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ABSTRACT obtained through the computation of a Rational Univariate Repre-
We introduce in this paper a new algebraic approach to some pro entation (RUR). As a consequence, the on-line computational cost

lems arising in signal processing and communications that can B in isolating the roots of an univariate polynomial of degree the
described as or reduced to systems of multivariate quadratic poly2umPper of solutions (with multiplicities) of the system.
nomial equations. Based on methods from computational algebraic ' this paper, we will deal with one important issue in digital
geometry, the approach achieves a full description of the solutiofommunicationsd.g.cellular): to mitigate the effects of the propa-
space and thus avoids the local minima issue of adaptive algcﬁat'on channel. This is the role of the equalizer. Reliable equalizers

rithms. Furthermore, unlike most symbolic methods, the compul’@ve been developed, but usually need prior knowledge of the chan-
y ps_nel [17, ch.10]. A good estimation of the channel (also referred to as

ochannel identification) is thus necessary and quite critical. We will

get a more convenient parametric trace-matrix representation of tn"é)nsider here the case of a linear and time-invariant (LTI) scalar

problem using normal forms. The solutions of the problem are the#>/S©O) communication channel. Such a channel can be described
easily obtained from this representation by solving a single univari&S the convolutive filtering of the input signgh] by a filter h[n].
assume furthermore thigin] has finite impulse response (FIR).

ate polynomial equation. This approach is quite general and can p&e
applied to a wide variety of problems: SISO channel identification

of PSK modulations but also filter design and possibly MIMO blind xn —» hin y[n) = ZI’:':Ol hK]x[n—K]
source separation by deflation. B

tational cost is kept low by a split of the problem into two stage
First, a symbolic pre-computation is done offline once for all, t

1. INTRODUCTION . o .
) ) ) ) Most identification algorithms rely on the knowledge of the out-

Recently, major advances have been achieved in the field of COMputy[n] of the channel for a given inputn] [10, 13]. So-called pilot
putational algebraic geometry, which lead to new efficient ways taequences are usually transmitted, either in the middle of each data
deal with one of the central application of computer algebra: solvp|ock as in GSM, or as background signal, in a parallel channel as
ing systems of multivariate polynomial equations [2, 8, 15, 16, 20]in UMTS. On the contrary, our concernliind channel identifica-
By using the new algorithms introduced, many practical problemsion, that is, identification without the knowledge of input symbols
can now be solved in a way that is very competitive with numeri-yin| Advantages of such approaches include in particular the pos-
cal methods as recently illustrated in the special issue on computgjpility to reduce or remove the pilot sequence, which permits an
algebra and signal processing of the Journal of Symbolic Compuincrease in the throughput but also the stealth interception of digital
tation (Vol.37(2), Feb. 2004). In this issue [12], we detail the usecommunications with no or encrypted pilot sequences.
of symbolic methods in order to solve some advanced design prob-  Bjind identification or equalization is not a new subject, for
lems arising in signal processing, more precisely the constructio has been addressed as early as in 1980 [7] [3]. However, most
of wavelet filters for which the usual spectral factorization approachyf the algorithms aradaptive that is, recursive in time, and con-
(used for example to construct the well-known Daubechies filters) igerge quite slowly (sometimes even to local minima). Improve-
not applicable. For these problems, we show how the design equaents made since early algorithms include (i) the use of the diver-
tions can be written as multivariate polynomial systems of equasity induced by space, time, or excess bandwidth, to modify the
tions and accordingly how Grébner algorithms [2] offer an effectivemodel into a Single Input Multiple Output problem [4] [1] [5] [6]
way to obtain solutions of practical interest in many of these case$p4), or (ii) block calculations (i.e. removal of time recursions) [23]
These examples of multiwvavelet bases and wavelet frames coufdg
not have obtained without the use of tools from algebraic geometry “oyr present contribution concerns block blind identification al-
and tend to prove that although their high computational and rnerr‘gorithms when diversity cannot be exploited. With this respect, our
ory costs, Grébner bases are |ndeed effective tools for the‘theqre pproach is similar to [23], where inputs are assumed to belong to
cal study and practical design of filter banks. In another directionihe ynit circle, and to [25, 18] where they are assumed to belong to a
we have also investigated [9, 11] resultants methods [20] for somgnite alphabet. The underlying idea makes sense in digital commu-
problems in digital communications similar to the one exposed irhjcations for the emitted signajn] normally comes from a modu-
this paper. . lation scheme (typ. BPSK, MSK, QPSkK,/4-DQPSK, 8-PSK or

However, among these most promising approaches to solve sysz /8-pDgPSK, or one type of QAM). Our algorithm is based on this
tems of polynomial equations, i.e. Grobner bases, homotopic Conjiscrete character via polynomial relations linking the channel taps
tlnuatlon,.orresultan_ts s_how some I|m|tat|on§ [9, 12] (typ. very hl_ghwith high order statistics of the outpyin]. Now, making use of
computational cost in time and memory, difficulties to deal with methods coming from computational algebraic geometry, we get an

parametric equations, limitations to rational parameters). This hinafficient and exhaustive estimatehj6], ..., h[N — 1] from the sole
ders seriously their interest in a framework with only limited com- gpservationgy|n]}. T
t

putational power (typ. the DSP of a mobile phone) and stringen

time-constraints (fast evolution of the communication channel). We 2 POLYNOMIAL SETTINGS

introduce here an new ad-hoc approach derived from the works in '

[9, 22, 19]. In our approach, most of the expensive computatioriFor PSK-type modulations, the symbols are roots of unity [21]. By
is doneofflinethrough the pre-computation of a parametric normalusing this property and introducingpn-circular statistics ory[n],
form of the system. The solutions of the system are then easilye get the following polynomial equationsfifn].



BPSK, QPSK, 8-PSK and2M-PSK: For BPSK, x[n] is iid is zero-dimensional (finite number of solutions), the quotient space

discrete-uniform{—1,1}. We getthenfop=0,...,N—1, o = CJxq,...,Xn]/1 inherits a structure of finite-dimensional al-
gebra. Constructing the multiplication taljey,m ]| of < gives
N-1 then a full description of the linear algebraic framework associ-
Yo :=E(ylnlyln—p]) = > h[mh[m—p]. (1)  ated to systeniP). The central problem is then to choose a con-
m=p venient linear basis? := {w;,...,0q} called themonomial basis

- _ _ . _ of &7 and get the associated normal fopn="NF(p,|) € < for
For QPSK, x[n| is iid discrete-uniform {1,j,—1,—j},  pe C[xy,...,xn] (intuitively the "residue” moduld of p in ).
which  gives  Ey[nlyln — pi]y[n — p2Jy[n — p3]) = A usual way to get a convenient monomial basis and its associated
zr’:';#a)(pypz.m) h[mlh[m — p1]h[m— poJh[m— p3]. This case normal form is through the computation of a reduced Grébner ba-
is easily reduced to the BPSK case by taking= 0, ps = p» §is and the so-called mpnomials under the staircase [8, 19]. This
andg|n] := h2[n]. Alike, the 8-PSK and in general alM2PSK 1S however not very efficient from a computational point of view in

modulations can be reduced to the BPSK equations (1) general and even more in our framework of PSK-type modulations,
i since the monomial basis given by (5) is in our case always a bona-

MSK, 7-DQPSK, %'HDE;PSK and 02M-PSK: For MSK, " fide linear basis of7. Also, any elemenp € .7 can be expressed
we havexin] = j"b[njx[0] with bn] BPSK [11]. = So, for  4¢ 5 vectofp| in % asp= ¢_,[ple. In our example, using (4)
p=0,. N—1, e get

N1 2 T
Yo = Enyin—plx0) = 5 (=)™ "h[mhm—p].  (2) x]=[» 0 0 0 -1 -1 0 Q.
nf=p

A complete description of the normal form is easily obtained by
As above, the%—DQPSK,%”-DSPSK and DY-PSK cases can multiplying and solving system (4) by the monomialsd We

be reduced to the MSK equations (2). introduce the linear operatdy on <7,
E.g. for %"-DSPSK andN = 3, we get the following system of My:.of —o
polynomial equations, wheng, y1, y» are parameters: p — Myp:=1Up.
Y% —h[0]+h[1]®—h[2® =0 and associate it with it matrix representation in the mono-
11— h[0]*h[1]* + h[1]*h[2]* = 0 ()  mial basis ofe7. This matrix is computed by expressingy in the
2 —h[0]*h[2]* = 0. monomial basisZ which gives the" column of M. For[u] € <,

we thus get the multiplication matrid,[v] := [uv] onCY. E.g. for
Now, from Bézout's theorem [2], this system has either infinitelyu = x,, since
many solutions, either exactly 512 (with multiplicities), or no solu-
tion. X1 = {X1,%G, X1 X2, X1Xa, X5 X, XX3, X1 XX, X5 X2Xa }
To illustrate our algorithm, we will focus on this example. This .
approach is easily generalized [11] Bo=2,...,9 and the two W€ get from (4) and the computation of the normal form,
afore-mentioned families of modulations (BPSK, QPSK, 8-PSK

000 0 00
and MSK, 2-DQPSK, 3£ -D8PSK). 16 00p1-10 o
0000 0 -0 O
3. ALGEBRAIC GEOMETRY Mg =[3998% 99 0
By the following generic change of variableg|0] = h[0]* := 8*018%) 8 g 8 z
x1,9[1] = h[1]* 1= X1 +%2,0[2] = h[2]* := X1 + X2 + X3, System (3) 0000 1 01 0

can be rewritten as .
and in the same wally,, ..., My,.

The computation oM, gives some important information on the

Yo— X2 — 2X1;<3 — X3 — X3,
n +X%X2 X T XXg +XoXs, (P) " set of solutions of the systen®g: (1) :={a € C"|Vpe P,p(a) =
T2 = X] = X1X2 — X1X3. 0} and the system in general. Denotinggbie ) the multiplicity of a
solutiona of (P), we get by Stickelberger theorem [14, 20] thvdt,
Now by solving inxZ,x3,x3, we get: has eigenvalues(a) with multiplicity 3 e »(1).u()=u(a) 4(B)- As

a consequence, we have the following properties

X2 =1 — XgX2 — X1X3
X5 = —Y1— X1X2 — X1X3 — XX3 (4) detM,) = u(or)*(®)
X5 =0 — Y2+ X1X2 — X1X3 — 2XpX3. aeZc(l)
_ A _ tracé M) = z u(a)u(er)
Therefore, the monomialg], x5, x5 can be expressed in the mono- acTy (1)

mial basis% = Jeees iven b
{@,.... e} given by Jult) = detti—My) = [ (t—u(e)#@),

B = {1,X1,%2, %3, X1X2, X1 X3, X2X3, X1 X2X3 } . (5) acZe(l)
Using again Bézout's theorem, it is easily seen thatis in- Now, factorizingyy(t), the characteristic polynomial &1, would
deed a linear base of thé-dimensional quotient algebra/ ;= then giveu(a) for any solutiono of the system. We would then
C[x1,...,Xn]/I wherel = (P) denotes the ideal generated (). easily get the solutions of the system by taking x;,...,xy and

By working in this setting, solving syste(i®) is just a problem of obtaining so the coordinates at

linear algebra. More details on the use of linear algebra in algebraidnfortunately, computing directly the characteristic polynomial
geometry can be obtained from [15] or [20]. Intuitively, starting (incl. the determinant) of a matrix likdI, and factorizing it is
from a list(P) of polynomials such that the generated ideal (P) very time and memory consuming (and in fact usually intractable).



We detail here an alternative method originally due to KroneckenWriting yu(t) =

Yh_oat K and letHy(7u)(t) = < ot beits

This is based on the computation of traces of matrices and takdddrner sequence of polynomials, we then get

advantage of the special structure of the matribdg. Writing
xu(t) = 9o b4~ and lety/,(t) be its derivative, then

2 _ pe) o1

2t) e )t ul®) aefzze(wt 1o
= }u = 3 trace Mt —(k+1)
acFr ot o

So, we havey(t) = xu(t) SksotracgMy )t~ +D, and since
x4(t) = Y93(d — k)bt~ 1K, this yields, using the definition of
2u(t),

K
d—Kbe= S traceM, )be_i. 6
(d—Kk)by I;race( )bk (6)

r—1
gu(Vvt) = z trvaMukv)Hrflfk(iu)(t)'
k=0

So, thegy(v,t) are again easily computed frop(t) and the scalars:

tracd My, ), fork=0,...,r. There is furthermore an easy way to

compute these traces by noticing that ti@dg 4) = TrR(f)[g] where
TR(f) := [tracdMq,), ..., trac€Miq,)].

Now, since R(ukt1) = TR(uK)My, we get by induction ork that

trace M 1) = TR(UX) [u] and tracéM ) = TR(UK)[V].

As a result, all the scalars trad@d ), for k=0,...,r andv =

1,x1,...,XN are easily derived from the trace matrixINI defined
by [TRM]y | := trac§ Mg, q ), i.€.

This gives a triangular system of linear equations involving the

scalars: trac@ ) fork=0,...,
by fork=0,...,d and soyy(t).

Introducing the minimal polynomigjy(t),

Xu(t)

t)’

2lt)i= [ C=ul@) = e O 70

acZe(l)

and assumingu is separatingZ¢(P), i.e. on Zu(l), 0 #
B=u(a) # u(B) (it implies thatM has eigenvalues(a) with
multiplicity exactly u(er)), we finally introduce
Qu: < — Clxq,...,Xn]
Ve uW) = Tac ) Rla)V(0) R,

This can be rewritten as

wwt) = > wulavia)

lXEfC )

(t—u(B)).
BeZo()\{a}

Fora € Z¢(1) andt = u(a), we get

Gu(vu(a)) = pla)v(a) (u(er) —u(B))-
peze()\{a}

d. From (6), we easily compute

trace{Mmlwl) trace(Mwla,d)

TRM =

trac§Mgye, ) - trac€Mgyoq)

Furthermore since rafkRM) = #Z¢ (1) =r, we also have an easy
way of testing whether a polynomial is separating and thus of
validating the solutions obtained: in such a case,(@ggshould
be equal tor. Moreover, the set of linear polynomial®(l) :=
{x1+ke+...+kN"Ixy [0 < k< (N—1)(5)} contains at least one
separating polynomial. Another way of getting with probability 1 a
separating polynomial is to take at random= UyXxy + ... +UnXn
whereUy,...,Uy are iid continuous unifornf0, 1].

4. LINEAR ALGEBRA IN THE QUOTIENT

In this approach, most of the computational cost lies in getting the
parametric trace matrixRIM (1, 71, ¥2) of the system. This expen-
sive symbolic computation is however done once for all, i.e. for
any value of the parameteys, 71, v» and also for any type of mod-
ulation afore-mentioned. This gives us a sparse parametric matrix
(given in Figure 1 for the cadé = 3 and 3t/8-D8PSK) that we can
now evaluate on the considered block of signal by plugging in the
set of parameters obtained from the non-circular statisticgmn

E.g. for systen{P) with yp = 3,1 = 0 andy, = 1, we get

Hence, the central result of the rational univariate representation, 8 0 0 0-108 -4 0
6 10680 0 02
Qu(vu(a)) 0 8 -460 0 0 4
gu(Lu(a)) = V(@) " TRM@B01)=1| 96 0 0 0146 -2 0
7 DRSS FRA:
since forv = Xg,...,Xn, We obtain 0 6 240 0 0 -10
Qu(xg,u())  gu(xe,u(er)) gu(Xn, u(@)) From this matrix, we test that:= x; +2x +4x3 is separating, and
aLu(@)’ guLu(a)’ 9u(L,u(@)) get the following RUR for(P):
Hence, the following theorem giving a one-to-one mapping of the qu(t) =18 — 45° 1 544* — 61652 + 4225
\s;glrligltznsogntg\%ig;:t(ltv)arlate syste(®) onto the roots of the uni- and gu(Lt) = 90® — 2176 + 369902 — 3380Q
_ o7 _ 5 3_
Theorem. If o is a solution of the system, thefa) is a root of Gu(xa,t) =227 — 7787 +8450° — 20800,
2u(t) with the same multiplicity and conversely,fis a root of gu(xe.t) = —14t” +60a° — 1189a° + 23400,
Qu(*x1,¢) Gu(x2.¢) gu(XN7C)} : , 7 5 3
t), then , is a solution of Qu(xs,t) =24t" — 650>+ 1308Q° — 1495Q.
sult) [ (L0 w(L0) 7 aLl)

the system with the same multiplicity.

Now, all we have to detail is a practical way to compg§év,t). In
a similar way to what is done to compugg(t), we have

~(kt1)

= = ) tracgM )t
K=o

Now, the roots ofyy(t) are usually easily isolated from the trace
matrix [14]. But in this special case, we can even compute an exact
factorization,

) —3VB)(t—3+3VE)(t+3-3VE)(t+

3+ %\/5)(t —3-2))(t—3+2j)(t+3-2j)(t+3+2j),



0 0 0
412+2v0 —2yo—4y2+411 —4y1+8y2
—2y—4r2t+4n —8y1=2y0+12y 4y0—1672 0
0 —4y1+8y2 4yo—16y2 —2y0+12y24+8y; 0
—2yo—4n2+4n 0 0 0
4y1+8y2 0 0 0
4y0 1612 0 0 0
0 — 123427270+ 121211 + 21170 —47] 2873 101270—201271+87} —3273+121270+8y211 2117047}

—2vo—4n+4n
0

cocw

12242070+ 1201+ 2v1m0_ 473
28y; 10v2v0 20vov1+8y7
0

873 —412%0—16%271 41170481} +215 — 1213+ 21270+ 121211+ 21 70—}

—411+812 4y0—1672 0
0 0 — 125342070+ 12271+ 2117041}
0 0 2873—107210-207211+87}
0 0 =323+ 1200+ 8v2v1— 21170 —41]
2873 10y270— 207271 487} 0
323+12n0+8011 2nive 47} 0
72 40v270+16v}+473 0
4y270 811 —56v311+ 1 2y172Y0+40127] ~ 381370 +6813

16 4y2v0 Stovi+4v}
323+12v2v0+8y211 2nive 4rq
0

Figure 1: Parametric trace matrix for N=3.

and so the following eight solutions f¢m[0]*, h[1]*, h[2]*]
[_17_j7_1]7[_11 j7_1}7 [17_1.71]7[11 ]71}}

(8]
9]

(10]
(11]

This second (on-line) stage of the algorithm does not require any
symbolic computation. The RUR of the system is easily computed
from the evaluated trace matrix using Matlab or Scilab. The besf
solution is then selected from the set of possible solutions by intro! 12]
ducing for example the circular statisticsyofi], as in [9],

By solving now for[h[0], h[1], h[2]], we thus get 512 possible solu-
tions for system (3).

N-1

[13]
¢p:=E(lnly' [ —p) = 5 hlmih*[m—pl.
m=p

(8

(14]
or alternatively, another method making use of higher-order statis-
tics to parse directly through the solutiof$0]*, h[1]*,h[2]*] in or-
der to reduce the size of the set of valid solutions. [15]

5. CONCLUSION

We introduced here a new approach to the problem of blind chari16]
nel identification for PSK-like modulations. With this approach,

we are able to get an exhaustive description of the solution space.
Furthermore, the algorithm proposed shows a rather small on-linfL7]
computational cost since the expensive symbolic computation of the
parametric trace-matrix is obtained offline once for all and dependﬁg]
only on the modulation type and the channel length but not on the
channel itself. The solutions of the problem are then easily obtaine
from this representation by solving a single univariate polynomial
equation. Also, this approach is general enough to be applied to
many other problems that can be written in the form of systems of
polynomial equations of the form (1) or (2). [20]

9]
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