectors of L. 
The k columns in W(k) and X(k)  are called left and right Ritz 
vectors, respectively, whereas the diagonal entries in 8 ( k )  
are the Ritz values. Let e,, w, and x, denote the ith Ritz value, 
left and right Ritz vectors respectively computed at step 
k - 1. Then the left and right Ritz pairs obtained at step 
k - 1 in thealgorithmgiven by(10)satisfyinexactarithmetic 
the accuracy equation [18]: 

V i ~ k - 1  

I IL~Lx,  - e h l l  = J a W  + b ~ ~ l b ( k ) l  I \ I ~ ( ~ ) ~ , I  

vi 5 k (1 3) 

This extends the well known result of the symmetric case 
[25; p. 327. Equations (13) show that if a(k )  or b(k)  are neg- 
ligiblysmall, then thecorresponding Ritz singular pairs have 
converged. Note that a convergence may also occur if some 
entry in the kth row of n ( k  - 1) or \ k (k )  is small. 

In the Lanczos algorithms, extreme eigenpairs of LLH will 
emerge first if they are isolated. However in signal pro- 
cessing the smallest eigenvalues often represent the noise 
covariance, and are quite clustered. For this reason, only 
largest eigenpairs will emerge in general. A possible means 
to compute the smallest eigenvalues i s  to consider formally 
the matrix L - I :  the smallest left Ritz pairs may be computed 
by solving two linear systems of the form LH*tr = U and L * t l  
= vat each step k,  instead of performing two matrix-vector 
products as described in the bidiagonalization algorithm 
(IO). This requires a slightly larger computational time, still 
of order O(n2) multiplications, but the success depends on 
the eigenvalue pattern and i s  therefore not guaranteed. 

E. Block-Bidiagonalization 

Now, if we wish to compute several singular triplets, and 
if we have good initial guesses for more than one set, we 
can use a block recursion. Unlike the single-vector recur- 
sion, the block recursion can deal with multiple singular 
values. The block recursions are defined in a very similar 
manner by the algorithm given below. Let b, denote the 
block size (number of starting vectors). 

Block-bidiagonalization of a m x n matrix L: (14) 
Start with a given block of size m x b,, ~ ( 1 ) .  
% initialization 
Orthonormalize ~ ( 1 ) ;  

[v(l), a(l)] = qr(tr); QR factorization. 
tr = LH * u(1); 

% next steps Complexity 
for k = 1: K - 1 

mnb, + mb,(b, + 1112 

Zmb: - 2b:/3 
mnb, + nb,(b, + 1)/2 

Znb: - 2b:/3 

tl = L * v(k) - u(k)  * 
% QR factorization: 
[u(k + I ) ,  b(k)l = qr(t1); 
tr = LH * u(k + 1) - v(k) * b(/dH; 
% QR factorization: 
[v(k + I ) ,  a(k + I ) ]  = qr( t r ) ;  

In the algorithm above, the QR factorization of a rect- 
angular m x b, matrix provides a set of orthonormal vec- 
tors, Q, QHQ = I, and a b, x b, upper triangular matrix, R. 
This is the ”economic version” of the QR factorization, 
whose complexity is O(2mbS - 2b:/3), instead of 0(2m2b, 
- mb: + b:/3) as in the standard QR factorization [25; p. 
1481 (see Table 2). One of the interesting aspects in using 
a QR factorization i s  that the (K  * b,) x (K  * b,) block-bidi- 
agonal matrixgenerated i s  banded and of bandwidth b, [57]: 

end 

so that i ts  singular value5 are obtainable in O(K) multipli- 
cations. 

F. Reorthogonalization Versus Size Reduction 

In the single-vector recursions described above, it is clear 
that whenever some a(k )  or b(k) in the bidiagonal matrix are 
very small, the result i s  ill-determined and may givean inac- 
curate Lanczos vector. Then there i s  a loss of orthogonality 
between the vector generated and the previous Lanczos 
vectors. These cancellations accumulate because the Lan- 
czos recursion i s  not well determined. As a result, some 
spurious singular values may appear, as the number of iter- 
ations increases. Obviously, this problem also arises in the 
block-recursion whenever the triangular blocks a(k )  or b(k)  
are not of full rank. Several ways have been proposed in the 
literature to cope with this problem. For instance in [22], 
various strategies are proposed in the symmetric case to 
identify the spurious eigenvalues. In the case of the com- 
putation of a few singular triplets, it turns out that a partial 
reorthogonalization could do very well, but would be com- 
putationally awkward. In fact, as equations (13) show, if the 
terms a(k )  or b(k)  are small, then there i s  a Ritz triplet that 
has converged. Similarly, in the block bidiagonalization, 
matrices a(k) or b(k) may be singular only if one of the Ritz 
triplet has converged. Instead of trying to reorthogonalize 
the set of b, Lanczos vectors obtained, it is more convenient 
to stop the recursion on the Ritz triplet that has converged. 
We call this procedure ”size reduction.” When the size 
reaches zero, all the b, Ritz triplets have converged, and the 
algorithm terminates. Recalling the notations used in Sec- 
tion Ill-D, U ( k )  (resp. V) denotes the matrix made up of Lan- 
czos vectors {u(l), . . . u ( k ) }  (resp. v). 

Suppose that t l  = qu*b i s  a QR factorization of t l , where 
qu i s  m x b, and b i s  of rank (b, - 1). Since the triangular 
matrix b i s  singular, oneof i t s  diagonal entries must bezero. 
It i s  thus possible to easily detect rank-deficiency. The fact 
that t l  is  not of full rank indicates that a Ritz triplet has con- 
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verged. Then one should stop the recursion on the cor- 
responding Lanczos vector (but only this one). As soon as 
the size of the block reduces to zero, the algorithm ter- 
minates. 

The way to do this i s  to use a “Reduced Rank QR” (RRQR) 
factorization. The RRQR factorization of a rectangular m x 
b, matrixof rankris defined bythe product of asemi-unitary 
matrix of size m x rand a r x b, full rank upper triangular 
matrix. This factorization i s  always possible, and may be 
obtained via a Householder QR factorization with pivoting. 
The size reduction procedure may be run by using a RRQR 
factorization instead of a QRas in algorithm (14). The under- 
standing of this procedure i s  easier when looking at the 
complete algorithm (17): 

Block-bidiagonalization of a m x n matrix L, 

Start with a given block of size m x b,, ~(1).  
% initialization 
Orthonormalize ~(1); 
tr = L~ * ~(1); 
[qv, a(l)l = rrqr(tr);  % RRQR factorization. 
[r, b,] = size(a(1)); 
v(1) = qv; 
% next steps 
fo rk  = 1: K - 1 

with Size Reduction (BSR). 

t /  = L * v(k) - u(k) * a(/#; 
[qu, b(k)] = rrqr(t/); % RRQR factorization. 
[r, b,] = size(b(k)); 
u(k + 1) = 9u; 
if r < 1, stop 
tr = L~ * u(k + I) - v(k)  * 
[qv ,  a(k + 111 = rrqr(tr); % RRQR factorization. 
[r, b,] = size(a(k + 1)); 
v(k + 1) = qv; 
i f  r < 1, stop 

end 

(1 7) 

For instance, if L i s  12 x 12 and b, = 3, and if rank(b(2)) = 
2, the matrices U, V and B obtained after K = 4 iterations 

B(4)= 

take the form shown in Fig. 1. In this scenario, the matrices 
b(2) and u(3) are 2 x 3 and 12 x 2, respectively. 

The main advantage in using a block-bidiagonalization 
of fixed size is the simplification of the code. If imple- 
mented on an array processor, the iteration with afixed size 
is  more compatible with parallel implementation. How- 
ever, in the computation of a given number of Ritz triplets, 
the use of a fixed block size may generate too many Lanczos 
vectors and reorthogonalizations, involving an increase in 
complexity. Subsequently, we use the size reduction pro- 
cedure rather than the block reorthogonalization on a serial 
computer. 

IV. ADAPTIVE ALGORITHMS WITH AN O(m2d) COMPLEXITY 

In electrical engineering applications, we most often 
require “good“ accuracy rather than “full” accuracy. 
Indeed, in most applications, a relative error of l e  - 4 is  
sufficient. This decreases the complexity of the iterative 
algorithms, and makes them more attractive. Adaptive algo- 
rithms are iterative algorithms that track parameters of a 
system which may vary with time, space, or frequency, or 
more abstractly snapshot. Those systems are called non- 
stationary, and the accuracy of estimates such as (4) i s  lim- 
ited byP(t)whosemaximalvalue i s  function ofan equivalent 
“stationarity duration.” In fact, the optimal value of P(t )  i s  
a tradeoff between the variance of the estimate R(t) and the 
bias introduced by averaging rank-one matrices r ( t )  r(BH that 
do not have the same expectation in the strict sense. In other 
words, the error made at the end of the process will be due 
to modeling errors rather than to the approximations in the 
calculations. 

As pointed out earlier, if variations with time are tracked, 
the modification at each time step i s  generally of rank one. 
However, in other situations, namely block-processing for 
instance, the modification can beof small norm but still full 
rank [58]. The algorithms given in this section assume that 
the new matrix is available at each step, no matter how it 
has been modified. 

Fig. 1. Form of the matrices generated if L is 12 x 12. Here, b, = 3, rank{(b(2))} = 2, and 
K = 4. 
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A. Lanczos-based Recursions 

In both single-vector and block Lanczos recursions, the 
loss of orthogonalitywill occurwhen the noise level is small 
or when the sources are almost stationary. In fact, the start- 
ing vector (or vectors) may be very close to the range of the 
singular vectors previously computed, if the matrix varies 
very slowly. 

In the block-Lanczos algorithm, we choose as block size 
b, the number dof  sources sought (taking b, = d + 1 is also 
possible and has some advantages). The adaptive algorithm 
we have selected then takes the form: 

Algorithm A, with a block size b, = d (20) 
% Initialization 
Start with a narrow m x d matrix w, 
chosen randomly; 
% Next time steps Complexity 

As time increases, t = 1, - 
Update L according to (5) 
Compute the Kd x Kd matrix 

B(K) ,  according to (17) 
Compute the left singular pairs of B ( K )  
Deduce the new left Ritz pairs {e, w}, 

mnKd + 5(m + n)Kd2/2 
4Kad2 

according to (12) mK2dZ 
Goto t = t + I 
In the Algorithm A, K may be chosen in advance and held 
to a fixed value, in order to limit the number of iterations. 
If K i s  never reached, it means that the subspace tracked 
varies more slowly than expected; if it is often reached, then 
there is too little time left to achieve the requested accu- 
racy, and K should be increased. If d = 2 cc n, n = m and 
K = 2, the execution of the time loop in the algorithm above 
has a maximum complexity of order Ion2 + 24n + O(d3), 
update of L ( t )  excluded. 

B. Subspace Iteration with Ritz Acceleration (SIR) Running 
on L(t) 

If very few iterations are run, the advantage in using Lan- 
czos recursions vanishes. In these cases, it may be better 
to use recursions based on the simple power-like method, 
discarding the search of a tridiagonal form. An important 
complexity reduction can be done by considering the algo- 
rithm below, baptized SIR [29]: 

Algorithm B (SIR) (21) 
Assume L i s  m x n (possibly m = n) 
% initialization (t  = 0) 
Start with a narrow m x d matrix w, chosen randomly; 
Orthonormalize w; set U(0) = w. 
Compute V(O) = ~ ( 0 ) "  * ~ ( 0 ) ;  
Orthonormalize V(0). 
% Next time steps Complexity 
As time increases, t = 1, . . . 

Update L(t), according to (5) for instance; 
% Singular vectors 
w = L ( t P  * U(t - 1) nmdl? 
Compute the n x d matrix X in the SVD: 
X C Y H =  w 3nd2 
Set V(t)  = the d first columns of X. 
Compute W = L(t) * V(t);  nmdl? 

Compute the m x d matrix X in the SVD: 
XCY" = W; 3md2 
Set U(r) = the d first columns of X. 

Goto t = t + 1 

In this algorithm, note that the singular values are updated 
twice, and that the Ritz acceleration is still present. Indeed, 
it consists essentiallyof running one single iteration of algo- 
rithm (14). Now, the number of operations required in the 
loop (update of L( t )  excluded) i s  rnnd + 3d2(m + n) + O(md, 
nd, d3). If m = n and d = 2 << n, the complexity i s  roughly 
2n2 + 24n. 

C. Gradient-based Algorithms 

In this class can be found the most numerous adaptive 
algorithms in the literature. For instance, many gradient- 
based algorithms were developed for the spectral esti- 
mation based on Pisarenko harmonic retrieval approach, 
where the goal is to minimize the objective function ~ ( t ) ~  
R(t) u(t)  with respect to u(t)  under the constraint ~ ( t ) ~  u(t) 
= 1, in order to estimate $e eigenvector associated with 
the minimal eigenvalue of R(t). Among others, one can cite 
the fixed step stochastic gradient followed by a normal- 
ization [59], the stochastic Gauss-Newton method [26], [60], 
or the conjugate gradient [61]. Somewhat different i s  the 
iterative algorithm proposed in [62], where the minirniza- 
tion of the Rayleigh quotient iscarried outon the unit sphere 
appropriately parametrized. Yang and Kaveh review some 
of the gradient methods applied to the computation of a 
restricted subset of largest or smallest eigenpairs [63]. Other 
algorithms utilized in antenna array processing are 
reviewed by Schreiber in [46]. It i s  important to distinguish 
the exactadaptivegradient methods and the instantaneous 
gradient methods. In the first technique, the matrix R(t)  i s  
requested explicitly, yielding an amount of O(n2)  multipli- 
cations [64], [65]; the convergence of the algorithm i s  con- 
trolled by both the averaging coefficients in the updating 
of R(t) and the coefficient p. On the other hand, in the 
instantaneous gradient algorithms the matrix R(t) i s  replaced 
by i ts  rank-one update, r(t) r(t)", and can be run at each time 
stepwithin O(n) multiplications. In thiscase, thecoefficient 
p controls the convergence as well as the memory length 
of the system. The instantaneous gradient algorithm i s  
essentially adaptive, and cannot be used to compute the 
eigenpairs of a fixed deterministic matrix. We shall present 
one O(n2) method in this subsection, and another with O(n) 
complexity in asubsequent section, in partV.Thefollowing 
algorithm was first proposed by Owsley [64]: 

Algorithm C (22) 
% initialization (t = 0) 
Start with a narrow m x d matrix w, chosen randomly; 
Orthonormalize w; set U(0) = w. 
% Next time steps Complexity 
As time increases, t = 1, . . . 

Update R(t )  
g = R(t) U(t - 1) m2d 
w = U(t - 1) + p g ;  md 
% eigenvectors 
Orthonormalize W into U t )  2md' - 2d313 
% eigenvalues (optional) 
A(t) = Diag(U(t - md 

Goto t = t + 1 
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Gradient-based adaptive algorithms are unattractive when 
not used in their approximated instantaneous form; this 
will be stressed in part V. 

D. An Hybrid Method 

If the singular triplets vary slowly as t increases, it is  pos- 
sible to decrease the computational load. This can be made 
for instance by updating each triplet in turn, one at each 
time step. We cal I this a “cyclic updating.” Acyclic updating 
strategy was proposed in [27l (with some typos) in order to 
decrease the complexity by a factor d, and then a slightly 
different version was published in [66]. We give below the 
correct square-root version: 

Algorithm D1 (23) 
Assume L is m x n (possibly m = n) 
% initialization (t = 0) 
Start with a narrow m x d matrix w, chosen randomly; 
Orthonormalize w; set U(0) = w. 
Compute V(O) = ~(0)”  * ~ ( 0 ) ;  
Orthonormalize V(0). 
% Next time steps Complexity 
As time increases, t = 1, 

Update Ut),  according to (5) for instance; 
select a value k E {I, 2, - - , d }  
Compute WI = ~ ( t ) ”  * uk(t - I) 
and w2 = L(t)  * vk(t - 1) 
Orthogonalize [v(t - I), wl]  into a 

n x (d + 1) matrix, v. 
Orthogonalize [U(t - 2, w2] into a 

m x (d + 1) matrix, U. 
Compute S = U” * t ( t )  * i7 
Compute i t s  SVD: ?I * G * FH = S. 
Retain the d largest singular triplets, 

SO that = n * €3 * r”. 
% Form the Ritz vectors associated with the 

largest d singular valuEs of Ut): 
U t )  = U * II and V(t) = V * r. 

mnl2 
mnl2 

2n(d + 1)’ - 2(d + 1)?3 

2m(d + 1)’ - 2(d + 1)?3 
mn(d + 1)’ 
l l ( d  + 1P 

(m + n)(d + 1)’ 
Goto t = t + 1 
If m = n, and if d = 2 << n, the execution of the loop in 
the algorithm above requires Ion2 + 54n + O(d3) flops, 
update of L(t) excluded. In [66], the algorithm is  not square- 
root anymore, and thequantities w l  and w2are substituted 
for the difference w = R(t) * uk(t - 1) - uk(t - 1) x(t - I), 
which i s  then normalized. There are two possibilities, 
depending on the use of the optional reorthogonalization. 
The complete adaptive algorithm may be written as: 

Algorithm D2 
Assume R i s  m x m 

(24) 

% initialization ( t  = 0) 
Start with a narrow m x d matrix w, chosen randomly; 
Orthonormalize w; set U(0) = w, 
Set N O )  = I, the d x d identity matrix. 
% Next time steps Complexity 
As time increases, t = 1, - - . 

Update R(t)  
Select a value k E {I, 2, 
Compute w = R(t)  * uk(t - 1) - uk(t - 1) X ( t  - 1) 
% Option 1: Orthogonalize m’ + m 
Normalize w = w/((w((, m 
and form U = [U(t - I), w]; 
% Option 2: Orthogonalize 

, d }  

[ u t  - I), i n g  a; 
Compute B = U” * ~ ( t ) _ *  U 
Compute its EVD: 
Retain t h c d  largest singular triplets, 

so that B = n * €3 * ITH. 
% Deduce the d left Ritz pairs of L(t): 

2m(d + 1)’ - 2(d + 1)3/3 
m2(d + 1)’ 
4(d + W3/3 = II * e * nH. 

m(d + 1)’ u(t) = U * n; h(t) = e; 
Goto t = t + I 

This algorithm is  like a Lanczos method, and also like a 
gradient method where the Ritz acceleration would be 
incorporated; for this reason we called it hybrid. It is now 
less costly; i.e., if d = 2 << m, then theexecution of instruc- 
tions inside the loop requires 10m2 + 28m + O(d3) flops 
if option 2 i s  selected. However, one thing is not clear, 
namelyhowshouldwechoosethevalueofk.0necan make 
it cycle in the set {I, 2, e ,  d }  as in [27], but in [66], 
Furhmann seems to let it take a fixed value k = d, viz. the 
value corresponding to the smallest singular triplet that we 
want to track. In our computer simulations, k i s  cycling in 
{I, 2) in algorithm D2. 

In this part, all thealgorithmsdescribed had acomplexity 
of order m2. We may want to reach a complexity of order 
m, if the processes observed have a sufficiently long sta- 
tionarity duration. In order to be consistent, it i s  then nec- 
essary to take into account the complexity of the updating 
ofL(r)which isalsooforderm2,and tofindawaytodecrease 
it to O(m). We study this in the following sections. 

V. ADAPTIVE ALGORITHMS WITH O(md2) COMPLEXITIES 

In ordertodecrease thecomplexity by one order, approx- 
imations are now necessary. The goal i s  to avoid the explicit 
computation of L(t), as well as matrix-vector products if they 
are of full size, n. The first algorithm presented (Algorithm 
E l )  expresses the matrix-vector product R( t )  U(t - 1) as a 
function of R ( t  - 1) U(t  - I), which is  in turn approximated 
by U(t  - 1) A(t - 1). Algorithm F1 i s  a square-root and accel- 
erated version of it. It i s  shown in section F how these 
approximations can be connected to the estimation of the 
matrix R( t )  by another satisfying a given model; such matri- 
cesaresaid to belongto”c1ass F.”Alastfamilyof algorithms 
is  then presented, deriving from an approximation in a more 
accurate class of matrices, called “class G,” since it is 
described in section G. Contrary to the procedures 
described previously, the algorithms described in this sec- 
tion are fully adaptive, in the sense that they can hardly be 
used to compute the eigenpairs of a fixed given matrix. In 
fact, (4) is fully exploited. Moreover, the possible structure 
or sparsity pattern of the matrix i s  not taken into account. 

E. Approximate Subspace Iteration 

The algorithms considered in this section are approxi- 
mations to Subspace Iteration. In the standard subspace 
iteration aswell as in algorithm SIR, thedominant taskswere 
( i )  the updating of L ( t )  (ii) the computation of the matrix- 
vector products L(AH U(t  - 1) and L ( t )  V(t),  both of order 
m2. It i s  possibletoapproximatethesetwotasksatonce[23], 
[29] and get a solution within 6md2 + O(md + d2) flops, 
where 6 = O(1). 

The first algorithm we describe here was proposed by 
Karhunen [23], and i ts  convergence in the almost sure sense 
was proved later in [67]. Here is one version which runs with 
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2md2  + 2md flops: 

Algorithm E l  (25) 
U(0) arbitrary m x d;  U(0)H U(0) = I; 
A(0) = I, the identity matrix. 
For t = 0,1, 2,  . . . Complexity 

md 
2d 

md 
2md2 - 2d3/3 

3d 

z = r ( t IH ~ ( t  - I ) ;  
y = a( t ) /p( t )z  A ( t  - i ) - l ;  

w = U(t - 1) + r ( t )  y;  
U(t)  = ortho(w); 
X , W  = P ( t )  X,(t  - 1) + a(t) I z , ~ ~ ,  1 I i I d.  

Goto t = t + 1 

G. Modeling of Class G 

Before we go into the details, we give some additional 
notation. First, the “exact” covariance matrix R(t) ,  is 
unknown and satisfies model (3). Namely, the covariance 
matrix is the sum of a matrix of rank d ,  and another known 
up toa scalarfactor,which amounts toconsider the identity 
matrix I: 

B. Modeling of Class F 
The algorithm above has the inconvenience that it con- 

verges slowly, and does not take advantage of the square- 
root formulations. This i s  the reason why improved ver- 
sions have been studied. it i s  possible to approximate the 
SIR technique (22) in the same spirit as for (25). Moreover, 
the Ritz acceleration can be also maintained. So, the com- 
plete algorithm described in [29] may be summarized as fol- 
lows: 

Algorithm F1 (Fast SIR) (26) 
U(0) arbitrary m x d; U(0)H U(0) = I; 
C(0) = I, the identity matrix 
For t = 0,1, 2, . Complexity 

2md wu = [@(t)  E ( t  - I); &(t) r(t)” ~ ( t  - I)]; 
Compute the (d + 1) x d matrix V, in the SVD: 

WV = [@(t)  U( t  - 1) C ( t  - 1); &(t) r ( t ) ] V ;  md + md2 
Compute the m X d matrix, U(t), in the SVD: 
U(t) C ( t ) Y H  = Wv; 3md2 

V C  YH = Wu; 6d3 

Goto t = t + 1 

As pointed out in [29], the singular values are updated 
twice in FI, but the left singular vectors, U(t) ,  are the same 
as those of the matrix [ d(t) U(t - 1) C ( t  - I), &(t) r ( t ) ] .  
This suggests another simpler approach. Considertheclass 
of matrices of rank d 

k S w  = u(t) C w2 u(tlH 

where U(t)  is  an n by d matrix with orthonormal columns 
and C i s  diagonal real. If R ( t )  is  replaced by i t s  low-rank 
approximation, then we have: 

~ ( t )  u(t - I) = ks( t )  u(t - 1) = ~ ( t )  C (t)2 (27) 

We call the approximation R ( t )  = k’(r)  “approximation of 
class F.” This shows why the approximations of class F and 
R ( t  - 1) U ( t  - 1) = U ( t  - 1) A ( t  - 1) are equivalent if atten- 
tion i s  restricted to the subspace iteration. A simpler algo- 
rithm can thus be obviously derived from F I :  

Algorithm F2 (28) 
U(0) arbitrary m x d;  U(0)H U(0) = I; 
C(0) = I, the identity matrix 
For t = 0,1, 2,  . . . Complexity 

md 

3md2 

W = [ f i ( t )  U ( t  - 1 )  E ( t  - I), &(t) r ( t ) l ;  
Compute the m x d and d x d matrices, U(t) ,  E(t), 

in the SVD: U ( t )  C(t )YH = W ;  
Goto t = t + I  

This trivial algorithm requires an order of only 13m rnul- 
tiplications if d = 2. 

Second, the estimated matrix, R ( t ) ,  i s  defined bythe relation 
(4), and its Cholesky factor i s  denoted L( t ) .  It is clear that 
R ( t )  does not obey equation (3). This estimate i s  not uXilized 
here because of the high calculation cost. Now let R ( t )  be 
a new estimate which satisfies the model: 

k ( t )  = k’ ( t )  + p2( t ) I ,  where kS(t)  i s  of rank d.  (30) 

Karasalo proposed to update k ’ ( t )  and p( t )  by using the 
Eigenvalue-eigenvector Decomposition (EVD) of a matrix 
R P ( t )  which is not R( t ) ,  but defined recursively by: 

~ p ( t )  = ~ ( t )  k(t )  + a(t)  r ( t )  r(tIH. (31) 

The goal is to compute k’ ( t )  and p( t )  so that k ( t )  i s  the best 
approximation to RP(t) .  Thus, k’ ( t )  corresponds to a rank 
d approximation of R p ( t ) ,  and p2(t)  is the arithmetic mean 
of the m - d remaining eigenvalues of R p ( t ) .  More pre- 
cisely, consider the spectral decomposition of R P ( t ) :  

m 

R p ( t )  = C ~ , ( t ) ~  u,(t) u,wH. 
, = 1  

Then, k ( t )  i s  defined by k’ ( t )  and p 2 ( t )  via (30): 

Interestingly enough, these estimates are optimal in the 
Maximum Likelihood sense under the Gaussian assump- 
tion [28]. Now the product between matrix R p ( t )  and avector 
would require only O ( m d 2 )  operations, but not O ( m 2 )  any 
more. The algorithm described below uses model (30) and 
involves only the data matrix in order to improve the con- 
dition. This technique was originally proposed by Karasalo 
in [28]. 

Algorithm G (32) 
% initialization 
Start with a narrow m x d semi-unitary matrix, U(O), 
chosen at random; 
p(0) = 1; e(0) = I, the d x d identity matrix. 
% Next time steps Complexity 

As time increases, t = 1, 2, . . . 
% splitting of r ( t )  onto signal and noise spaces, 
% as: r = Uz + wc. 
z ( t )  = U ( t  - 
c ( t )  = norm ( w ( t ) ) ;  w ( t )  = w(t)/c(t); 
Form the d x (d  + 1 )  rectangular matrix: 

* r ( t ) ;  w ( t )  = r ( t )  - U( t  - 1) * z(t) ;  2md 
2m 
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Compute the SVD: X C ( t )  YH = BP(t); 1 i d 3  
% X and Yare square unitary of size d + 1 
% and d + 2 respectively. 
Finally compute: 
U(t)  = the d first columns of [ U t  - I), o(t)] * X; md2 

(33) 8(t) = the d X d upper left corner in C(t); 

1 
m - d  

@(t)  = - [ u ~ + , ( t )  + (m - d - 1) P(t)  p2(t - I)]; 

Goto t = t + 1 

The matrix k(r)  is determined by the three relations (33). If 
necessary, it could be computed explicitly according to: 

k ( t )  = U(t) [e2(t) - diag {p2(t)} l  U(tIH + p2(t ) I .  (34) 

Thecomplexity required to updatethedlargest left singular 
pairs is md2 + 2md + 2m + 2d3 + O(d2), which i s  very low 
compared to the performance attained (see next section). 
For instance, if d = 2, the global complexity i s  of order 10m. 

Lastly, note that the technique of Bunch etal. can also be 
used together with model G, and would provide us with a 
O(md2) algorithm, as pointed out by Schreiber [46]. 

H. Instantaneous Stochastic Gradient Methods 

We report here the standard instantaneous stochastic 
normalized gradient initially proposed by Thompson [49] 
and so-called Data-Projection Method [63]. Both are pro- 
grammed in such d way that they estimate the dominant 
eigenpairs: 

Start with a narrow m x d matrix w, chosen randomly; 
Orthonormalize w; set U(0) = w. 
% Next time steps Complexity 

As time increases, t = 1, . . . 
y = u(t - I ) ~  r ( t ) ;  g = r ( t ) f ;  2md 
w = U( t  - 1) + p( t )g ;  md 
% eigenvectors 
Orthonormalize W into U(t). 2md2 f a d 3 )  
% eigenvalues (optional) 
A(t )  = { A ( t  - 1) + p( t )  Diag(yyH)}/(l + p( t ) )  2d 

Algorithm H I  (35) 

Goto t = t + 1 

Algorithm H2 (DPM) (36) 
Start with a narrow m x d matrix w, chosen randomly; 
Orthonormalize w; set U(0) = w. 
% Next time steps Complexity 
As time increases, t = 1, 

y = U( t  - r ( t ) ;  g = r(t)yH; 2md 
w = U( t  - 1) + p(t)glll r ( t )  112; md + m 
% eigenvectors 
Orthonormalize W into U(t). 2mdz f a d 3 )  
% eigenvalues (optional) 
A ( t )  = {A(t  - 1) + p ( t )  Diag(yyH)}I(l + p( t ) )  2d 

Goto t = t + I 
In order to keep some coherence in our comparisons, we 

choseto set p ( t )  equal toa(t)/P(t), becausep(t)alsocontrols 
the memory length in this algorithm. Then, one can notice 
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that the updating formula for the eigenvalues has the same 
form as in the OK algorithm (25), which i s  consistent. The 
instantaneous stochastic gradient proposed in [26] avoids 
the normalization and computes directly the normalized 
eigenvector. However, this algorithm has been designed 
forthecomputationof asingleeigenpair,and it seemscorn- 
plicated to take into account the orthonormalization of a 
set of d vectors instead of a mere normalization of a single 
vector, in the same fashion. Moreover, both implementa- 
tions (normalized and direct) have roughly the same com- 
plexity and convergence properties, but the explicit 
orthonormalization has the advantage to insure theorthog- 
onality, which i s  not guaranteed in a direct recursive for- 
mulation such as in [26], due to rounding errors. 

Stochastic gradient type algorithms have received much 
attention because of their simplicity, but are actually 
numerically unstable, as shown in [68]. This fact has been 
known for afewyears, and stabilized versions (the so-called 
leaky LMS) can be obtained by adding additive white noise 
to the input in order to excite all the ranges [68], [65]. This 
refinement i s  rarely incorporated in adaptive spectral anal- 
ysis algorithms. In a few words, the updating of a parameter 
W is  rewritten as: 

w(t) = 9 w(t - 1) f v(t) 
instead of w(t) = W(t - 1) f p ( t )  V ( t ) ,  where 9 is chosen 
close to one, 9 < 1. It i s  easy to see that the coefficient 
indeed introduces a “leak” in the memory of the system. 
This slight modification suffices to stabilize the stochastic 
gradient algorithms but the drawback i s  the introduction 
of a small bias. 

VI. COMPUTER SIMULATIONS 

Comparisons between some of the algorithms are now 
described. The situations where it is the easiest to identify 
tracking and convergencecapabilities, are those which have 
a known sudden change in the parameters to be estimated 
(this is, so to say, a Heaviside step response). Sudden 
changes of the dominant eigenvalues while eigenvectors 
remain fixed show no difference among the adaptive algo- 
rithms, since all of them perform roughly the same. On the 
other hand, if dominant eigenvectors are suddenly rotated 
90 degrees, one observes different behaviors. In our set of 
simulations, two random sources (d = 2) are generated by 
MA processes of order 2 driven by independent Gaussian 
white noises. If E‘ denotes the vector formed by all zeros 
with a one at the i th position, the observation consists of 
the following: 

r ( t )  = sl(t)E1 + s , ( t ) ~ ~  + n(t), for t 5 to = I O  

and 

r ( t )  = s , ( t ) ~ ~  + s ~ ( ~ ) E ~  + n(t), for t > to = IO. 

Sources and noise are such that E { S ~ ( ~ ) ~ }  = 4, E { S , ( ~ ) ~ }  = 
1, and E{n(t) nWH} = u21; the size of observations r ( t )  i s  m 
= 10, and U = 0.1. The values chosen for coefficients a(t)  
and P ( t )  were the optimal aposteriorivalues, namely a(t) = 
l/(t - to) for t > to, a(to) = 1, and P ( t )  = 1 - a(t); this cor- 
responds to a rectangular window of growing size starting 
at t = to. 

The estimate of the 2 dominant singular values provided 
by each algorithm is  shown (figures labeled “a”) and can 
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be compared to the values obtained by the direct com- 
putation (algorithm A, Fig. 2(a)). For the algorithms com- 
puting the eigenvalues, their square root has been plotted. 
But this is not sufficient as a measure of discrepancy 
between the estimated and actual signal subspaces. The 
standard measure of distance between subspaces i s  the set 
of principal angles (here there are two), and those are dis- 
played on figures labeled "b," in degrees. By "actual" sub- 
space, it i s  meant the dominant 2-dimensional eigensub- 
space of R(t )  recomputed directly at each time step. Note 
that it i s  different from the subspace spanned by the true 
source directions { E 3 ,  E4},  and represents a fair measure 
since the error can then reach zero (the angles between the 
subspace computed and the true source directions cannot 
be zero because of the presence of additive noise and aver- 
aging). 

It can be seen in Fig. 2(a) that the covariance matrix attains 
good approximations to the ideal singular values (which are 
1 and 2) at about time 30. This figure shows the precision 
that cannot be overstepped, since we talk about the exact 
singularvalues of theestimateddata matrixavailableat that 

O-% io 40 60 80 1~120140160  180200 
Time Step 

(a) 

time. Subspace Iteration with Ritz acceleration (SIR) does 
about as good as possible (compare Fig. 2(a) and Fig. 3(a)); 
in fact Fig. 3(b) shows that after a few steps, both principal 
angles are smaller than one degree, which indicates con- 
vergence. 

From Fig. 4, it can be seen that algorithm E has rather poor 
tracking capabilities because of its relatively slow conver- 
gence rate (the first principal angle is always small; the dis- 
tance must be measured with the help of the second angle, 
plotted in dotted line). Also, convergence has been proved 
[67] in the almost sure sense, which i s  not a very strong 
topology. Note the singular values after 200 time steps. 

Fig. 5(a) and 5(b) demonstrate excellent behavior of algo- 
rithm F I .  Algorithm G performs as well as F1, but i s  about 
half as costly as shown in Table 1. Performances of algo- 
rithm F 1  are shown in Fig. 7, and are comparable to those 
of F2. However, it may be stated that algorithm G performs 
better in certain cases, due to its more general observation 
model. Note that the scales are different in Figs. 5, 6, and 
7. Fuhrmann's algorithm D2 is also quite satisfactory in this 
simulation, as shown in Fig. 8. 

o-8b 20 40 60 80 1oo1201401601802b0 
Time Step 

(b) 
Fig. 2. Algorithm A (Lanczos). (a) Coincides with exact singular values. (b) Witness of sud- 
den change. 

k' 0*4A 20 40 60 80 lbo 120 140 160 1802h 
Time Step 

(a) 

Fig. 3. Algorithm B (SIR). (a) Singular values. (b) Principal angles. 

I 1  

o b  I20 40 60 80 lbo 120 l i0  160 180 2ho 
Time Step 

(b) 
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0; io 4 i  80 80 1bo1201401ko180zbo 

U 

Time Step 
(a) 

Fig. 4. Algorithm E. (a) Singular values. (b) Principal angles. 

20 40 60 80 lb l i0  140 160 l802Ao 
Time Step 

Fig. 5. Algorithm FI. (a) Singular values. (b) Principal angles. 
(a) 

Figures 9 and 10 show the very bad convergence prop- 
erties of the gradient-based algorithms (one principal angle 
i s  stacked at 90 degrees). Indeed, in such block-gradient 
recursions, the smallest eigenpair computed is  always 
poorly estimated, because of the presence of the noise, 
among other reasons. Hence, we attempted to examine the 
improvement brought on by an increase in the block size 
to d = 3. The results obtained are better as seen in Figs. 11 
and 12, though they are st i l l  much worse than thoseof algo- 
rithms FI, F2, G, and D2. This has been done to the price 
of an increase in complexity as indicated by the numbers 
appearing in parentheses in Table 1 (see next section). 

VII. CONCLUDING REMARKS 

Table 1 summarizes the various techniques herein ana- 
lyzed, and gives an idea of the computational burden 
involved when2sourcesare sought. Westressthatthecom- 
plexity i s  not the only criterion that should be considered; 
besides they differ little from each other. In fact, conver- 
gence speed and accuracy are two other important features 
that are investigated in the previous section. We focused 
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Time Step 
(b) 

2ot 10 j : 
---*-_ 

Time Step 
(b) 

on adaptive algorithms, and for details on more standard 
ways of computing eigenvalues and eigenvectors, we rec- 
ommend the reference books [U], [521, or 1251. 

Algorithm G described in [28] obtains the best perfor- 
mances in our opinion, because of i t s  low cost, and also i ts  
excellent convergence and tracking capabilities as well. 
Moreover, the model utilized to approximate the matrix 
seems very well matched to the problems arising in signal 
processing where the observation consists of useful signal, 
additively corrupted by noise whose covariance matrix is 
estimated beforehand. As already pointed out, an adap- 
tation of the algorithm of Bunch etal. to a matrix modelized 
as in section V-G is  of interest, and has been suggested by 
Schreiber [46]; this method probably performs very simi- 
larly as Karasalo’s method (algorithm G). Algorithm F2 is 
also quite attractive because of i ts  strong regularity and its 
simplicity. Though it cannot be seen in these simulations, 
it does not perform as well as algorithm G, and has a slightly 
higher complexity. We recommend avoiding the useof gra- 
dient-based algorithms, which perform poorly and have a 
comparable complexity. 

This study i s  not exhaustive, and there exist other algo- 
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Table 1 Listing the Adaptive Algorithms Surveyed* 

Approximate 
Complexity for 
d = 2, Update 

of L or R 
Excluded** 

Square-root 
Section Part Rzference O(m2)  O(m) YIN Type of Technique Used 

IV 

0.025- 

A 

B 
C 
D1 
D2 

E l  
F1 
F2 
G 
H1*** 

V 

i 

5 

H2*** 

0.005 

4 56 

I - '- '. --__._ - 
1 I --------_-___ %-- ----__ - I 

2 24 
2 12 

10 54 
i o  2a 

10 
21 
13 
10 
(14) 27 

(15) 28 

Yes 

Yes 
No 
Yes 
No 

No 
Yes 
Yes 
Yes 
No 

No 

Block-Lanczos with size 

Subspace iteration + Ritz 
Fixed step exact gradient 
Gradient + Ritz 
Gradient + Ritz 

reduction 

Model F + subspace iteration 
Model F + subspace iteration 
Model F + exact computation 
Model G + exact computation 
Instantaneous normalized 

stochastic gradient: (d )  d + 1 
Instantaneous normalized 

stochastic DPM gradient: 
(d)  d + 1 

'[Olmeans this paper, and corresponds to new contributions. 
**The update of matrix L itself, when required according to (5), i s  not included in the complexity indicated. 
***For algorithms H I  and H2, the complexity to consider (in boldface) corresponds to a size d + 1 = 3, since 

the versions of size d perform poorly (complexity in parentheses). 

20 4b 60 80 1 ~ 1 2 0 1 4 0 1 ~  l802L 
Time Step 

(a) 
Fig. 6. Algorithm G. (a) Singular values. (b) Principal angles. 

0.02 1 
! 

,015 $ 
I I& 

i :  
0.01 i I '; 

I I --- -.-- -----------________ --._ 
O o k  60 80 1bo120140160 l802L 

Time Step 
(b) 

Oa5A 20 40 60 80 lb 1201401601802Ao 
Time Step 
(a) 

Fig. 7. Algorithm F2. (a) Singular values. (b) Principal angles. 

Time Step 
(b) 
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O 4  20 4b 60 80 lbo 120 l b l b  l i 0 A  
Time Step 

Fig. 8. Algorithm D2. (a) Singular values. (b) Principal angles. 
(a) 

I 
I \ I 

I I - - - - - - - -1 *- 

"0 20 40 60 80 100120140160180200 
Time Step 

(a) 
Fig. 10. Algorithm H2, size d.  (a) Singular values. (b) Principal angles. 
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50 100 150 200 

Time Step 

(a) 
Fig. 11. Algorithm HI,  size d + 1. (a) Singular values. (b) Principal 

27 \- 80- 
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0.5 - ::, 2 ,  I 
. d  -1 

. . .  ............. : 

Time Step 

(b) 

---------------___-______ -------__ ['---- 
1 I - 
1 
I I - 
I 
I I 

I I 

an g I e s. 

2.5 I I I 

1 1 1 

100 I 1 1 

1 1 I 

Table 2 Complexity of the Q R  Factorization 

Computation of: Overall Complexity, m 2 n Method Used 

Q in  factored form & R mn2 - n3/3 Householder 
Q accumulated & R 2m2n - mn2 + n3/3 Householder 
Q, accumulated & R 2mn2 - 2n3/3 Householder 
Q, accumulated & R mnz Gram-Schmidt 

rithms, such as the constrained subspace approximation 
(CSA) introduced by Hu [60], or the instantaneous sto- 
chastic Gauss-Newton iteration introduced by Reddy et al. 
[26], that could probably be adapted to the computation of 
a restricted subset of dominant eigenpairs. We have 
restricted ourselves to a limited number of algorithms for 
the sake of clarity and brevity, but this does not mean that 
our choice has been made only in favor of the best ones. 
The Generalized Eigenvalue Problem (GEVD) or the GSVD 
has been skipped in the same spirit, but they remain of 
interest, and are mostly unsolved with respect to adaptive 
implementations. The solution of whitening the data is still 
the solution used in practice [46], though it could be per- 
formed in another manner, at least by a Lanczos-type 
approach. 

APPENDIX 

In this appendix, we recall the complexity of the QR and 
SVD factorizations, as a function of the matrix size. For fur- 
ther details, the reader is invited to consult [25, pp. 148-1521 
for QR, and [32, p. 11.181 and [25, p. 1751 for the SVD. 

Complexity of Standard QR Factorizations 

Let A be any m by n matrix, and assume without restrict- 
ing the generality that rn 2 n. Then there exist a rn x rn 
unitary matrix, Q, and a n x m upper triangular matrix R, 
such that 
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Table 3 Complexity of the Singular Value Decomposition 

Computation 
of: 

Golub-Reinsch Algorithm Chan Algorithm 

Complexity with m = n Complexity with m > n Complexity with m >> n 

E 4n 3/3 2mn2 - 2n3/3 m n  
E & U  6n 2m2n + 4mn2 2m 2n 
E & U1 * 7mn2 - n 3  3mn2 
E & U & V  11n3 2m2n + 4mn2 + 14n313 2m ‘ n  
C & U 1 & V  * 7mn2 + 11n313 3mn 

In this expression, Q, is defined as the m first columns of 
Q. Therefore, matrix Q1 satisfies QIHQl = 1. A being given, 
table 2 gives the complexity of the computation of these 
matrices. 

Complexity of Standard Singular Value Decompositions 

LetA beanym x n matrix,andassumewithout restricting 
the generality that m L n. Then there exist two unitary 
matrices, U and V, of size m x m and n x n, respectively, 
and a n X n real diagonal matrix C such that: 

r i T  

A = U C  0 V H = U I C V H .  1 1  
In this expression, U1 i s  defined as then columns of U asso- 
ciated with nonzero singular values, and is  therefore a m 
X n matrix satisfying U: U1 = 1. Table 3 gives the complexity 
ofthecomputationof thesevarious matrices.The rightmost 
column in Table 3 refers to an algorithm described in [69]. 
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