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ABSTRACT
This paper proposes an original approach to cluster multi-
component data sets with an estimation of the number of
clusters. From the construction of a minimal spanning tree
with Prim’s algorithm and the assumption that the vertices
are approximately distributed according to a Poisson distri-
bution, the number of clusters is estimated by thresholding
the Prim’s trajectory. The corresponding cluster centroids are
then computed in order to initialize the Generalized Lloy-
d’s algorithm, also known as K-means, which allows to cir-
cumvent initialization problems. Metrics used for measuring
similarity between multi-dimensional data points are based
on symmetrical divergences. The use of these informational
divergences together with the proposed method lead to bet-
ter results than some other clustering methods in the frame-
work of astrophysical data processing. An application of this
method in the multi-spectral imagery domain with a satellite
view of Paris is also presented.

1. INTRODUCTION

Consider a set V of N data points in RL, which we wish
to partition into K classes, without prior information (i.e. this
is an unsupervised classification).

Each data point (actually a vector in RL) can be conside-
red as a vertex in a graph. Our study restricts to acyclic to-
tally connected graphs of minimal length : the minimal span-
ning tree (MST). An easy way to segment the graph is to
realize some cuts in the connection graph. The segmentation
of the graph in K clusters will lead to remove the K− 1 lar-
gest connections. This method, based on single linkage clus-
tering, is known to be unstable, mainly when the data contain
outliers, or possibly when they are corrupted by noise.

In this communication, we propose to improve the popu-
lar generalized Lloyd’s algorithm (referred to as K-means)
by an automatic initialization of both the number of clus-
ters and corresponding centroids. Various methods have been
proposed to estimate the number of clusters present in a da-
taset, e.g. using statistical criteria like AIC, BIC, MDL, Tib-
shirani’s Gap, or indices such as Calinski & Harabasz’s in-
dex.Because of space limitation, these criteria will be discus-
sed in a full-length version of the paper. Actually, our ap-
proach relies upon Prim’s algorithm for constructing MST’s.
It is proposed to record each iteration characteristics (namely
which vertex is connected, and what is the length of the new
edge), in order to get an one-dimensional unfolded repre-
sentation of the underlying data probability density function.
The method will be developed in Section 2.

Furthermore, we address the problem of designing a mea-
sure of similarity between two data points. Instead of using
the popular Euclidean distance, we propose to define the si-
milarity as a measure of spectral variability between two pro-
bability density functions, by the use of informational diver-
gences. New metrics and motivation for resorting to informa-
tion based similarity measures will be investigated in Section
2. In Section 4, we present some unsupervised clustering re-
sults obtained in the frame of two applications : the taxono-
mic classification of asteroids, and the classification of ob-
jects in a multi-spectral satellite image.

2. AUTOMATIC INITIALIZATION OF POPULAR
CLUSTERING METHODS

2.1 Minimum Spanning Tree and Prim’s Trajectory
Let G = (V,E) be an undirected graph where V is the set

of N vertices and E denotes the set of edges. The length of
an edge measures the similarity between two vertices, and
depends on the choice of the metric. The graphs considered
herein are trees, that is, they are connected (i.e. every ver-
tex is connected to at least one other vertex) and acyclic (i.e.
there is no loop).

A spanning tree of G is a tree T passing through every
vertex of G. The power-weighted length of the tree T is the
sum of all edge lengths raised to a power γ ∈ (0,L), denoted
by : ∑e∈T |e|γ . The minimal spanning tree (MST) is the tree
which has the minimal length over all spanning trees

L (V ) = min
T ∑

e∈T
|e|γ

Among algorithms allowing to build a MST, one of the most
popular is Prim’s algorithm [10], the complexity of which is
O(N logN). The Prim’s algorithm connects to the partially
connected graph at iteration i the closest non connected ver-
tex (in the sense of a given chosen metric). The graph which
is determined is acyclic, unique (i.e. independent of the ini-
tial point of the construction of the graph) and of minimal
length.

Denote g(i) = |ei|, the length of a new edge built at ite-
ration i ; [g(i), i = 1 . . .N] is referred to as Prim’s trajectory.
Function g allows us to “unfold” the probability density func-
tion of points in L dimensions into a one-dimensional func-
tion. The latter exhibits some valleys in the neighborhoods of
high density : a set of close points is indeed connected thanks
to a sequence of successive iterations yielding short segments
(Fig. 1). The detection of valleys in the curve hence corres-
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FIG. 1 – Typical example : (top left) construction of a MST,
(bottom) Prim’s trajectory and threshold, (top right) extrac-
tion of the clusters

ponds to the detection of clusters. It allows to identify the
main modes of the probability density function, each mode
being associated with a cluster.

The choice of the threshold to be applied to g(i) is an im-
portant parameter, since it determines the main modes of the
probability density function. In [8], Michel et al. have pro-
posed to give the same cluster label to all vertices connected
sequentially, as long as the function g(i) stays below the thre-
shold. An empirical solution is proposed in [8] for setting the
threshold. In this paper, the number of modes and associated
centroids are required in our problem, in order to initialize
a classical algorithm (e.g. K-means). One possibility is to
arbitrarily set the threshold to the standard deviation of the
connections ε = std{ei}. Because the detection of modes (or
high density regions) is solely based upon finding the cen-
troid of vertices gathered into a valley of Prim’s trajectory,
the estimation of the threshold does not need to be very pre-
cise. For the sake of simplicity, the threshold has been chosen
to be constant over the entire Prim’s trajectory, but it could
vary from one cluster to another.

The question remains to determine the critical number
of points which could be considered as a cluster. Actually
for a given realization, some vertices can be gathered onto a
small neighborhood, even in the case where the theoretical
density does not exhibit any local maximum. Alternatively,
small clusters may correspond to noise effects and thus may
not be relevant. Thus, the number of modes tends to be ove-
restimated.

We propose to estimate automatically the minimum num-
ber of points above which one decides that a cluster is de-
tected as a function of the threshold applied on the Prim’s
trajectory. This estimation is realized in the framework of a
Neyman-Pearson approach. For each new connected vertex,
a binary hypothesis test is performed. Under the null hypo-
thesis, last connected vertices do not belong to some ’mode’
or cluster, and they are spread all over the neighborhood ac-
cording to a Poisson distribution (see below). Under the al-
ternative, the length of the edge that connects the new vertex
is too small to match with the null hypothesis.

FIG. 2 – Left : Ck denotes the contour of the support where
connected vertices are found. The neighborhood which is
considered for finding a vertex that could be connected to
vi is shown. In the limit of large N, this latter neighborhood
is the half sphere laying on the tangent (hyper)plane to Ck
(right).

Let vi be the vertex connected at iteration i. Consider an
L-dimensional space and a neighborhood of vi hereafter no-
ted B(vi,ε),with characteristic length ε . We suppose that the
vertices are approximately distributed according to a Poisson
distribution, with rate λεL. This is justified, since the latter is
the limiting distribution of the binomial. Both λ and B(vi,ε)
will be identified later.

We assume that under the null hypothesis H0, the density
does not exhibit any mode : the process is homogeneous over
its entire support V . Hence we can assess that λ is constant
over V . The probability that at least one vertex is found in
the neighborhood B(vi,ε) is given by

Fvi(ε) = 1− e−λεL

In the context of the Prim construction of the MST, Fvi(ε) can
also be considered as the probability to construct an edge of
length less than ε when connecting a new vertex to vi. Consi-
dering the asymptotic case where N is large, the neighbo-
rhood which must be considered here is the half sphere of
radius ε , as illustrated on the figure 2.

Let Pk,ε be the probability that exactly k vertices are
connected with edge lengths less than ε but the next edge
built is larger than ε :

Pk,ε =
(

1− e−λεL
)k

e−λεL

Suppose that at least k0 successive connections of length less
than the threshold value ε are required for considering that a
cluster is detected. Under H0, false alarm in the mode detec-
tion will arise for any occurrence of more than k0 successive
connections of length less than ε . Therefore, the expression
of the false alarm probability is given by

PFA(k0,ε) =
∞

∑
k≥k0

Pk,ε =
(

1− e−λεL
)k0

(1)

In the case where L-dimensional Euclidean spaces are
considered, the volume of the half sphere of radius ε is
BL(ε) = 1

2CLεL, where CL stands for the volume of the unit
ball in dimension L : CL = 2πL/2

LΓ(L/2) .

In this framework, under H0, consider the radius ε0 of a
sphere covering the set of all vertices ; λ is identified by the
set of equations

{
V = CLεL

0
λεL

0 = N =⇒ λ = CL
N
V (2)



FIG. 3 – Upper plot : k0 = f (ε) for PFA = 0.05 ; Lower
plot : Average size of false alarm detected cluster from
sets of uniformly distributed vertices over [0,1]2, and N =
128,256,512,1024 vertices respectively. Theoretical curve
(red) and numerical simulation (blue).

Finally, we get from equations (1) and (2)

PFA(k0,ε) =
(

1− e−CLεL N
V

)k0

This formula allows to determine the relationship between
k0 (minimum number of vertices that form a cluster) and the
threshold value ε in the framework of a Neyman-Pearson ap-
proach for cluster detection. Though these calculations were
derived under some rough simplifying assumptions, the ob-
tained results are close to what is obtained by numerical si-
mulations, as illustrated in Figure 31.

Though the next sections will introduce the usefulness of
informational divergences for the clustering problems, and
consequently formulate the Prim’s trajectory construction in
some evidently non-Euclidean space, the previous results
will still be applied as approximations. So far, we have no
evidence but the quality of our results for accepting these ap-
proximations. This will be the matter of a future work.

2.2 Choice of metrics
As already pointed out, the distance measure between

points plays a key role to characterize their similarity or dis-
similarity. In this paper, the physical data that are considered
are non-negative (they are homogeneous to a spectral mea-
sure), and may therefore be easily understood as behaving
like probability densities, up to some scale factor.

Let X = {x1, . . . ,xL} and Y = {y1, . . . ,yL} two feature
vectors, e.g. corresponding to a pixel in the imagery domain

1The average size of a false alarm cluster can be shown (this will be
published elsewhere) to be expressed as :

< k >= 2sinh
(

CL

2
N
V

εL
)

or to a reflectance spectrum in astrophysics. The most po-
pular distance used to characterize similarities between two
points is the Euclidean distance. Though this metric enjoys
usefull properties (symmetry, non-negativity, triangular in-
equality), it turns out not to be the perfect measure of distance
that one can think of to calculate similarities. This distance
indeed has the following drawbacks : (i) it increases when
the dimension of the data (e.g. number of wavelengths) in-
creases ; (ii) it does not handle cases when spectra contain
missing values at some wavelengths, (iii) it gives essentially
a spatial distance, and does not take into account the positi-
vity of data. For these reasons, following the works of Chang
[4], we prefer information divergences as measures of simi-
larity.

First, at a given wavelength λi, each data point is associa-
ted with a (positive) normalized quantity : x̃i = xi/∑L

j=1 x j.
Let X̃ = {x̃1, . . . , x̃L} and Ỹ be defined accordingly. X̃ (resp.
Ỹ ) can be interpreted as the probability distribution that a cer-
tain amount of information has been captured (measured) at
the wavelength λi.

Next, our goal is now to measure the similarity between
these two probability density functions. Using the popular
symmetrized Kullback-Leibler divergence [5] leads to :

dKL(X ||Y ) =
L

∑
i=1

(x̃i− ỹi) log
x̃i

ỹi
(3)

It corresponds to the relative entropy of Ỹ with respect to X̃ .
This information divergence is widely used in Information
Theory, and is strongly related to the Shannon theory (see
e.g. [5]).

Alternatively, the symmetrized Rényi divergence of order
α (0 < α < 1) can similarly be used as a spectral measure :

dα(X ||Y ) =
1

α−1

(
log

L

∑
i=1

x̃i
α ỹi

1−α + log
L

∑
i=1

ỹi
α x̃i

1−α

)

(4)
Properties and advantages of the Rényi α-divergence have
been detailed by Hero et al. [7]. Note that when α tends to
1, the α-divergence (4) converges to the Kullback-Leibler
divergence (3). When α = 1/2, the α-divergence matches
with the Hellinger affinity d1/2(X‖Y ) or Hellinger distance
which is often used to assess how close a probability den-
sity is to a reference one. As the Bayes optimal exponential
rate of decay of the decision error in a binary test (i.e.’is this
spectrum almost identical to this other one ?’) involves the
α-divergence of order 1/2 [7], only the value α = 1/2 will
be considered in the following.

These metrics have been used to determine similarity bet-
ween points in order to form the MST. In the clustering part
of our algorithm, we use the K-means algorithm (minimiza-
tion of the squared error function between the points and the
centroids). This classical partitioning algorithm can also be
adapted to match the metric used in the construction of the
tree [1]. Nevertheless, in our approach, we have only focused
our interest on the initialization of K-means.

3. IMPLEMENTATION OF MST’S FOR LARGE
SETS OF DATA

Suppose that the pairwise distance or affinity between
vertices is known. The construction of an MST requires to



sort the lengths of all possible edges. This operation requires
Comp.sort = O(N log(N)) logical operations (e.g. by using
the “quick-sort” algorithm). Thus the overall computational
cost is mostly due to the computation of all the distances.
This becomes prohibitive for large datasets, since it would
lead to a computational burden of Comp.dist = O(LN2/2)
flops.

This is avoided by using a pre-conditionning data driven
hierarchical classification tree, which could be learned from
a small randomly chosen subset of R data2. The latter clas-
sification tree allows to identify neighborhoods of each ver-
tex by comparing the vertex coordinates along each of the
L dimensions to sets of thresholds. The size of the neighbo-
rhood can be set up in such a way that in the average, each
neighborhood counts around M vertices. Consequently, the
number of pairwise distances that need to be evaluated is of
the order of M2/2. This algorithm will be discussed in an ex-
tended version of this paper, and leads to a maximal compu-
tational burden expressed by Comp.dist = O(NLM2/2) flops
and Comp.sort = O(NM logM). Assuming that M is set such
that M2 & N, the computational load is thus significantly lo-
wered. In the next sections, construction of MST using this
algorithm will be referred to as ‘Nearest-Neighbor MST’.

4. RESULTS

The first application deals with the taxonomic classifica-
tion of asteroids, by using reflectance measures at different
wavelengths ; the second application concerns the segmenta-
tion of a multi-spectral image of Paris surroundings.

4.1 Astrophysical data
Here we report the results obtained on astrophysical data,

by comparing several clustering methods. Different simila-
rity measures have been used for constructing Prim’s trajec-
tories. In order to provide some comparisons with an alterna-
tive existing method, clustering results obtained with the so-
called spectral clustering [11] approach are given. The spec-
tral clustering algorithm used is that of Ng et al. [9] based on
an eigen-decomposition of the normalized Laplacian of the
graph. The affinity which is considered in the latter case re-
lies upon a new metric introduced recently by Grishkat et al.
[6], which uses hitting time of Prim’s trajectories rooted at
each vertex. Some tests have been realized with symmetrical
divergences as similarity measures in the spectral clustering
algorithm, and are not reported here. On one hand, they have
not been proved to be able to handle non-euclidean cases ; on
the other hand, the results obtained were not better than those
reported in table 1. Note that this algorithm will not be detai-
led here, as it is only mentioned for providing a comparison
to the one proposed in this paper.

The asteroid data are reflectances measured at different
wavelengths, from which a mineralogic classification of the
asteroid is seeked. More details on the physics underlying the
classification problems are in [8].

The Small Main Belt Asteroid Spectroscopic Survey
phase II (SMASSII) contains spectra of 1341 asteroids re-
corded in the band 0.44 and 0.92 µm. It has been used as
a reference for the Bus and Binzel taxonomy [3]. To make
a fair comparison with the supervised classification method
proposed on this survey [12], we kept only spectra which do

2The hierarchical tree requires O(LR logR) logical operations.

not contain missing values ; hence the survey reduces to 1329
asteroids spectra.

A cluster C will be associated with the taxonomic class
Tax (defined by Bus and Binzel) which has the largest over-
lapp with C. Let us define some variables : NC represents
the cardinal of C, NTax the cardinal of Tax and Ninter the
cardinal of the intersection of C and Tax.

A clustering validity index is defined as Score =
Ninter/NTax. Score characterizes the ratio of asteroids be-
longing to a taxonomic class and that are correctly labeled.

Clustering Methods Score
Nearest Neighbor MST (Euclidean) + K-means 815/1329 = 61,32%

Nearest Neighbor MST (Kullback-Leibler) + K-means 976/1329 = 73,44%
Nearest Neighbor MST (Rènyi) + K-means 972/1329 = 73,14%

Spectral Clustering [9] 878/1329 = 66,06%
Spectral Clustering (Dual Rooted Hitting Time) [6] 913/1329 = 68,69 %

K-Nearest Neighbor [12] 777/1329 = 58,46 %
K-means (randomly initialized) 773/1329 = 58,16%

TAB. 1 – Synthesis of results obtained on SMASSII

From the table 1, we see that properly initialized K-
means used simultaneously with informational divergence
based affinity measures outperforms previously proposed ap-
proaches.

4.2 Multi-spectral image of Paris
In this experiment, 4 (512× 512) images of the same

scene are available ; each image is recorded from a device
operating at a different wavelength (more precisely, around
a different wavelength). The affinity measure is based upon
the Kullback-Leibler divergence between the (4-points) spec-
tra associated to each pixel. Image registration problems are
not tackled here, and it is supposed that the images are per-
fectly registered. Figure 4 illustrates this. The proposed algo-
rithm (Prim based initializing of K-means clustering method)
is tested on this multi-spectral image, where each vertex is
nothing but a 4-points spectrum. For avoiding to deal with
5122 vertices, the Nearest Neighbor MST algorithm depic-
ted in section 3 is applied to an image which has been sub-
sampled by a factor of 4. Figure 5 shows the obtained results :

FIG. 4 – Multi-spectral image of Paris composed by multi-
components

8 clusters are identified, from which 3 are easy to unders-
tand. Cluster 2 contains the pixels that are characteristic from
trees and grass regions. Therefore, one can recognize recrea-
tion areas and natural parks in Paris surroundings (Boulogne,
Vincennes). Cluster 3 exhibits the ’water areas’ in Paris, and



the Seine river together with some known ponds is easily ex-
tracted. Cluster 4 is clearly associated with roads, asphalt and
concrete. Other clusters cannot be fairly interpreted without
cross analysing our results with e.g. pollution imaging or gas
detection systems. This very rough unsupervised approach
leads to think that the proposed method is very promising.
Note that a similar approach using Euclidean distances was
tested and led to gather ’water pixels’ and ’green pixels’ as
belonging to the same cluster.

FIG. 5 – Clusters obtained on the multi-spectral image of
Paris

5. CONCLUSION AND FUTURE WORKS
In this paper, we have proposed an original approach for

clustering multi-dimensional data. The method is based on
the estimation of the number of clusters from the construc-
tion of a minimum spanning tree, in order to provide the ini-
tialization parameters of classical K-means algorithm. New
criteria are derived for setting the false alarm rate (power) of
a test over the Prim’s trajectory associated with a MST built
over the set of data. We assumed that the vertices are dis-
tributed according to a Poisson distribution, in the absence

of additional information. Should prior information be avai-
lable, this reasoning could be extended to other distributions.
The usefulness of the information divergence based affinity
measure is illustrated throughout many examples taken from
astrophysical field or multi-spectral image analysis. In this
paper, the threshold value is constant along the Prim’s tra-
jectory. We can think of setting up a variable threshold as a
function of connected segments.

Some improvement in the understanding of the behavior
of Prim’s trajectory for vertex distributions exhibiting dif-
ferent modes are under study, and will allow to define clusters
and labels directly from the MST, without resorting to e.g.
K-means. In the case of hyper-spectral images, the proposed
method will also require to be developed onto some lower
dimensional subspace. Dimension reduction and its relation-
ship to spectral clustering methods applied to graphs using
information divergence or MST-based distances must be in-
vestigated [2].

REFERENCES
[1] A. Banerjee, S. Merugu, I. S. Dhillon and J. Gosh, “Cluste-

ring with Bregman Divergences," Journal of Machine Lear-
ning Research, vol. 6, pp. 1705 – 1749, 2005.

[2] M. Belkin and P. Niyogi. “Laplacian eigenmaps for dimen-
sionality reduction and data representation", Neural Compu-
tation, vol. 15, no. 6, June 2003, pp. 1373-1396.

[3] S. J. Bus and R. P. Binzel. “Phase II of the Small Main-Belt
Asteroid Spectroscopic Survey : The Observations", Icarus,
vol. 58, no. 1, Jul. 2002, pp. 146–177.

[4] C. -I. Chang. “An information-theoretic approach to spec-
tral variability, similarity, and discrimination for hyperspectral
image analysis", IEEE Transactions on information theory,
vol. 46, no. 5, Aug 2000.

[5] T. Cover and J. Thomas, Elements of Information Theory :
John Wiley and Sons, Inc., 1991.

[6] S. Griskschat, J. A. Costa, A. O. Hero and O. J. J. Michel.
“Dual rooted-diffusions for clustering and classification on
manifolds, ” in Proc. ICASSP 2006, Toulouse, France, May
14-19. 2006

[7] A. Hero, B. Ma, O. Michel and J. Gorman, “Applications of
Entropic Spanning Graphs", IEEE Signal Processing Maga-
zine, vol. 19, no. 5, pp. 85–95, 2002.

[8] O. J. J. Michel, P. Bendjoya and P. RojoGuer, “Unsupervised
clustering with MST : Application to asteroïd data, ” in Proc.
Physics in Signal and Image Processing (PSIP) 2005, Tou-
louse, France, January 31-February 2. 2005.

[9] A. Y. Ng, M. I. Jordan and Y. Weiss, “On Spectral Clustering :
Analysis and an algorithm, ” in Proc. Neural Information Pro-
cessing Systems (NIPS) 2001, Vancouver, Canada, December
3-8. 2001.

[10] R. Prim, “Shortest connection networks and some generali-
zations," Bell Syst. Tech. J., vol. 36, pp. 1389–1401, 1957.

[11] J. Shi and J. Malik, “Normalized cuts and image segmenta-
tion," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 888–905, Aug. 2000.

[12] J. Warell and C.-I. Lagerkvist, “Asteroid taxonomic classifi-
cation in the Gaia photometric system," Astronomy and As-
trophysics, vol. 467, no. 2, pp.749–752, May 2007.

ACKNOWLEDGMENT
The authors thank the anonymous reviewers whose helpful
comments contributed to improve the paper.


