-1/35 -

Tensor Ranks, and some Properties of Tensor Spaces

Pierre COMON Lab. 13S, CNRS and Bernard MOURRAIN INRIA institute

Collaborator: Lek-Heng LIM

[1996], [June 2004 report] + results & proofs

see documents of the 2004 Tensor Decomposition Workshop: http://csmr.ca.sandia.gov/~tgkolda/tdw2004

I3S

2004

-2/35 -

P.Comon

Tensors & Arrays Definitions

Table $\boldsymbol{T} = \{T_{ij..k}\}$

- Order of $T \stackrel{\text{def}}{=} \#$ of its ways = # of its indices
- Dimension $N_{\ell} \stackrel{\text{def}}{=}$ range of the ℓth index
- **T** is *Square* when all dimensions $N_{\ell} = N$ are equal
- **T** is *Symmetric* when it is square and when its entries do not change by *any* permutation of indices

-3/35 -

Tensors & Arrays

Properties

• Outer product $C = A \circ B$:

$$C_{ij..\ell ab..d} = A_{ij..\ell} B_{ab..d}$$

- **Example:** outer product between 2 vectors: $\boldsymbol{u} \circ \boldsymbol{v} = \boldsymbol{u} \boldsymbol{v}^{\mathsf{T}}$
- Mode-1 inner product $\boldsymbol{A} \bullet_1 \boldsymbol{B}$:

$$\{\boldsymbol{A} \bullet_{1} \boldsymbol{B}\}_{i_{2} \dots i_{M}, j_{2} \dots j_{N}} = \sum_{k} A_{k i_{2} \dots i_{M}} B_{k j_{2} \dots j_{N}}$$

Similarly: mode-p inner product $\boldsymbol{A} \bullet_p \boldsymbol{B}$

- **Example:** matrix-vector product $A u = A^{\mathsf{T}} \bullet_1 u$
- Multilinearity. An order-3 tensor T is transformed by the multi-linear map $\{A, B, C\}$ into a tensor T':

$$T'_{ijk} = \sum_{abc} A_{ia} B_{jb} C_{kc} T_{abc}$$

Similarly: at any order.

I3S

2004

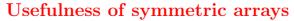
-4/35 -

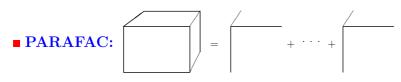
P.Comon

Usefulness of *N*-way arrays Introduction

- Not much addressed in the literature before 1990
- Still hard (partly unsolved) numerical/theoretical problems
- Numerous areas of application
 - Speech
 - Mobile Communications
 - Machine Learning
 - Factor Analysis... $N-way \ arrays$
 - Biomedical Engineering
 - Psychometrics, Chemometrics...

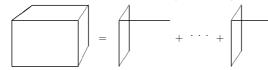
2004





PARAFAC cannot be used when:

- Lack of diversity
- Proportional slices
- Lack of physical meaning (e.g.video)



■ Then use *Independent Component Analysis* (ICA) [Comon'1991]

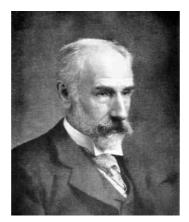
ICA: decompose a *cumulant tensor* instead of the data tensorINDSCAL

-6/35 -

P.Comon

Edgeworth expansion Approximation of a density

 $\mathbf{I3S}$



Francis Edgeworth (1845-1926).

$$\frac{p_x(u)}{g_x(u)} = 1 + \frac{1}{3!} \kappa_3 h_3(v) + \frac{1}{4!} \kappa_4 h_4(v) + \frac{10}{6!} \kappa_3^2 h_6(v) + \frac{1}{5!} \kappa_5 h_5(v) + \frac{35}{7!} \kappa_3 \kappa_4 h_7(v) + \frac{280}{9!} \kappa_3^3 h_9(v) + \dots$$

ICA leads to tensor diagonalization

Cumulant tensors

Minimize statistical mutual dependence:

$$I(p_{\boldsymbol{x}}) = \int p_{\boldsymbol{x}}(\boldsymbol{u}) \log \frac{p_{\boldsymbol{x}}(\boldsymbol{u})}{\prod_{i=1}^{N} p_{x_i}(u_i)} d\boldsymbol{u}$$

Expansion of the Mutual information

$$I(p_{z}) \approx J(p_{z}) - \frac{1}{48} \sum_{i} 4 \kappa_{iii}^{2} + \kappa_{iiii}^{2} + 7 \kappa_{iii}^{4} - 6 \kappa_{iii}^{2} \kappa_{iiii}$$

Approximate minimization of the Mutual information

$$\operatorname{Min} I(p_z) \sim \operatorname{Max} \sum_i \kappa_{iii}^2 \text{ or } \operatorname{Max} \sum_i \kappa_{iiii}^2$$

▶ Maximization of diagonal terms in *symmetric* tensors κ_{ijk} or $\kappa_{ijk\ell}$

2004

- 8/35 -

I3S

P.Comon

Definition of Rank CAND

Any tensor can always be decomposed (possibly non uniquely) as:

$$T = \sum_{i=1}^{r} u(i) \circ v(i) \circ \dots w(i)$$

- Tensor rank $\stackrel{\text{def}}{=}$ minimal # of terms necessary
- This *Canonical decomposition* (CAND) holds valid in a *ring*
- The CAND of a multilinear transform = the multilinear transform of the CAND:
 - If $T \xrightarrow{\mathcal{L}} T' = T \bullet_1 A \bullet_2 B \bullet_3 C$,
 - then $(\boldsymbol{u}, \boldsymbol{v}, ..\boldsymbol{w}) \xrightarrow{\mathcal{L}} (\boldsymbol{A}\boldsymbol{u}, \boldsymbol{B}\boldsymbol{v}, ..\boldsymbol{C}\boldsymbol{w})$

-9/35 -

Spaces of tensors

dimensions

• \mathcal{A}_N : square asymmetric of dimensions N and order d $rac{d}{r}$ dimension N^d

■ S_N : square symmetric of dimensions N and order drightarrow dimension $D(N, d) = \binom{N+d-1}{d}$

	quadric	cubic	quartic	quintic	sextic
N\d	2	3	4	5	6
2	3	4	5	6	7
3	6	10	15	21	28
4	10	20	35	56	84
5	15	35	70	126	210
6	21	56	126	252	462

Number of free parameters in a symmetric tensor as a function of order d and dimension N

2004

-10/35 -

P.Comon

Ranks are difficult to evaluate

 $\mathbf{I3S}$

Clebsch theorem

Alfred Clebsch (1833-1872)

The generic ternary quartic cannot in general be written as the sum of 5 fourth powers

- D(3,4) = 15
- \blacksquare 3 *r* free parameters in the CAND
- But r = 5 is not enough $\rightarrow r = 6$ is generic

- 11/35 -

P.Comon

Literature Polynomials

Gauss'1825 Sylvester'1851 Cayley'1854 Clebsch'1861 Salmon'1874 Poincaré'1890 Hilbert'1900 Wakeford'1918 Grothendieck'1966 Dieudonné'1970 Shafarevich'1975

Ehrenborg, Mourrain, Kogan...

2004

-12/35 -

P.Comon

Literature N-Way arrays

I3S.

Tucker'1966 Harshman'1970 Caroll'1970 Kruskal'1977 Kroonenberg'1980 Leurgans'1993

Delathauwer, Sidiropoulos, ten Berge, Regalia, Bro, Stegeman, Golub, \ldots

- 13/35 -

P.Comon

Literature

Tensors & Polynomials

Howell'1978 Atkinson'1980 Strassen'1983 Rota'1984 Weinstein'1984 Lickteig'1985 Reznick'1992

Comon, Lim...

I3S.

2004

-14/35 -

P.Comon

Questions

- **1.** Maximal rank in \mathcal{S}_N or \mathcal{A}_N
- **2.** Generic rank S_N

3. Typical ranks of \mathcal{A}_N

4. Bounds on ranks

5. Rank and CAND of a given tensor

 ${\bf 6.}\ {\rm Extract}$ a large number of factors from a reduced-diversity array

7. Differences between \mathbb{R} and \mathbb{C}

P.Comon

Tensors and Polynomials Bijection

-15/35 -

• Symmetric tensor of order d and dimension N can be associated with a unique homogeneous polynomial of degree d in N variables:

$$p(\boldsymbol{x}) = \sum_{\boldsymbol{j}} T_{\boldsymbol{j}} \ \boldsymbol{x}^{\boldsymbol{f}(\boldsymbol{j})}$$
(1)

- integer vector \boldsymbol{j} of dimension $d \leftrightarrow$ integer vector $\boldsymbol{f}(\boldsymbol{j})$ of dimension N
- entry f_k of $\boldsymbol{f}(\boldsymbol{j})$ being $\stackrel{\text{def}}{=}$ #of times index k appears in \boldsymbol{j}
- We have in particular |f(j)| = d.

• Standard conventions $\boldsymbol{x}^{\boldsymbol{j}} \stackrel{\text{def}}{=} \prod_{k=1}^{N} x_k^{j_k}$ and $|\boldsymbol{f}| \stackrel{\text{def}}{=} \sum_{k=1}^{N} f_k$, where \boldsymbol{j} and \boldsymbol{f} are integer vectors.

$$\blacktriangleright Example: \mathbf{T} = \overbrace{\mathbf{f}}^{\bullet} \leftrightarrow p(\mathbf{x}) = 3 \mathbf{x}^{[2,1]} = 3 x_1^2 x_2$$

2004

-16/35 -

 $\mathbf{I3S}$

P.Comon

Orbits Definition

- **\blacksquare** General Linear group \mathcal{GL} : group of invertible matrices
- Orbit of a polynomial p: all polynomials q that can be transformed into p by $\mathbf{A} \in \mathcal{GL}$: $q(\mathbf{x}) = p(\mathbf{Ax})$.
- Allows to classify polynomials

Quadrics

quadratic homogeneous polynomials

- Binary quadrics $(2 \times 2 \text{ symmetric matrices})$
 - Orbits in \mathbb{R} : $\{0, x^2, x^2 + y^2, x^2 y^2\}$ $\Rightarrow 2xy \in \mathcal{O}(x^2 - y^2)$ in $\mathbb{R}[x, y]$
 - Orbits in \mathbb{C} : $\{0, x^2, x^2 + y^2\}$ $\Rightarrow 2xy \in \mathcal{O}(x^2 + y^2)$ in $\mathbb{C}[x, y]$

Set of singular matrices is closed

• Set \mathcal{Y}_r of matrices of at most rank r is closed

2004

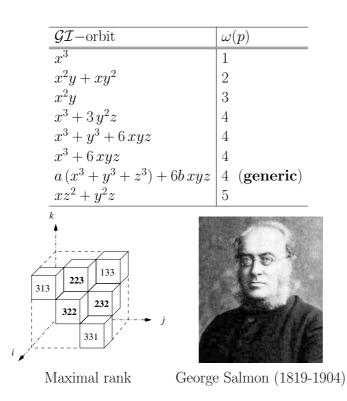
-18/35 -

P.Comon

Classification of ternary cubics

 $\mathbf{I3S}$

 $3 \times 3 \times 3$



Topology of polynomials definition

- Every elementary closed set $\stackrel{\text{def}}{=}$ varieties, defined by $p(\boldsymbol{x}) = 0$
- Closed sets = finite union of varieties
- Closure of a set \mathcal{E} : smallest closed set $\overline{\mathcal{E}}$ containing \mathcal{E}
- \blacktriangleright this is not Euclidian topology, called Zariski in $\mathbb C$

135

2004

-20/35 -

P.Comon

Genericity

Definitions proposed jointly with L-H.Lim

Intuitive

- A property is *typical* \Leftrightarrow is is true on a non zero volume set
- A property is *generic* \Leftrightarrow is is true almost everywhere

Mathematical

• r is not typical if (zero volume): \mathcal{Z}_r is contained in a non trivial closed set

or

r is a typical rank if (density argument with Zariski): \overline{Z}_r is the whole space

Generic rank: *the typical rank when unique*

-21/35 -

Tensor subsets

• Set of tensors of rank *at most* r with values in \mathbb{C} :

$$\mathcal{Y}_r = \{ \boldsymbol{T} \in \mathcal{T} : r(\boldsymbol{T}) \le r \}$$

• Set of tensors of rank *exactly* $r: \mathcal{Z}_r = \{ T \in \mathcal{T} : r(T) = r \}$

$$\mathcal{Z} = \mathcal{Y}_r - \mathcal{Y}_{r-1}, \ r > 1$$

Z₁ is closed *but not* Z_r , r > 1

Zariski closures: $\overline{\mathcal{Y}}_r, \overline{\mathcal{Z}}_r$.

 $\mathbf{I3S}$

2004

-22/35-

P.Comon

Example of sequence proving lack of closure of \mathcal{Y}_r for r > 1outlined by L-H.Lim

Sequence of rank-2 tensors converging towards a rank-3:

$$m{T}_n = m{x}_1 \circ m{x}_2 \circ (rac{1}{n} m{x}_3 - m{y}_3) + (m{x}_1 + rac{1}{n} m{y}_1) \circ (m{x}_2 + rac{1}{n} m{y}_2) \circ m{y}_3$$

In fact:

$${m T}_n = rac{1}{n} \left[{m x}_1 \circ {m x}_2 \circ {m x}_3 + {m y}_1 \circ {m x}_2 \circ {m y}_3 + {m x}_1 \circ {m y}_2 \circ {m y}_3
ight] + rac{1}{n^2} {m y}_1 \circ {m y}_2 \circ {m y}_3$$

Lek-Heng Lim

NB: even possible to jump from rank r to rank r + 2 (joint proof under development).

P.Comon

Generic rank in \mathbb{C}

joint work with B.Mourrain

Lemma (in either \mathbb{R} of \mathbb{C} , either symmetric or not) Strictly increasing series of $\overline{\mathcal{Y}}_k$ for $k \leq \overline{R}$, then constant:

$$\overline{\mathcal{Y}}_1 \subset_{\neq} \overline{\mathcal{Y}}_2 \subset_{\neq} \ldots \subset_{\neq} \overline{\mathcal{Y}}_{\overline{R}} = \overline{\mathcal{Y}}_{\overline{R}+1} = \ldots \mathcal{T}$$

which guarantees the existence of a unique \overline{R}

• Theorem 1 For tensors in \mathbb{C} If $r_1 < r_2 < \overline{R}$, then

$$\overline{\mathcal{Z}}_{r_1} \subset \overline{\mathcal{Z}}_{r_2} \subset \overline{\mathcal{Z}}_{\overline{R}} \tag{2}$$

Theorem 2 For tensors in \mathbb{C} If $\overline{R} < r_3 \le R$, then

$$\overline{\mathcal{Z}}_{\overline{R}} \supset \overline{\mathcal{Z}}_{r_3} \supseteq \overline{\mathcal{Z}}_R$$

 \triangleright Prove that \overline{R} is the generic rank in \mathbb{C}

2004

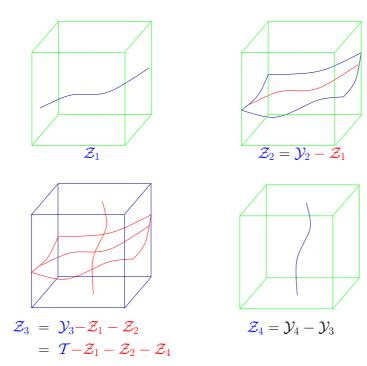
-24/35 -

 $\mathbf{I3S}$

P.Comon

Generic rank

e.g. binary quartics in $\ensuremath{\mathbb{C}}$



Generic rank in \mathbb{C}

symmetric tensors

	Generic rank n					Diff. of solution				
order d	2	3	4	5	6	2	3	4	5	6
dim. N										
2	2	2	3	3	4	1	0	1	0	1
3	3	4	6	7	10	3	2	3	0	2
4	4	5	10	14	22	6	0	5	0	4
5	5	8	15	26	42	10	5	5	4	0
6	6	10	22	42	77	15	4	6	0	0
7	7	12	30	66	132	21	0	0	0	0
8	8	15	42	99	215	28	0	6	0	4

Generic rank \overline{R} Dim. of solution

[Comon-Mourrain'1996]

2004

-26/35 -

P.Comon

Typical ranks in \mathbb{R}

 $\mathbf{I3S}$

Lack of uniqueness in $\ensuremath{\mathbb{R}}$

- Draw randomly entries of a tensor $\in \mathcal{T}(N, d)$ according to a distribution q(t)
- Typical ranks do not depend on q(t), if c.d.f. absolutely continuous (no point-like mass). Only volumes of Z_r do.
- Typical ranks depend on (N, d)
- **Example:** $2 \times 2 \times 2$ asymmetric tensors
 - drawn according to Gaussian symmetric \Rightarrow {2(57%), 3(43%)}
 - drawn according to Gaussian asymmetric \Rightarrow {2(80%), 3(20%)}

-27/35 -

P.Comon

Ranks in \mathbb{R} vs rank in \mathbb{C}

 \blacksquare $\forall T$ real tensor, rank in $\mathbb R$ always larger than rank in $\mathbb C$:

 $rank^{\mathbb{C}}(\boldsymbol{T}) \leq rank^{\mathbb{R}}(\boldsymbol{T})$

■ In particular:

generic rank \leq typical ranks

Example:

$$\boldsymbol{T}(:,:,1) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \boldsymbol{T}(:,:,2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

• If decomposed in \mathbb{R} , it is of rank 3:

$$\boldsymbol{T} = \frac{1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix}^{\circ 3} + \frac{1}{2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}^{\circ 3} - 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}^{\circ 3}$$

• whereas it admits a CAND of rank 2 in \mathbb{C} :

$$\boldsymbol{T} = \frac{\jmath}{2} \left(\begin{array}{c} -\jmath \\ 1 \end{array} \right)^{\circ 3} - \frac{\jmath}{2} \left(\begin{array}{c} \jmath \\ 1 \end{array} \right)^{\circ 3}$$

2004

$$28/35 -$$

P.Comon

Symmetric vs Asymmetric rank

 $\mathbf{I3S}$

joint work with L-H.Lim

• Let $T \in S$ symmetric tensor, and its CAND:

$$oldsymbol{T} = \sum_{k=1}^r oldsymbol{T}_k$$

where \boldsymbol{T}_k are rank-1.

Theorem

If the constraint $T_k \in \mathcal{S}$ is relaxed, then the rank is still the same

But T_k 's need not be each symmetric when solution is not essentially unique

-29/35 -

P.Comon

Bounds (1) asymmetric \mathbb{C}

• Tensors of order d and dimensions $(N_1, ..N_d)$:

• Upper bound

$$\left[\frac{\prod_{i=1}^{d} N_i}{1 + \sum_{i=1}^{d} (N_i - 1)}\right] \le \overline{R}$$

• Square case $K_i = N$:

$$N^d/(dN-d+1) \leq \overline{R}$$

• Lower bound (Square case):

$$N^d / (dN - d + 1) \le \overline{R}$$

2004

-30/35 -

I3S

P.Comon

Bounds (2) Symmetric \mathbb{C}

Lower bound

$$\left\lceil \frac{\binom{N+d-1}{d}}{N} \right\rceil \le \overline{R}$$

■ Upper bound [Reznick'92]

$$\overline{R} \leq \binom{N+d-2}{d-1}$$

P.Comon

Construction of the CAND (1)

2x2x...x2

Sylvester's theorem in \mathbb{R}

• A binary quantic $p(x, y) = \sum_{i=0}^{d} \gamma_i c(i) x^i y^{d-i}$ can be decomposed in $\mathbb{R}[x, y]$ into a sum of r powers as $p(x, y) = \sum_{j=1}^{r} \lambda_j (\alpha_j x + \beta_j y)^d$ if and only if the form

$$q_{c}(x,y) = \prod_{j=1}^{r} (\beta_{j} x - \alpha_{j} y) = \sum_{l=0}^{r} g_{l} x^{l} y^{r-l}$$

satisfies
$$\begin{bmatrix} \gamma_{0} & \gamma_{1} & \cdots & \gamma_{r} \\ \gamma_{1} & \gamma_{2} & \cdots & \gamma_{r+1} \\ \vdots & & \vdots \\ \gamma_{d-r} & \cdots & \gamma_{d} \end{bmatrix} \begin{bmatrix} g_{0} \\ g_{1} \\ \vdots \\ g_{r} \end{bmatrix} = 0.$$

and has distinct real roots.

- Valid even in non generic cases.
- Similar theorem in \mathbb{C} (cf. appendix)

2004

-32/35 –

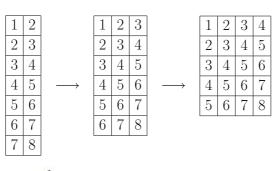
 $\mathbf{I3S}$

P.Comon

Construction of the CAND (2)

2x2x...x2

• Start with r = 1 ($d \times 2$ matrix) and increase r until it looses its column rank



2004

-33/35 -

- If rank sub-generic: use ALS or accelerations
- Otherwise, build another tensor of sub-generic rank: use BIOME algorithm

2004

-34/35 -

P.Comon

Future works Open questions

 $\mathbf{I3S}$

- How many typical ranks can exist for ℝ tensors? Conjecture: at most 2
- Algorithm to compute generic rank for $\mathbb C$ asymmetric tensors
- Maximal achievable ranks?
- What does "low-rank approximation" means for tensors when rank> 1?
- General algorithm for computing a CAND
- Definition of eigen-uplets of tensors

Appendix

2x2x...x2

Sylvester's theorem in \mathbb{C} A binary quantic $p(x, y) = \sum_{i=0}^{d} c(i) \gamma_i x^i y^{d-i}$ can be written as a sum of *d*th powers of *r* distinct linear forms:

$$p(x,y) = \sum_{j=1}^{r} \lambda_j \left(\alpha_j x + \beta_j y\right)^d, \tag{3}$$

if and only if (i) there exists a vector \boldsymbol{g} of dimension r+1, with components g_{ℓ} , such that

$$\begin{bmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_r \\ \vdots & & \vdots \\ \gamma_{d-r} & \cdots & \gamma_{d-1} & \gamma_d \end{bmatrix} \boldsymbol{g}^* = \boldsymbol{0}.$$
 (4)

and (ii) the polynomial $q(x,y) \stackrel{\text{def}}{=} \sum_{\ell=0}^r g_\ell x^\ell y^{r-\ell}$ admits r distinct roots

138