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DISPLACEMENT RANK OF GENERALIZED INVERSES
OF PERSYMMETRIC MATRICES*

PIERRE COMONt AND PASCAL LAURENT-GENGOUX$

Abstract. Toeplitz matrices are persymmetric matrices belonging to the large class of so-called structured
matrices, characterized by their displacement rank. This characterization was introduced 12 years ago by Kailath
and others. In this framework, properties of singular structured persymmetric matrices are investigated with
the goal of proving the possible existence of fast algorithms for computing their pseudo-inverses. Loosely speaking,
it is proved that the pseudo-inverses of some structured matrices with displacement rank r have a displacement
rank bounded by 2r,
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1. Introduction. Toeplitz matrices and more generally structured matrices are en-
countered in several problems, including prediction of almost stationary processes, mod-
eling of stochastic processes by state-space systems, lossless transmission lines, localization
in antenna array processing, or testing relative primeness of polynomials [1], [2], [5],
[6]. Because of their sometimes very large size, the structured linear systems must be
solved by resorting to specialized algorithms taking advantage of their particular features
in order to reduce both computational load and storage requirements, without disregarding
the possibilities of parallel implementations.

There exist numerous fast algorithms for solving linear Toeplitz systems, and the
most well known are the Levinson and Schur algorithms, Extensions have been proposed
since 1979 for matrices whose structure was close to Toeplitz in some sense [2], [3].
For full-rank matrices, the main results may be found in [3]~[5] and [9]. Nevertheless,
the leading minors are required to be nonzero in order for existing fast algorithms to be
stable [2]. Improvements have been proposed in order to allow fast algorithms to run
in a stable way for the larger class of regular matrices with arbitrary rank profile [12],
[14]. Besides this first limitation, it is now proved that the proximity of a regular matrix
to the Toeplitz structure is preserved by inversion, but nothing is known to date regarding
singular matrices. Singular structured matrices will be the subject of our discussion, and
we shall focus our attention on persymmetric matrices (relevant in the Toeplitz case, for
instance). It will be proved that the generalized inverse of a singular structured persym-
metric matrix has a structure that could be defined with the help of generators, exactly
as in the regular case [3]; in other words, its displacement rank is bounded. Our approach,
however, is not constructive in the sense that no means is provided to obtain explicitly
the corresponding generators. Only their existence is proved. This result is important
since it demonstrates that the generalized inverse of an N X N close to Toeplitz matrix
can be completely described only by a restricted number of vectors of size N (four in the
case of a singular Toeplitz matrix ).

The paper is organized as follows. Section 2 defines notations and states mostly
known results for regular matrices. The body of the paper is § 3, in which properties of
some singular symmetric persymmetric structured matrices are investigated. Section 4
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briefly extends the result of § 3 to the nonsymmetric case. Although Theorem 3.1 is a
particular case of Theorem 4.1 (§ 3 could be: partially skipped), we found it ¢clearer to
go first through the less general symmetric case,

2. Displacement of matrices. The concept of matrix displacement has been intro-
duced in [2], and discussed in a more general framework in [5]. Only a few definitions
and notations are recalled below for convenience, and readers are invited to consult the
above-mentioned references as well as [1], [3], and [4] for more details.

DEFINITION 2.1. Let Z be a fixed nilpotent square matrix. Two types of displaced
matrices will be used; for any square matrix T, they are defined as

(2.1) VI'=T-2ZTZ and AT =T-Z'TZ.

The rank of matrix VT (respectively, AT") is called the displacement rank of T with
respect to Z (respectively, Z').

DEFINITION 2.2, Any set of pairs of vectors {(xi, 1), (2, ¥2), ..., (Xg V) }s
satisfying

q
(22) VI= 3 axyl, e {-11},
i=1
is a set of generators. If the matrix 7" is symmetric, then we can take x; = y; and the
sequence of signs { «;} is called the displacement signature of 7.

If g is minimum, i.e., if ¢ is equal to the displacement rank of 7', then those generators
are called minimal [7]. Only minimal generators will be referred to in the rest of the
paper. The Crout decomposition of VT is one way for building minimal generators.

Property 2.1. As indicated by their name, generators can be used to recover the
original matrix. In fact, it suffices to form the sum

N-—1
(2.3) T= S ZIVTZ",

i=0

Another equivalent expression may be obtained by stacking the successive shifted
generators in triangular matrices,

q
(24) T=2 ;iU Li=[xZx;-++ Z" 'x], U=[yiZy; - Z" 'y;)"

i=1

This property shows that if a matrix 7" has a small displacement rank compared to its
size, then it may be stored efficiently under the form of 2q generators (g are sufficient if
T is symmetric).

DEFINITION 2.3. For the sake of simplicity, the displacements of the inverse matrix
T~" will be denoted in short as V7' and AT, standing for V(7') and A(T™"). Inverses
of displaced matrices are not used in the paper, thus avoiding any confusion.

THEOREM 2.1. If T is a nonsingular square symmetric matrix, displaced matrices
VT and AT™" have the same rank. The same property holds for AT and VT,

This result is attributed to Gohberg and Semencul and can be traced back to 1972.
The first proof given below can be found in [1], [4], and [5], and has some interest
because of its conciseness, Useful relations with orthogonal polynomials are also stressed
in [10], [11]. We derive then a second proof, more convenient for further extensions to

the case of singular matrices. This emphasizes the differences between the principles
utilized.
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First proof. The shortest proof that can be given consists of writing the matrix

T Z
Zt T~—l
in two different manners:

I ZT\(VT 0 I 0 nd 1 oN/T O ) I T“Z)
a .
0 I 0 T'\TZ' I Z'T' 1)\0 AT'JA0 I
Yet, from the Sylvester lemma, inertia is preserved by congruent transformations, which

shows that AT™! and VT have the same inertia, since so do 77" and 7. Note that this
result is stronger than the theorem.

Second proof. We shall prove in three steps that the null spaces of A7~ and VT
have the same dimension. Denote U = Ker VT and V = TZ‘(U) the image of U by the
operator TZ', We prove first that

(2.5) V < Ker AT,
Let ue Uand v = TZ'u. Then
AT 2o =T'TZ'yw— Z'TZTZ'u.
But since u € Ker V7,
ZTZ'u = Tu,
and hence
AT " =Zw—Z'T"'Tu =0,

which proves (2.5). Next TZ' is one-to-one on U. In fact, if 7Z'u = 0 for u € U, then
Tu = ZTZ' = 0, implying u = O because T is nonsingular.

This implies that dim U = dim ¥, which together with (2.5) and the definition of
U yields

dim V7T = dim Ker AT,

A similar argument with 7"and Z” replaced by 77! and Z, and with V and A interchanged,
implies the reverse inclusion. This completes the proof. (]
THEOREM 2.2. Let the matrix Z denote the so-called “lower shift” matrix

0 0
IN~1 : 0

Then a symmetric Toeplitz matrix T always has a displacement rank 2 with respect to
Z. Moreover, if diagonal entries of T are normalized to 1, the range of VT is spanned
by t, and ZZ'%,, where t, denotes the first column of T. The vectors t, and ZZ't, are
minimal generators of VT,

Proof. See [4] or [7] for a proof.

3. Displacement rank of Moore-Penrose inverses.

DEFINITION 3.1. Define the generalized inverse of any square matrix T, denoted
T~, as the matrix satisfying the four Moore~Penrose conditions: (i) TT™T = T, (ii)
T TT =T ,{)(TT" Y =TT ,and (iV)(T"TY =T"T.
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The null space of the generalized inverse T~ is the null space of T* and the range
of T~ is the range of 7% [8]. Hence in the symmetric case the generalized inverse T~ has
the same range and null spaces as 7T,

For the sake of simplicity, we shall only concern ourselves with the symmetric case
in this section. The nonsymmetric case will be postponed to § 4.

DEFINITION 3.2, Define the backward identity matrix J as

J,',j = except Ji,N—i+l = 1.
J is sometimes called the anti-identity matrix, or the reverse unit matrix. A matrix M
will be called persymmetric if it satisfies
JMJ = M.

From now on the displacement matrix Z will be assumed to be persymmetric.

THEOREM 3.1. Let T be an N X N symmetric and persymmetric matrix. Then if r
is the displacement rank of T, the displacement rank of its generalized inverse T, is
bounded by 2r.

Let us examine step by step the proof derived above in the nonsingular case for
T~'. The first obstacle in extending it to the generalized inverse of T is that we cannot
use the property T7'T = Iy, but only TT~T = T, this means that the main step of the
proof fails, namely, that TZ/(Ker VT') < Ker AT,

Nevertheless, we can still prove, as we shall see, that the quadratic form associated
with AT~ (and not the linear operator itself) vanishes on a subspace E of dimension
N — r; from this it follows that the dimension of Ker AT is smaller than N — 2r, as
will be shown subsequently. This subspace E is built as a sum of two subspaces, V' & W,

where V = TZ'(Ker VT) and W is a subspace of Ker T. The proof of Theorem 3.1
requires two lemmas.

LEMMA 3.1. The quadratic form (AT v, v) vanishes for all v € V, V =
TZ'(Ker VT).

Proof. Let u be in Ker VT and v = TZ*u. Let us calculate ( AT v, v):
(AT 0,0y =(T"TZ'u, TZ'u) — (Z'T"ZTZ'u, TZ'u).
By using the transpose rule for operators and the symmetry of T, we get
(AT v, v) = (TT"TZ'u, Z'uy ~ {T"ZTZ'u, ZTZ'u).
But ZTZ'u = Tu for ue Ker VT, and TT~T = T by definition of 7. Hence
(AT v, v) ={TZ'u, Z'u) = (T Tu, Tu),
and resorting to transposition gives
(AT v, vy = (ZTZ', u) — (TT Tu, u).
Now using the properties Z7Z ‘u = Tu and TT T = T again yields
(AT v, vy ={Tu, uy — (Tu, u) = 0. ]
LEMMA 3.2. Define K as the null space of the operator TZ' in Ker VT, i .e.,
K =XKer TZ' N Ker VT.

Define also the subspace

W= J(K).
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With the notations defined above, we have
(i) Wa Ker AT,
(ii) dim (W) = dim (X)), and
(iii) WceKerT.
Proof. Symmetry and persymmetry imply centrosymmetry:

T=JTJ,
while the following identities are also satisfied:
Z=JZ'J and J*=Iy.

First, let us check that W is included in Ker AT". Let x be in K and note that this is
equivalent to

" TZ'x=0 and Tx=ZTZ'x.
Thus x € K if and only if

(3.1) TZ'x =0 and Tx =0,
Define y = Jx and notice that x = Jy. Thus

(3.2) Ty = JTJy = JIx =0,

(3.3) TZy = JTJJZ'Jy = JTZ'x = Q.

Now it follows from the definition of the generalized inverse 7 that matrices T and T~
have the same null space. Hence from (3.2),

Ty =0,
and from (3.3),
T Zy = 0.
These two results prove statement (i) of Lemma 3.2, namely,
W< Ker AT,
Next, Kand W = J(K) have the same dimension since J is one to one. This proves (ii).
Finally, result (3.2) immediately gives us the assertion (iii). 0

Proof of Theorem 3.1. On one hand, the quadratic form associated with the matrix
AT~ is null on the subspace V. On the other hand, the subspace W is included in the
null space of the linear operator AT™. From these properties, it is straightforward to
conclude that the quadratic form is null on the whole subspace E = V + W. Moreover,
V 1 Whbecause ¥ —range Tand Wc Ker T, hence E = V® Wand

dim (E) = dim (V) + dim (W),
dim (E) = dim (V) + dim (K).

The dimension of V' = TZ'(Ker VT') is obtained from the dimension rule for the range
and null space of the restriction of 7Z¢ to Ker VT

(3.4) dim (V) = dim (Ker VT') — dim (K).
Thus

dim (E) = dim (Ker VT') = N — r,
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The quadratic form ( AT~ Xx, x) vanishes at least on a subspace E of dimension N — r.
Consider an orthogonal basis whose first N — r vectors form a basis of E. In such a basis
this quadratic form is defined by a matrix PAT ™ P’ that has at most » nonzero rows and
r nonzero columns, as shown in the following:

X
X
0 X
—pt

PAT™P Y

X }rrows
X X X X X X

Thus its rank is at most 2r, and consequently the rank of A7 is at most 2r. 0

Notice that Toeplitz matrices are persymmetric, and we therefore have Theo-
rem 3.2,

THEOREM 3.2, Let T be an N X N symmetric Toeplitz matrix, and Z be given as
in Definition 3.2. Then the displacement rank of its generalized inverse T~ is bounded
by 4.

Remark 3.1. In order to generate a positive Toeplitz matrix of rank r for numerical
experiments, we use a form of Caratheodory’s representation [13 ], constructed with the
help of Krylov subspaces. We first build an arbitrary orthogonal matrix Q with an invariant
subspace of dimension N-r, as a product of r arbitrarily chosen symmetries. Then, we
generate a vector x at random and we form the matrix M, whose columns are the
vectors x, Ox, ..., Q¥ !'x. Notice that the Krylov subspace built with matrix Q and
starting vector x is indeed of dimension r. The required matrix is the covariance matrix
T=MM.

Remark 3.2. As particular cases, let us insist that generalized inverses of N X N
symmetric Toeplitz matrices of rank 1 have in general a displacement rank of 2. If their
rank is larger than 1 and smaller than N, they will have in general a displacement rank
of 4 from Theorem 3.2, In particular cases, however, their displacement rank may fall
to 3 (see the example below).

Example. This simple example illustrates the practical issues addressed in the
remarks above. Let N = § and r = 3, and define the vectors ¢ = (1 000 0), b =
(1/V21/¥2000), and ¢ = 0 1/V21/V2 00)- Following the procedure proposed in
Remark 3.1, the orthogonal matrix Q = (I — 2bb")(I — 2¢c') is built, and the matrix
M = [a Qa Q%a Q% Ql,

0 0 1 00 1 0 01 O
-1 0 0 0 0 0 -1 0 0 -1
o=]1606 -1 0 0 0}, M=10 0 1 0 O
6 ¢ 01 0 0 0 0 0 0
6 0 0 0 1 0 0 0 0 O

Now, a symmetric Toeplitz matrix of rank 3 can be obtained by computing M'M. We
get

1 00 10 100 10
01 0 01 01 0 01
=10 0 1 0 0], 4T"=10 0 4 0 O
10010 10 0 10
01 0 0 1 01 0 0 1
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It can be checked that the displacement rank of 7™ is 3. Another example would
show that the bound can be reached for the same value of rank (7"). Change a into
(0 1 0 1 0), for instance, and get a displacement rank of 4 for T, with

2 11 21 3 -1 -2 3 -1
1 2 1 1 2 -1 3 -2 -1 3
T=111 2 1 1], 67— =1-2 -2 12 -2 =2
2 11 21 3 -1 -2 3 -1
1 2 1 1 2 ~1 3 -2 —1 3

4. Nonsymmetric case. In this section we extend Theorem 3.1 to the wider class
of persymmetric matrices, containing in particular the nonsymmetric Toeplitz matrices.

THEOREM 4.1. Let T be an N X N persymmetric matrix with displacement rank r.
Then the displacement rank of its generalized inverse T~ is bounded by 2r.

First we need to modify Lemma 3.1.

LEMMA 4.1, The subspaces V, = TZ'(Ker VT') and V, = T'Z'(Ker VI") are or-
thogonal for the bilinear form (AT"y, z).

Proof. The proof is derived in a similar manner as in Lemma 3.1. Let v, = TZ 'y,
with u, in Ker VT and let v, = T°Z‘u, with u, in Ker VT", Now calculate ( AT vy, v;),

(AT, 0, = (T TZ', T'Z'w) — (Z'T"ZTZ'wy, T'Z'uy).
By using the transpose rule for operators, we get
(AT vy, 0y = (TT TZ'y, Z'wy) — (T Tuy, ZT'Z'wy ).

But ZT'Z'uy = T'u, for uy € Ker VT?, and TT™T = T by definition of T~. Hence

(AT vy, 02) = (TZ'uy, Z'wy) — (T Tuy, T'uy ),
and resorting to transposition gives

(AT vy, 02) = (ZTZ'y, ) — (TT Tuy, ).
Another use of the properties ZTZ'u, = Tu; for u; € Ker VI'and TT™T = T yields

(AT v, v) = (Tuy, thy — (Tuy, ) = 0. O

Next we modify Lemma 3.2.
DEFINITION 4.1. Define K; as the null space of the operator TZ' in Ker VT, i.e,,

K =KerTZ'NKer VT,
and define K as the null space of the operator 7°Z" in Ker VT, i.e.,
K, =Ker T'Z' N Ker VT,

Also define W, as the subspace J(K;).

LEMMA 4.2. The subspace W, is included in the null space of the linear operator
AT, and W, is included in the null space of the linear operator AT . Moreover,

dim (W) = dim (X)),
W, < Ker T and Wy Ker T.

Proof. Recall that T' = JTJ, Z = JZ'J, and J? = Iy. First, let us check that W, is
included in Ker AT, Let x be in K; and remark that this is equivalent to

TZ'x =0 and Tx=ZTZ'%,.
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Thus x € K if and only if

4.1) TZ'x=0 and Tx=0.
Define y = Jx. Noticing that x = Jy gives

(4.2) T'y = JTJy = JTx = 0,

(4.3) T'Zy = JTJJZ'Jy = JTZ'x = 0.

Now by definition of the generalized inverse T, the operators T? and 7™ have the same
null space. Hence

T"y=0 and T77Zy=0.

This proves that W; < Ker AT . Next, J is one to one; thus K; and W, = J(K,) have
the same dimension, whereas the result (4.2) gives us W, < Ker T". A similar proof holds
for W,. O

Proof of Theorem 4.1. The subspaces V| and V, are orthogonal with respect to the
bilinear form associated with the matrix A7, The subspace W; is included in the null
space of the linear operator AT~ while the subspace W, is included in the null space of
the linear operator AT"", From these properties, it is straightforward to conclude that
the whole subspaces E, = V| + W, and E, = V, + W, are orthogonal, according to the
bilinear form associated with the matrix AT, Indeed, if y,, z;, 3, and z, are, respectively,
in Vl, W], Va, and Wz,

CAT (p1+ 21), 2+ 22)) = (AT p1, ya) + (AT 2y, (32 + 2)) + (31, ATz,

and each term on the right-hand side of this expression is null from preceding results,
Moreover, V', L W, because V, crange T and W, cKer T". Hence E, = V|, & W,
and, following the proof of the symmetric case, we may conclude that

dim(E)=N-r.

The bilinear form ( AT x, y) has two orthogonal subspaces E, and E,, both of dimension
at least N — r, It is easy to conclude, as in the symmetric case, that the rank of this
bilinear form is at most 2r and consequently the rank of matrix A7 is at most 2r. O

5. Concluding remarks. Theorem 4.1 says that if a persymmetric matrix T has a
displacement rank r with respect to a persymmetric displacement matrix Z, then its
pseudo-inverse 7 has a displacement rank bounded by 2r. In other words, the matrices
T and T~ can be completely characterized by at most 2r and 4r generating vectors,
respectively. If 7"is symmetric Toeplitz, four vectors are sufficient to characterize matrix
T~. Now in order for this result to be fully exploited, it would be necessary to find an
algorithm able to express explicitly the generators of 7, This issue is left open.
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