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Abstract

In this paper a blind MIMO space-time equalizer is described, dedicated to convolutive mixtures when observations

have been pre-whitened. Filters preserving space-time whiteness are paraunitary; a parameterization of such filters

is proposed. Theoretical developments then lead to a numerical algorithm that sweeps all pairs of delayed outputs.

This algorithm involves the solution of a polynomial system, whose coefficients depend on the output cumulants.

Simulations and performance of the numerical algorithm are reported.
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1. Introduction

In actual digital communication systems, the
equalization problem is solved using learning se-
quences. These sequences, known by transmitter
and receiver, permit to estimate channel parame-
ters. Nevertheless, in the future, learning sequences
may be seen as reducing the throughput, because
they occupy a non negligible space in transmitted
sequences. Hence less actual information is trans-
mitted, i.e. useful data rate is lower than system
data rate. Next, in some situations, e.g. intercep-
tion in electronic warfare, learning sequences exist
but are not known to the receiver.

Blind separation methods for Multiple-Input
Multiple-Output (MIMO) channels have raised
an increasing interest for digital communications
since they do not need learning sequences. Most
blind MIMO equalization techniques use High
Order Statistics (HOS) for separating signals
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[1,2,3,4,5,6,7,8]. This can be implicit through con-
stant modulus [9,10,11,12] or constant power [13]
criteria. Purely deterministic approaches also ex-
ist and exploit either the finite alphabet property
[14,15,16] or the presence of another diversity in
addition to time and space [17,18].

Our main contribution consists of a block algo-
rithm dedicated to blind MIMO equalization and ex-
ploiting HOS of observations [19]. The particularity
of our method is that it is based on a factorization
of paraunitary filters [20], as suggested in [21,22].
The paraunitary condition is not very restrictive
since prewhitening can always be performed in a first
stage (in a non unique manner) even if it is not al-
ways an obvious operation [23,22,24,25]. Moreover,
the algorithm designed herein can be implemented
either “on-line” or “off-line”. More precisely, our al-
gorithm can run iterations on a single given block
until convergence, or on the contrary, run a new it-
eration after each symbol arrival. Convergence of
on-line algorithms is known to be much longer in
terms of number of symbols required (typically sev-
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eral thousands of symbols).
Note that algorithms dedicated to paraunitary

channels as in [26] or PAJOD [27], have already been
proposed. Unfortunately, the paraunitary constraint
was not accurately verified in [27], especially at low
SNR, because the channel was parametrized with a
semi-unitary matrix.

The paper is organized as follows. In the second
section, model and hypotheses are presented. The
parameterization of MIMO paraunitary filters is in-
troduced in Section 3, and input-output cumulant
relations are established. A contrast criterion is pro-
posed in Section 4, for finding equalizer parame-
ters and separating source signals. An iterative al-
gorithm built from previous theoretical results is de-
scribed in the fifth section. The core of the algo-
rithm is a Jacobi-type iteration, in which all possible
Givens rotations in the parameterization of the pa-
raunitary filter are swept until convergence. Finally,
the performance for various Signal-to-Noise Ratios
is illustrated in the last section.

2. Model and notations

Throughout the paper, (T) stands for transposi-
tion, (H) for conjugate transposition, (∗) for complex
conjugation, and  =

√
−1. Also denote by Z the set

of integers, by N the subset of positive integers and
by z−1 the time-delay operator. Vectors and matri-
ces are denoted with bold lowercase and bold up-
percase letters respectively. The entries of matrix G

are denoted Gij , where subscript ij denotes the i-th
row and the j-th column of G.

Let us consider a digital communication system
of N antennas and N receivers in a multipath envi-
ronment. Let s(n) = (s1(n), . . . , sN (n))T denote the
N −dimensional source vector of baseband complex
signals at time n and w(n) = (w1(n), . . . , wN (n))T

the N − dimensional observation vector. Let C[z]
be the transfer function of the Linear Time Invari-
ant (LTI) mixing channel and {C(k), k = 0, . . . , K}
be the sequence of N × N matrices of the complex
Finite Impulse Response (FIR) of the channel. We
then have:

w(n) =

K∑

k=0

C(k)s(n − k) (1)

where K denotes the memory length of the channel.
Also denote

C[z] =

K∑

m=0

C(m)z−m. (2)

The case of instantaneous mixtures is not considered
in the present paper, since already addressed via
pairwise processing by various authors since 1991.
Thus, it will be assumed that K > 0.

The multichannel blind deconvolution problem
consists of finding a LTI filter H [z], i.e. the equalizer,
in order to retrieve the N input signals si(n), i ∈
{1, . . . , N}, ∀n ∈ Z, solely from the observation of
the outputs w(n) of the unknown LTI channel C[z].

Let ŝ(n) = (ŝ1(n), . . . , ŝN (n))T be the N -
dimensional estimated source vector. This means,
with the above notation:

ŝ(n) =

L∑

l=0

H(l)w(n − l) (3)

where L is the memory length of the equalizer, or,
as a function of original sources themselves:

ŝ(n) =

K+L∑

m=0

G(m)s(n − m), (4)

where G[z] denotes the global filter G[z] =
H [z]C[z] (see fig 1 below).

Fig. 1. Global system G: sources si are filtered by channel
C[z] and observations wi are equalized by H[z].

Definition 1 Paraunitarity. A square polyno-
mial matrix H [z] ∈ CN×N is said to be paraunitary
[21] if

HH[1/z∗]H[z] = IN = H[z]HH[1/z∗] (5)

where IN ∈ RN×N is the identity matrix.
In this paper, we assume the following hypothe-

ses:
(H1) Inputs si(n), ∀i ∈ {1, . . . , N}, ∀n ∈ Z, are mu-

tually independent and identically distributed
(i.i.d.) zero-mean random processes, with unit
variance.
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(H2) Vector s(n) is stationary up to the considered
order r, r ≥ 3, i.e. ∀i ∈ {1, . . . , N}, the order-
r marginal cumulants,

C
q
p [si] = Cum[si(n), . . . , si(n)

︸ ︷︷ ︸

p terms

, s∗i (n), . . . , s∗i (n)
︸ ︷︷ ︸

q=r−p terms

]

do not depend on n. For definitions of cumu-
lants, refer to [28] and references therein.

(H3) thr At most one source has a zero marginal
cumulant of order r.

(H4) C[z], H[z], and hence G[z] = H[z]C[z] are all
paraunitary. Thus we have the global relation:

H[z]C[z]CH[1/z∗]HH[1/z∗] = IN . (6)

Remark 2 Hypothesis H4 is not restrictive. In-
deed, one can always whiten the observations by
using a filter that factorizes the second-order power
spectrum, i.e. a classical prewhitening of the obser-
vations [23,22]. In other words, paraunitary filters
are relevant after a space-time standardization of
observations (second order white with unit covari-
ance). The way space-time whitening is implemented
is out of the scope of this paper, and it is assumed
that observations w(n) are space-time white.

As is now well known, statistical independence of
ŝi can only allow to blindly recover the sources up to
a permutation matrix P , and a diagonal delay filter
Λ[z], so that H[z]C[z] = Λ[z]P .

3. Equalization

We introduce in this section the global parame-
terization of the paraunitary equalizer, which will
allow in Section 5 an implementation in terms of
Givens rotations.

3.1. Parameterization

From our observation model and from hypotheses
described in Section 2, we have a first proposition:
Proposition 3 Let H[z] ∈ CN×N be a FIR parau-
nitary filter of MacMillan degree 1 λh. Then matrix
H[z] can be factorized (non uniquely) as the product:

H[z] = A[z]QB[z] (7)

where Q ∈ CN×N is unitary and A[z] and B[z] are
FIR paraunitary filters of MacMillan degree ℓA and

1 The McMillan degree of a paraunitary filter is also the
degree of its determinant [21, p. 737].

ℓB respectively, with 0 ≤ ℓA ≤ λh, 0 ≤ ℓB ≤ λh,
ℓA + ℓB = λh .

PROOF. The proof is trivial since we can ex-
tend the paraunitary factorization of [29] to the
N−dimensional complex case:

H [z] = Q0Z[z]Q1 . . .Z[z]Qλh−1Z[z]Qλh
(8)

where Qp ∈ CN×N are unitary for p ∈ {0, . . . , λh},
λh is the McMillan degree of H [z], and Z[z] denotes
the N × N diagonal matrix

Z[z] =




IN−1 0

0 z−1



 . (9)

Thus, for 0 < ℓA ≤ p, we have

A[z] = Q0Z[z] . . .Qp−1Z[z] (10)

and for 0 < ℓB ≤ λh − p, we have

B[z] = Z[z]Qp+1 . . . Z[z]Qλh
. (11)

When ℓA = 0 (respectively ℓB = 0), we can replace
A[z] (respectively B[z]) by IN . Then, for a fixed p,
any paraunitary filter of of MacMillan degree λh can
be factorized like in (7).

3.2. MIMO relations

In the remaining, we assume the following nota-
tion for fourth order cumulants, e.g. cumulants of
vector w,

Γw
eg,fh(ν) = Cum[we(n − ν1), w

∗
f (n − ν2), wg(n − ν3), w

∗
h(n − ν4)](12)

where e, f, g, h take their values in {1, . . . , N}, and
νi ∈ N, ∀i ∈ {1, . . . , 4}.

Now, consider the following input-output rela-
tions for the convolutive model

ŝi(n) =

lA∑

m=0

N∑

r=1

N∑

q=1

Aiq(m)Qqrxr(n − m), (13)

and

xr(n − m) =

lB∑

l=0

N∑

s=1

Brs(l)ws(n − m − l). (14)

From (13) and thanks to the multilinearity property
of cumulants, we can express the input-output rela-
tions between cumulants of input x and output ŝ,

Γŝ
ik,jl =

∑

abcd

∑

τ

∑

qrst

Aiq(τ1)A
∗
jr(τ2)Aks(τ3)A

∗
lt(τ4)QqaQ∗

rbQscQ
∗
tdΓ
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with τ = (τ1, τ2, τ3, τ4). Since ŝ is the output of
filter A[z]Q, the range of each τi is [0, . . . , ℓA] and
all indices a, b, c, d, i, j, k, l, q, r, s, t take their values
in {1, . . . , N}. Then, we can write a similar relation
between cumulants of input w and output x,

Γx
ac,bd(τ ) =

∑

ρ

∑

efgh

Bae(ρ1)B
∗
bf (ρ2)Bcg(ρ3)B

∗
dh(ρ4)Γ

w
eg,fh(τ + ρ)(16)

with ρ = (ρ1, ρ2, ρ3, ρ4). Here, the range of each ρi

is [0, . . . , ℓB] since inputs are filtered by B[z].

3.3. Construction of Qp

Matrices Qp involved in the paraunitary factor-
ization (8) are unitary. It is well known that any
N × N unitary matrix can be written as a product
of M = N(N − 1)/2 Givens rotations [30, p. 215]
U(i, j, θ, φ) with 1 ≤ i < j ≤ Nand

U(i, j, θ, φ) =















In1

... 0
... 0

· · · cos θ · · · sin θeφ · · ·

0
... In2

... 0

· · · − sin θe−φ · · · cos θ · · ·

0
... 0

... In3















i

j

where n1+n2+n3 = N−2. These unitary rotations
allow to develop a Jacobi-type iteration algorithm
for equalizer (7).

Since we use Givens matrices, we can make 2 re-
marks.
Remark 4 For N = 2, unitary matrix Qp consists
of a single rotation

Qp =




cos θp sin θpe

φp

− sin θpe
−φp cos θp



 . (17)

Then, only one pair of angles (θp, φp) is needed for
each Qp. Hence, when more than two signals are
observed, it is also possible to use a deflation-type
algorithm [31].
Remark 5 Proposition 3 tells that λh + 1 unitary
matrices are used to obtain a complete factorization
of the equalizer. For instance, the 2 × 2 length-1 pa-
raunitary filter defined by diag(H[z]) = [−z−1, z−1]
and 0 elsewhere, needs λh = deg[det(H[z])] = 2 di-
agonal matrices Z[z]. Indeed, H[z] has the following
factorization

H[z] = Q2.Z[z].Q1.Z[z].e π
2 (18)

where Q
2
=




0 1

−1 0



 and Q
1
=




0 

 0



, i.e. (θ2 =

π
2 , φ2 = 0) and

(
θ1 = π

2 , φ1 = π
2

)
.

The exponential is part of the unknown matrix
Λ[z]P , an indetermination inherent in the problem
as explained in Section 2. It is also true for L ≥ 1
since we can group all exponentials in a single matrix
Λ[z]P . Thus, reflections, e.g. diag(Q) = [1,−1],
are covered by the parameterization of Proposition
3, thanks to the inherent indeterminacy. The pa-
rameterization (7) is thus complete.

4. Optimization criterion

Let us start this section with two key definitions.
The first definition deals with the set of filters that
do not affect the independence of sources, a key
point of blind source separation methods. The sec-
ond definition describes the main properties of a
contrast, i.e. an optimization criterion for separat-
ing signals.

Definition 6 Trivial filters. The set S of source
processes is characterized by assumptions, such as
H1. One defines the set T of trivial filters, as con-
taining all filters that do not affect these assump-
tions. In other words, S is stable by the operation of
T . For instance, filters of the form Λ[z]P , where P

is a permutation matrix, and Λ[z] a diagonal filter,
do not affect mutual independence between compo-
nents of s(n). If in addition s(n) is an i.i.d. non
Gaussian process, Λ[z] should contain only pure de-
lays, integer multiples of the sampling period, and
fixed complex factors; in other words, the entries of
Λ[z] are of the form γzk, with k ∈ Z and |γ| = 1.

Definition 7 Contrast. Let H be a set of filters,
and denote H · S the set of standardized linear pro-
cesses obtained by operation of filters of H on pro-
cesses of S. Denote I the identity matrix. An opti-
mization criterion, Υ(H; w), will be referred to as
a contrast for H ∈ H, w ∈ H · S, if it satisfies the
three properties below [2]:
– Invariance: The contrast should not change

within the set of acceptable solutions, which
means that ∀w ∈ H·S, ∀H ∈ T then Υ(H; w) =
Υ(I; w).

– Domination: If sources are already separated,
any filter should decrease the contrast i.e. ∀w ∈ S,
∀H ∈ H, then Υ(H; w) ≤ Υ(I; w).
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– Discrimination: The maximum contrast should
be reached only for filters linked to each other via
trivial filters: ∀w ∈ S, Υ(H ; w) = Υ(I; w) ⇒
H ∈ T .
Now, let us focus on the contrast used to carry

out the equalization of the system. We can separate
signals blindly by using an approach based on High
Order Statistics. Indeed, since fourth-order cross-
cumulants are a good measure of statistical indepen-
dence, we can build a contrast based on these values
[2]:
Proposition 8 Consider sources having kurtosis of
the same sign ǫ, ǫ = ±1. Then, the source separa-
tion can be performed solely from channel outputs by
maximizing the following contrast

Υ1,4 = ǫ

N∑

i=1

Γŝ
ii,ii (19)

where cumulants of ŝ are defined by

Γŝ
ii,ii =

∑

abcd

∑

τ

∑

qrst

Aiq(τ1)A
∗
ir(τ2)Ais(τ3)A

∗
it(τ4)QqaQ∗

rbQscQ
∗
tdΓ

x
ac,bd(τ ).(20)

Hence, in order to estimate H[z], the optimization
problem can be rewritten as:

H = Arg max
Q

Υ1,4 (21)

where Q stands for the set of all Qp.
It has been proved in [2] that Υ1,4 is a contrast.

We maximize Υ1,4 with respect to each pair (θ, φ)
in turn. The sequence of values of Υ1,4 obtained
this way is monotonically increasing. Since it is also
bounded above, it converges. Figure 2) is an exam-
ple of such a behaviour.

5. A Jacobi-type algorithm

In this section we detail an iteration of the algo-
rithm for one pair (θ, φ) of Givens rotation. Then,
as in Jacobi sweeping algorithms for matrices [30],
we sweep M = N(N − 1)/2 pairs for each unitary
matrix Qp.

5.1. Processing a pair of outputs

For the sake of clarity, we drop index p. We have
to find all pairs (θ, φ) that maximize (19), the other
pairs being fixed. To reach this goal, (20) is simpli-
fied firstly by expanding it, and secondly by collect-
ing terms involving θ or φ. In this manner, we obtain

Fig. 2. Typical evolution of contrast Υ1,4 for 25dB of SNR
and length-3 equalizer.

the output cumulants of ŝ as a linear combination
of terms of the form cosα θ sin4−α θeηφ. More pre-
cisely:

Γŝ
ii,ii =K(0)

(4) cos4 θ + K(1)
(3) cos3 θ sin θeφ + K(−1)

(3) cos3 θ sin θe−φ +

+K(2)
(2) cos2 θ sin2 θe2φ + K(−2)

(2) cos2 θ sin2 θe−2φ + K(1)
(1) cos

+K(−1)
(1) cos θ sin3 θe−φ + K(3)

(1) cos θ sin3 θe3φ + K(−3)
(1) cos θ

+K(0)
(0) sin4 θ + K(4)

(0) sin4 θe4φ + K(−4)
(0) sin4 θe−4φ

+K(2)
(0) sin4 θe2φ + K(−2)

(0) sin4 θe−2φ.

where

K(η)
(α)e

ηφ =
∑

τ

Aiq(τ1)A
∗
ir(τ2)Ais(τ3)A

∗
it(τ4)Γ

x
ac,bd(τ).(23)

According to (17), (20) and (23), each coefficient

K(η)
(α) depends on indices a, b, c, d and q, r, s, t and as

the product QqaQ∗
rbQscQ

∗
td gives an expression of

the form cosα θ sin4−α θeηφ with α ∈ {0, . . . , 4} and
η ∈ {±1,±2,±3,±4}; let η = 2β + α − 4, we get

Γŝ
ii,ii =

4∑

α=0

4−α∑

β=0

K(2β+α−4)
(α) cosα θ sin4−α θe(2β+α−4)φ.(24)

Remark 9 Computing each Γŝ
ii,ii without simplifi-

cations require a total of (L + 1)4N8 loops (equa-
tion (20)). Thus, readers can find an implementa-
tion trick in Appendix A for reducing this number
of loops to ((L + 1)N)4. Moreover, the method de-
tailed in Appendix A uses less memory for storing
matrices. Only the cumulant tensor Γx

ac,bd(τ ), which
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is computed at the beginning of each loop, needs a
large memory, i.e. up to N4(L + 1)4 values to store.

Next, we make the change of variables: cosφ =
1−t2

1+t2
, sinφ = 2t

1+t2
with t = tan φ

2 , and cos θ =
1√

1+u2
, sin θ = u√

1+u2
with u = tan θ. Thus, the

numerator and the denominator of the polynomial
obtained are both of degree 8 in variable t and 4 in
variable u. For maximizing contrast (19) , we have
to find roots of polynomial system (25), i.e. station-
ary points of Υ1,4, obtained by canceling the partial
derivatives:

Φ1(u, t)
def
=

∂Υ1,4

∂u

Φ2(u, t)
def
=

∂Υ1,4

∂t






(25)

After some simplifications, e.g. obvious root u =
0 in Φ2(u, t), polynomials obtained have different
global degrees: degree 12 for Φ1(u, t) (leading mono-
mial is t8u4), and degree 11 for Φ2(u, t) (leading
monomial is t8u3). Then we consider only variable
u for Φ1(u, t) and Φ2(u, t), and we collect terms of
same degree in u. Hence, system (25) can be rewrit-
ten

Φ1(u, t) =
∑4

k=0 χ4−k(t) uk

Φ2(u, t) =
∑3

k=0 ξ3−k(t) uk






(26)

The polynomial system (26) admits a solution
if and only if the resultant, i.e. determinant of a
Sylvester matrix, is null [32]. Thus, we obtain the
determinant to solve
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ξ0(t) 0 0 0 χ0(t) 0 0

ξ1(t) ξ0(t) 0 0 χ1(t) χ0(t) 0

ξ2(t) ξ1(t) ξ0(t) 0 χ2(t) χ1(t) χ0(t)

ξ3(t) ξ2(t) ξ1(t) ξ0(t) χ3(t) χ2(t) χ1(t)

0 ξ3(t) ξ2(t) ξ1(t) χ4(t) χ3(t) χ2(t)

0 0 ξ3(t) ξ2(t) 0 χ4(t) χ3(t)

0 0 0 ξ3(t) 0 0 χ4(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0.(27)

It turns out that this polynomial generally admits
no more than 16 real roots. When all real roots are
found, we have to plug them back in (22) for se-
lecting the one leading to the absolute maximum of
(21). It is not that hard to compute since powerful
algorithms exist that can rapidly find roots of uni-
variate polynomials. The complete algorithm can be
summarized as follows.

compute Γw
eg,fh(τ + ρ)

set M := N(N − 1)/2 and T := ⌈√Nλh ⌉ + 1
set k := 0..T and p := 0..λh

initialize Q(k)
p to identity

(i.e all (θ, φ) to zero) forall k and p
for each k do

for each p do

A(k)
p [z] = Q

(k)
0 Z[z] . . .Q

(k)
p−1Z[z]

B(k)
p [z] = Z[z]Q

(k−1)
p+1 . . . Z[z]Q

(k−1)
λh

compute Γx(k)

ac,bd(τ ) (with x(k)[z] = B(k)
p [z]w[z])

search for Q(k)
p maximizing Υ1,4

(one obtains M pairs of angles (θ, φ) yielding Q(k)
p )

return H[z] = Q
(T )
0 Z[z] . . .Q(T )

p Z[z]Q
(T )
p+1 . . . Z[z]Q

(T )
λh

5.2. Sweeping the pairs

Let us comment some points of this algorithm:
– the resulting tensor Γx

ac,bd(τ ) is composed

of N2(L − ℓB + 1)2 matrices each of size
N(L− ℓB + 1)×N(L− ℓB + 1). Hence, the algo-
rithm needs to store N4(L − ℓB + 1)4 entries in
memory. Simplifications are generally impossible
since we need exact values for computing roots of
polynomial system (26),

– In order to increase the precision of the angles, we
suggest to execute T = ⌈√L ⌉ + 1 sweeps. Actu-
ally, the first angles computed are not well defined
since all other angles are still null (set at stage ini-

tialize). Hence, when loop on each k is repeated
several times, angles are better estimated. This
procedure reminds the well-known Jacobi sweep-
ing widely used for eigenvalue computation.

Remark 10 In the case of a slowly time varying
linear channel, the initialization step initialize can
be modified since angles previously found give a better
approximation than null values.

6. Computer Results

For large data blocks, the performance of the al-
gorithm described in Section 5 comes close to that
of the MMSE equalizer, and the larger the block
length, the larger the accuracy.

Algorithm has been tested on mixtures of length
K = 3. We have generated 100 random channels.
The equalizer has been determined for each chan-
nel with data blocks of 256 symbols or 512 symbols.
Then, the equalizer has been tested with two dif-
ferent realizations of 5000 symbols each in order to
compute the Symbol Error Rate (SER). Thus, the
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minimal resolution is (2 ∗ 5000 ∗ 100)−1 = 10−6.
Figure 3 shows median results of the 100 trials for
QPSK signals, i.e. median is an estimate of average
SER. This figure proves that algorithm works well
on short data length since from only 256 symbols
and with a noise of 16dB, the median SER is below
the minimal resolution.

Fig. 3. Symbol Error Rate when a length-3 equalizer is built
from blocks of 256 or 512 symbols. For both lengths, the
median of the SER is below 10−6 after 12dB.

For each trial, the MMSE solution is computed.
Another basis for comparison is the distance (Frobe-
nius norm) between the equalizer found and the
Zero-Forcing (ZF) solution. In fact, the ZF solution
for MIMO convolutive mixtures is simply the in-
verse of the channel. Then, when K = L, the global
transfer function with the ZF equalizer HZF [z] is

G[z] =
∑

n

∑

m

C(m)HZF (n)z−(n−m) = Iz−L.(28)

So, we just have to compare the global transfer func-
tion G[z] obtained with the paraunitary equalizer,
to the identity matrix up to a multiplicative matrix
D[z] of the form Λ[z]P , where Λ[z] is diagonal and
P a permutation. In order to do this, we proceed by
determining the best matrix D[z] as follows. Once
G[z] is estimated, we store in an N × N(2L − 1)
array G by merely stacking the matrices one after
the other. Next, we search for columns containing
the entry of largest modulus in each row of G. By
comparing column indices, which have to be differ-
ent modulo N , we find matrix P and Λ[z]. Next, we
normalize each row by its entry of largest modulus.
The matrix obtained this way is denoted Ḡ. Then,

we replace the N previous entries of Ḡ by zeros. This
is the same as subtracting D to Ḡ, where D is made
from D[z] with the same size as G. Finally, we com-
pute the Frobenius norm of the resulting matrix, i.e.
||Ḡ−D||. This value is the distance between the pa-
raunitary equalizer found and the ZF solution. Me-
dians of distances are reported in figure 4. We note
that between 0 and 8dB and for 512 symbols, the dis-
tance decreases rapidly from 1 to 0.25. Then, after
8dB, the distance remains approximately constant.

Fig. 4. Distance to the Zero-Forcing equalizer when a
length-3 equalizer is built from blocks of 256 or 512 symbols.
Solid line: distance between ZF and MSE.

7. Concluding remarks

The Blind MIMO Equalization problem can be re-
duced to a simpler one via a prior space-time second-
order whitening, namely the equalization of a pa-
raunitary channel. Thanks to this statement, we
have proposed a parameterization of paraunitary
equalizers, in order to carry out blind source separa-
tion, i.e. deconvolution without a learning sequence.
Based on this parameterization, a numerical algo-
rithm has been devised, which iteratively maximizes
a contrast through successive sweeps of plane rota-
tions, and eventually equalizes the channel. More-
over, we have demonstrated that the computation of
the blind equalizer can be completed within a poly-
nomial complexity, useful in burst-mode transmis-
sions. Performances presented in the last section re-
port an average SER of 0.35% at 12dB of SNR, with
data length of 256 symbols only. Other issues cur-
rently being addressed include robustness to chan-
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nel length misadjustment, which are of prime im-
portance as pointed out in [33,34], and space-time
whitening implementations.

Appendix A. Complexity savings

In order to reduce the complexity of the algo-
rithm, it is suggested to store each K in a matrix
T ∈ CN4×N4

. This matrix is defined by

T
def
=

∑

τ,i

f i(τ )c(τ )T. (A.1)

where, for N = 2,

f i(τ ) =














f1111
i (τ1, τ2, τ3, τ4)

f1112
i (τ1, τ2, τ3, τ4)

f1121
i (τ1, τ2, τ3, τ4)

...

f2222
i (τ1, τ2, τ3, τ4)














(A.2)

with f qrst
i (τ1, τ2, τ3, τ4) = Aiq(τ1)A

∗
ir(τ2)Ais(τ3)A

∗
it(τ4),

and

c(τ ) =














Γx
11,11(τ1, τ2, τ3, τ4)

Γx
11,12(τ1, τ2, τ3, τ4)

Γx
12,11(τ1, τ2, τ3, τ4)

...

Γx
22,22(τ1, τ2, τ3, τ4)














. (A.3)

For only 2 observations, we have T ∈ C16×16.
Hence we obtain the N8 = 256 possible values of
(20) by summing L4 matrices of size 16× 16. Then,
we just have to define each K by summing entries of
T . Moreover, we see that elements of f i(τ ) and c(τ )
have the same ordering, i.e. q ≡ a, r ≡ b, s ≡ c, t ≡
d. Hence, both vectors can be constructed thanks to
the same loops. So, we reduce the number of loops
by N4, and hence the computation time.

We immediately see another simplification if we
include indices τ1, τ2, τ3, τ4 in vectors f i and c, e.g.
by Kronecker product. In this case, both vectors are
of length (N(L + 1))4 and then T is (N(L + 1))4 ×
(N(L+1))4. So, we only have (N(L+1))4 loops for
building vectors f i and c, and then we have to make
only one product f ic

T for matrix T . Nevertheless,
the memory capacity is then the drawback of this

method since more memory is used for storing ma-
trix T . As a consequence, this last simplification is
probably interesting for small values of L.
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