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Tensors & Arrays
Definitions

Table T = {Tij..k}

Order of T
def
= # of its ways = # of its indices

Dimension N�
def
= range of the �th index

T is Square when all dimensions N� = N are equal

T is Symmetric when it is square and when its entries do not

change by any permutation of indices
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Tensors & Arrays
Properties

Outer product C = A ◦ B:

Cij..� ab..d = Aij..� Bab..d

➽ Example: outer product between 2 vectors: u ◦ v = u vT

Mode-1 inner product A •1 B:

{A •
1
B}i2 ..i

M
,j2 ..j

N
=

∑
k

Aki2 ..i
M

Bkj2 ..j
N

Similarly: mode−p inner product A •p B

➽ Example: matrix-vector product A u = AT •1 u

Multilinearity. An order-3 tensor T is transformed by the

multi-linear map {A, B, C} into a tensor T ′:

T ′
ijk =

∑
abc

AiaBjbCkcTabc

Similarly: at any order.
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Usefulness of N−way arrays
Introduction

Not much addressed in the literature before 1990

Still hard (partly unsolved) numerical/theoretical problems

Numerous areas of application

• Speech

• Mobile Communications

• Machine Learning

• Factor Analysis... N−way arrays

• Biomedical Engineering

• Psychometrics, Chemometrics...
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Usefulness of symmetric arrays
Parafac vs ICA

PARAFAC: =
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�
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...

PARAFAC cannot be used when:

• Lack of diversity

• Proportional slices

• Lack of physical meaning (e.g.video)

=

�
��

.................................

.........................................

......
......
......
......
......
...

......
......
......
......
......
...

.................................

.................................

++ . . .

Then use Independent Component Analysis (ICA) [Comon’1991]

ICA: decompose a cumulant tensor instead of the data tensor

INDSCAL
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Edgeworth expansion
Approximation of a density

Francis Edgeworth (1845-1926).

px(u)

gx(u)
= 1 +

1

3!
κ3 h3(v) +

1

4!
κ4 h4(v) +

10

6!
κ2

3 h6(v)

+
1

5!
κ5 h5(v) +

35

7!
κ3κ4 h7(v) +

280

9!
κ3

3 h9(v) + . . .
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ICA leads to tensor diagonalization
Cumulant tensors

Minimize statistical mutual dependence:

I(px) =

∫
px(u) log

px(u)∏N
i=1 pxi

(ui)
du.

Expansion of the Mutual information

I(pz) ≈ J(pz) − 1

48

∑
i

4 κ2
iii + κ2

iiii + 7 κ4
iii − 6 κ2

iii κiiii

Approximate minimization of the Mutual information

Min I(pz) ∼ Max
∑

i

κ2
iii or Max

∑
i

κ2
iiii

➽ Maximization of diagonal terms in symmetric tensors κijk or

κijk�
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Definition of Rank
CAND

Any tensor can always be decomposed (possibly non uniquely) as:

T =

r∑
i=1

u(i) ◦ v(i) ◦ . . . w(i)

Tensor rank
def
= minimal # of terms necessary

This Canonical decomposition (CAND) holds valid in a ring

The CAND of a multilinear transform = the multilinear transform

of the CAND:

• If T
L−→ T ′ = T •1 A •2 B •3 C,

• then (u, v, ..w)
L−→ (Au, Bv, ..Cw)
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Spaces of tensors
dimensions

AN : square asymmetric of dimensions N and order d

☞ dimension Nd

SN : square symmetric of dimensions N and order d

☞ dimension D(N, d) = (N+d−1
d )

quadric cubic quartic quintic sextic

N\d 2 3 4 5 6

2 3 4 5 6 7

3 6 10 15 21 28

4 10 20 35 56 84

5 15 35 70 126 210

6 21 56 126 252 462

Number of free parameters in a symmetric tensor

as a function of order d and dimension N
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Ranks are difficult to evaluate
Clebsch theorem

Alfred Clebsch (1833-1872)

The generic ternary quartic cannot in general be written as the sum

of 5 fourth powers

D(3, 4) = 15

3 r free parameters in the CAND

But r = 5 is not enough → r = 6 is generic
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Questions

1. Maximal rank in SN or AN

2. Generic rank SN

3. Typical ranks of AN

4. Bounds on ranks

5. Rank and CAND of a given tensor

6. Extract a large number of factors from a reduced-diversity array

7. Differences between R and C
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Tensors and Polynomials
Bijection

Symmetric tensor of order d and dimension N can be associated

with a unique homogeneous polynomial of degree d in N variables:

p(x) =
∑

j

Tj xf(j) (1)

• integer vector j of dimension d ↔ integer vector f (j) of

dimension N

• entry fk of f (j) being
def
= #of times index k appears in j

• We have in particular |f (j))| = d.

Standard conventions xj def
=

∏N
k=1 x

jk
k and |f | def

=
∑N

k=1 fk, where

j and f are integer vectors.

➽ Example: T =
�

..........................

..........................

..........................

..........................

�

� ↔ p(x) = 3 x[2,1] = 3 x2
1x2
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Orbits
Definition

General Linear group GL: group of invertible matrices

Orbit of a polynomial p: all polynomials q that can be transformed

into p by A ∈ GL: q(x) = p(Ax).

Allows to classify polynomials
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Quadrics
quadratic homogeneous polynomials

Binary quadrics (2 × 2 symmetric matrices)

• Orbits in R: {0, x2, x2 + y2, x2 − y2}
☞ 2xy ∈ O(x2 − y2) in R[x, y]

• Orbits in C: {0, x2, x2 + y2}
☞ 2xy ∈ O(x2 + y2) in C[x, y]

Set of singular matrices is closed

Set Yr of matrices of at most rank r is closed

I3S

2004 – 18/35 – P.Comon

Classification of ternary cubics
3 × 3 × 3

GI−orbit ω(p)

x3 1

x2y + xy2 2

x2y 3

x3 + 3 y2z 4

x3 + y3 + 6 xyz 4

x3 + 6 xyz 4

a (x3 + y3 + z3) + 6b xyz 4 (generic)

xz2 + y2z 5

313

133

331

223

322
232

i

j

k

Maximal rank George Salmon (1819-1904)

I3S



2004 – 19/35 – P.Comon

Topology of polynomials
definition

Every elementary closed set
def
= varieties, defined by p(x) = 0

Closed sets = finite union of varieties

Closure of a set E : smallest closed set E containing E

➽ this is not Euclidian topology, called Zariski in C

I3S
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Genericity
Definitions proposed jointly with L-H.Lim

Intuitive

A property is typical ⇔ is is true on a non zero volume set

A property is generic ⇔ is is true almost everywhere

Mathematical

r is not typical if (zero volume):

Zr is contained in a non trivial closed set

or

r is a typical rank if (density argument with Zariski):

Zr is the whole space

Generic rank: the typical rank when unique
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Tensor subsets

Set of tensors of rank at most r with values in C:

Yr = {T ∈ T : r(T ) ≤ r}

Set of tensors of rank exactly r: Zr = {T ∈ T : r(T ) = r}

Z = Yr − Yr−1, r > 1

Z1 is closed but not Zr, r > 1

Zariski closures: Yr, Zr.

I3S

2004 – 22/35 – P.Comon

Example of sequence proving lack of closure of
Yr for r > 1

outlined by L-H.Lim

Sequence of rank-2 tensors converging towards a rank-3:

T n = x1 ◦ x2 ◦ (
1

n
x3 − y3) + (x1 +

1

n
y1) ◦ (x2 +

1

n
y2) ◦ y3

In fact:

T n =
1

n
[x1 ◦ x2 ◦ x3 + y1 ◦ x2 ◦ y3 + x1 ◦ y2 ◦ y3] +

1

n2
y1 ◦ y2 ◦ y3

Lek-Heng Lim

NB: even possible to jump from rank r to rank r + 2

(joint proof under development).
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Generic rank in C

joint work with B.Mourrain

Lemma (in either R of C, either symmetric or not)

Strictly increasing series of Yk for k ≤ R, then constant:

Y1⊂�=Y2⊂�= . . .⊂�=YR = YR+1 = . . . T

which guarantees the existence of a unique R

Theorem 1 For tensors in C

If r1 < r2 < R, then

Zr1 ⊂ Zr2 ⊂ ZR (2)

Theorem 2 For tensors in C

If R < r3 ≤ R, then

ZR ⊃ Zr3 ⊇ ZR

➽ Prove that R is the generic rank in C
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Generic rank
e.g. binary quartics in C

Z1 Z2 = Y2 −Z1

Z3 = Y3−Z1 −Z2

= T −Z1 −Z2 −Z4

Z4 = Y4 − Y3
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Generic rank in C

symmetric tensors

Generic rank R Dim. of solution

order d 2 3 4 5 6 2 3 4 5 6

dim. N

2 2 2 3 3 4 1 0 1 0 1

3 3 4 6 7 10 3 2 3 0 2

4 4 5 10 14 22 6 0 5 0 4

5 5 8 15 26 42 10 5 5 4 0

6 6 10 22 42 77 15 4 6 0 0

7 7 12 30 66 132 21 0 0 0 0

8 8 15 42 99 215 28 0 6 0 4

[Comon-Mourrain’1996]

I3S

2004 – 26/35 – P.Comon

Typical ranks in R

Lack of uniqueness in R

Draw randomly entries of a tensor ∈ T (N, d) according to a

distribution q(t)

Typical ranks do not depend on q(t), if c.d.f. absolutely continuous

(no point-like mass). Only volumes of Zr do.

Typical ranks depend on (N, d)

➽ Example: 2 × 2 × 2 asymmetric tensors

• drawn according to Gaussian symmetric ⇒ {2(57%), 3(43%)}
• drawn according to Gaussian asymmetric ⇒ {2(80%), 3(20%)}
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Ranks in R

vs rank in C

∀T real tensor, rank in R always larger than rank in C:

rankC(T ) ≤ rankR(T )

In particular:

generic rank ≤ typical ranks

➽ Example:

T (:, :, 1) =

(
−1 0

0 1

)
, T (:, :, 2) =

(
0 1

1 0

)
,

• If decomposed in R, it is of rank 3:

T =
1

2

(
1

1

)◦3
+

1

2

(
1

−1

)◦3
− 2

(
1

0

)◦3

• whereas it admits a CanD of rank 2 in C:

T =
j

2

(
−j

1

)◦3
− j

2

(
j

1

)◦3
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Symmetric vs Asymmetric rank
joint work with L-H.Lim

Let T ∈ S symmetric tensor, and its CAND:

T =

r∑
k=1

T k

where T k are rank-1.

Theorem

If the constraint T k ∈ S is relaxed, then the rank is still the same

But T k’s need not be each symmetric when solution is not

essentially unique

I3S



2004 – 29/35 – P.Comon

Bounds (1)
asymmetric C

Tensors of order d and dimensions (N1, ..Nd):

• Upper bound ⌈ ∏d
i=1 Ni

1 +
∑d

i=1(Ni − 1)

⌉
≤ R

• Square case Ki = N :

Nd/(dN − d + 1) ≤ R

Lower bound (Square case):

Nd/(d N − d + 1) ≤ R
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Bounds (2)
Symmetric C

Lower bound ⌈
(N+d−1

d )

N

⌉
≤ R

Upper bound [Reznick’92]

R ≤ (N+d−2
d−1 )

I3S



2004 – 31/35 – P.Comon

Construction of the CAND (1)
2x2x...x2

Sylvester’s theorem in R

A binary quantic p(x, y) =
∑d

i=0 γi c(i)x
i yd−i can be decomposed

in R[x, y] into a sum of r powers as p(x, y) =
∑r

j=1 λj (αj x+βj y)d

if and only if the form

qc(x, y) =

r∏
j=1

(βj x − αj y) =

r∑
l=0

gl x
l yr−l

satisfies

⎡
⎢⎢⎢⎣

γ0 γ1 · · · γr

γ1 γ2 · · · γr+1
... ...

γd−r · · · γd

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

g0

g1
...

gr

⎤
⎥⎥⎥⎦ = 0.

and has distinct real roots.

Valid even in non generic cases.

Similar theorem in C (cf. appendix)
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Construction of the CAND (2)
2x2x...x2

Start with r = 1 (d × 2 matrix)

and increase r until it looses its column rank

1 2

2 3

3 4

4 5

5 6

6 7

7 8

−→

1 2 3

2 3 4

3 4 5

4 5 6

5 6 7

6 7 8

−→

1 2 3 4

2 3 4 5

3 4 5 6

4 5 6 7

5 6 7 8
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Algorithms
Large rank cases

If rank sub-generic: use ALS or accelerations

Otherwise, build another tensor of sub-generic rank: use BIOME

algorithm
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Future works
Open questions

How many typical ranks can exist for R tensors?

Conjecture: at most 2

Algorithm to compute generic rank for C asymmetric tensors

Maximal achievable ranks?

What does ”low-rank approximation” means for tensors when

rank> 1?

General algorithm for computing a CAND

Definition of eigen-uplets of tensors
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Appendix
2x2x...x2

Sylvester’s theorem in C

A binary quantic p(x, y) =
∑d

i=0 c(i) γi x
i yd−i can be written as a sum

of dth powers of r distinct linear forms:

p(x, y) =

r∑
j=1

λj (αj x + βj y)d, (3)

if and only if (i) there exists a vector g of dimension r + 1, with

components g�, such that⎡
⎣ γ0 γ1 · · · γr

... ...

γd−r · · · γd−1 γd

⎤
⎦ g∗ = 0. (4)

and (ii) the polynomial q(x, y)
def
=

∑r
�=0 g� x� yr−� admits r distinct

roots
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