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ABSTRACT

We introduce in this paper a new algebraic approach to some prob-
lems arising in signal processing and communications that can be
described as or reduced to systems of multivariate quadratic poly-
nomial equations. Based on methods from computational algebraic
geometry, the approach achieves a full description of the solution
space and thus avoids the local minima issue of adaptive algo-
rithms. Furthermore, unlike most symbolic methods, the compu-
tational cost is kept low by a split of the problem into two stages.
First, a symbolic pre-computation is done offline once for all, to
get a more convenient parametric trace-matrix representation of the
problem using normal forms. The solutions of the problem are then
easily obtained from this representation by solving a single univari-
ate polynomial equation. This approach is quite general and can be
applied to a wide variety of problems: SISO channel identification
of PSK modulations but also filter design and possibly MIMO blind
source separation by deflation.

1. INTRODUCTION

Recently, major advances have been achieved in the field of com-
putational algebraic geometry, which lead to new efficient ways to
deal with one of the central application of computer algebra: solv-
ing systems of multivariate polynomial equations [2, 8, 15, 16, 20].
By using the new algorithms introduced, many practical problems
can now be solved in a way that is very competitive with numeri-
cal methods as recently illustrated in the special issue on computer
algebra and signal processing of the Journal of Symbolic Compu-
tation (Vol.37(2), Feb. 2004). In this issue [12], we detail the use
of symbolic methods in order to solve some advanced design prob-
lems arising in signal processing, more precisely the construction
of wavelet filters for which the usual spectral factorization approach
(used for example to construct the well-known Daubechies filters) is
not applicable. For these problems, we show how the design equa-
tions can be written as multivariate polynomial systems of equa-
tions and accordingly how Gröbner algorithms [2] offer an effective
way to obtain solutions of practical interest in many of these cases.
These examples of multiwavelet bases and wavelet frames could
not have obtained without the use of tools from algebraic geometry
and tend to prove that although their high computational and mem-
ory costs, Gröbner bases are indeed effective tools for the theoreti-
cal study and practical design of filter banks. In another direction,
we have also investigated [9, 11] resultants methods [20] for some
problems in digital communications similar to the one exposed in
this paper.

However, among these most promising approaches to solve sys-
tems of polynomial equations, i.e. Gröbner bases, homotopic con-
tinuation, or resultants show some limitations [9, 12] (typ. very high
computational cost in time and memory, difficulties to deal with
parametric equations, limitations to rational parameters). This hin-
ders seriously their interest in a framework with only limited com-
putational power (typ. the DSP of a mobile phone) and stringent
time-constraints (fast evolution of the communication channel). We
introduce here an new ad-hoc approach derived from the works in
[9, 22, 19]. In our approach, most of the expensive computation
is doneoffline through the pre-computation of a parametric normal
form of the system. The solutions of the system are then easily

obtained through the computation of a Rational Univariate Repre-
sentation (RUR). As a consequence, the on-line computational cost
lies in isolating the roots of an univariate polynomial of degree the
number of solutions (with multiplicities) of the system.

In this paper, we will deal with one important issue in digital
communications (e.g.cellular): to mitigate the effects of the propa-
gation channel. This is the role of the equalizer. Reliable equalizers
have been developed, but usually need prior knowledge of the chan-
nel [17, ch.10]. A good estimation of the channel (also referred to as
channel identification) is thus necessary and quite critical. We will
consider here the case of a linear and time-invariant (LTI) scalar
(SISO) communication channel. Such a channel can be described
as the convolutive filtering of the input signalx[n] by a filter h[n].
We assume furthermore thath[n] has finite impulse response (FIR).

x[n] - h[n] - y[n] = ∑N−1
k=0 h[k]x[n−k]

Most identification algorithms rely on the knowledge of the out-
puty[n] of the channel for a given inputx[n] [10, 13]. So-called pilot
sequences are usually transmitted, either in the middle of each data
block as in GSM, or as background signal, in a parallel channel as
in UMTS. On the contrary, our concern isblind channel identifica-
tion, that is, identification without the knowledge of input symbols
x[n]. Advantages of such approaches include in particular the pos-
sibility to reduce or remove the pilot sequence, which permits an
increase in the throughput but also the stealth interception of digital
communications with no or encrypted pilot sequences.

Blind identification or equalization is not a new subject, for
it has been addressed as early as in 1980 [7] [3]. However, most
of the algorithms areadaptive, that is, recursive in time, and con-
verge quite slowly (sometimes even to local minima). Improve-
ments made since early algorithms include (i) the use of the diver-
sity induced by space, time, or excess bandwidth, to modify the
model into a Single Input Multiple Output problem [4] [1] [5] [6]
[24], or (ii) block calculations (i.e. removal of time recursions) [23]
[25].

Our present contribution concerns block blind identification al-
gorithms when diversity cannot be exploited. With this respect, our
approach is similar to [23], where inputs are assumed to belong to
the unit circle, and to [25, 18] where they are assumed to belong to a
finite alphabet. The underlying idea makes sense in digital commu-
nications for the emitted signalx[n] normally comes from a modu-
lation scheme (typ. BPSK, MSK, QPSK,π/4-DQPSK, 8-PSK or
3π/8-D8PSK, or one type of QAM). Our algorithm is based on this
discrete character via polynomial relations linking the channel taps
with high order statistics of the outputy[n]. Now, making use of
methods coming from computational algebraic geometry, we get an
efficient and exhaustive estimate ofh[0], . . . ,h[N−1] from the sole
observations{y[n]}.

2. POLYNOMIAL SETTINGS

For PSK-type modulations, the symbols are roots of unity [21]. By
using this property and introducingnon-circular statistics ony[n],
we get the following polynomial equations inh[n].
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BPSK, QPSK, 8-PSK and2M-PSK: For BPSK, x[n] is iid
discrete-uniform{−1,1}. We get then forp = 0, . . . ,N−1,

γp := E(y[n]y[n− p]) =
N−1

∑
m=p

h[m]h[m− p]. (1)

For QPSK, x[n] is iid discrete-uniform {1, j,−1,− j},
which gives E(y[n]y[n − p1]y[n − p2]y[n − p3]) =
∑N−1

m=max(p1,p2,p3)
h[m]h[m− p1]h[m− p2]h[m− p3]. This case

is easily reduced to the BPSK case by takingp1 = 0, p3 = p2
andg[n] := h2[n]. Alike, the 8-PSK and in general all 2M-PSK
modulations can be reduced to the BPSK equations (1).

MSK, π

4 -DQPSK, 3π

8 -D8PSK and D2M-PSK: For MSK,
we have x[n] = jnb[n]x[0] with b[n] BPSK [11]. So, for
p = 0, . . . ,N−1,

γp := E(y[n]y[n− p]|x[0]) =
N−1

∑
m=p

(−1)n−mh[m]h[m− p]. (2)

As above, theπ

4 -DQPSK, 3π

8 -D8PSK and D2M-PSK cases can
be reduced to the MSK equations (2).

E.g. for 3π

8 -D8PSK andN = 3, we get the following system of
polynomial equations, whereγ0,γ1,γ2 are parameters:

γ0−h[0]8 +h[1]8−h[2]8 = 0
γ1−h[0]4h[1]4 +h[1]4h[2]4 = 0
γ2−h[0]4h[2]4 = 0.

(3)

Now, from Bézout’s theorem [2], this system has either infinitely
many solutions, either exactly 512 (with multiplicities), or no solu-
tion.

To illustrate our algorithm, we will focus on this example. This
approach is easily generalized [11] toN = 2, . . . ,9 and the two
afore-mentioned families of modulations (BPSK, QPSK, 8-PSK
and MSK, π

4 -DQPSK, 3π

8 -D8PSK).

3. ALGEBRAIC GEOMETRY

By the following generic change of variables,g[0] = h[0]4 :=
x1,g[1] = h[1]4 := x1 + x2,g[2] = h[2]4 := x1 + x2 + x3, system (3)
can be rewritten as

γ0−x2
1−2x1x3−2x2x3−x2

3,

γ1 +x1x2 +x2
2 +x1x3 +x2x3,

γ2−x2
1−x1x2−x1x3.

(P)

Now by solving inx2
1,x

2
2,x

2
3, we get:

x2
1 = γ2−x1x2−x1x3

x2
2 =−γ1−x1x2−x1x3−x2x3

x2
3 = γ0− γ2 +x1x2−x1x3−2x2x3.

(4)

Therefore, the monomialsx2
1,x

2
2,x

2
3 can be expressed in the mono-

mial basisB = {ω1, . . . ,ωd} given by

B := {1,x1,x2,x3,x1x2,x1x3,x2x3,x1x2x3}. (5)

Using again Bézout’s theorem, it is easily seen thatB is in-
deed a linear base of thed-dimensional quotient algebraA :=
C[x1, . . . ,xN]/I whereI = 〈P〉 denotes the ideal generated by(P).

By working in this setting, solving system(P) is just a problem of
linear algebra. More details on the use of linear algebra in algebraic
geometry can be obtained from [15] or [20]. Intuitively, starting
from a list(P) of polynomials such that the generated idealI = 〈P〉

is zero-dimensional (finite number of solutions), the quotient space
A := C[x1, . . . ,xN]/I inherits a structure of finite-dimensional al-
gebra. Constructing the multiplication table[ωkωl ]k,l of A gives
then a full description of the linear algebraic framework associ-
ated to system(P). The central problem is then to choose a con-
venient linear basisB := {ω1, . . . ,ωd} called themonomial basis
of A and get the associated normal form ¯p = NF(p, I) ∈ A for
p ∈ C[x1, . . . ,xN] (intuitively the "residue" moduloI of p in A ).
A usual way to get a convenient monomial basis and its associated
normal form is through the computation of a reduced Gröbner ba-
sis and the so-called monomials under the staircase [8, 19]. This
is however not very efficient from a computational point of view in
general and even more in our framework of PSK-type modulations,
since the monomial basis given by (5) is in our case always a bona-
fide linear basis ofA . Also, any element ¯p∈A can be expressed
as a vector[p] in B as p̄ = ∑d

k=1[p]kωk. In our example, using (4)
we get

[x2
1] = [γ2 0 0 0 −1 −1 0 0]>.

A complete description of the normal form is easily obtained by
multiplying and solving system (4) by the monomials inB. We
introduce the linear operatorMu onA ,

Mu : A →A
p̄ 7→Mu p̄ := up.

and associate it with itsCd×d matrix representation in the mono-
mial basis ofA . This matrix is computed by expressinguωk in the
monomial basisB which gives thekth column ofMu. For [u] ∈A ,
we thus get the multiplication matrixMu[v] := [uv] onCd. E.g. for
u = x1, since

x1B = {x1,x
2
1,x1x2,x1x3,x

2
1x2,x

2
1x3,x1x2x3,x

2
1x2x3},

we get from (4) and the computation of the normal form,

Mx1 =


0 γ2 0 0 0 0 0 γ2γ1
1 0 0 0 γ2−γ0 −γ1 0 0
0 0 0 0 0 −γ2 0 0
0 0 0 0 γ2 0 0 0
0 −1 1 0 0 0 0−γ1+γ2
0 −1 0 1 0 0 0 γ2
0 0 0 0 0 0 0 γ2
0 0 0 0 1 0 1 0


and in the same wayMx2, . . . ,MxN .

The computation ofMu gives some important information on the
set of solutions of the system,ZC(I) := {α ∈Cn |∀p∈ P, p(α) =
0} and the system in general. Denoting byµ(α) the multiplicity of a
solutionα of (P), we get by Stickelberger theorem [14, 20] thatMu
has eigenvaluesu(α) with multiplicity ∑β∈Z (I),u(β )=u(α) µ(β ). As
a consequence, we have the following properties

det(Mu) = ∏
α∈ZC(I)

u(α)µ(α)

trace(Mu) = ∑
α∈ZC(I)

µ(α)u(α)

χu(t) := det(tI−Mu) = ∏
α∈ZC(I)

(t−u(α))µ(α).

Now, factorizingχu(t), the characteristic polynomial ofMu, would
then giveu(α) for any solutionα of the system. We would then
easily get the solutions of the system by takingu = x1, . . . ,xN and
obtaining so the coordinates ofα.

Unfortunately, computing directly the characteristic polynomial
(incl. the determinant) of a matrix likeMu and factorizing it is
very time and memory consuming (and in fact usually intractable).



We detail here an alternative method originally due to Kronecker.
This is based on the computation of traces of matrices and takes
advantage of the special structure of the matricesMu. Writing
χu(t) = ∑d

k=0bkt
d−k and letχ ′u(t) be its derivative, then

χ ′u(t)
χu(t)

= ∑
α∈ZC(I)

µ(α)
t−u(α)

= ∑
α∈ZC(I)

1
t

µ(α)

1− u(α)
t

= ∑
α∈ZC(I)

∑
k≥0

1
t

µ(α)uk(α)t−k = ∑
k≥0

trace(Muk)t−(k+1).

So, we haveχ ′u(t) = χu(t)∑k≥0 trace(Muk)t−(k+1), and since
χ ′u(t) = ∑d−1

k=0(d− k)bkt
d−1−k, this yields, using the definition of

χu(t),

(d−k)bk =
k

∑
l=0

trace(Mul )bk−l . (6)

This gives a triangular system of linear equations involving the
scalars: trace(Muk) for k = 0, . . . ,d. From (6), we easily compute
bk for k = 0, . . . ,d and soχu(t).

Introducing the minimal polynomial̃χu(t),

χ̃u(t) := ∏
α∈ZC(I)

(t−u(α)) =
χu(t)

gcd(χu(t),χ ′u(t))
,

and assumingu is separatingZC(P), i.e. on ZC(I),α 6=
β ⇒u(α) 6= u(β ) (it implies thatMu has eigenvaluesu(α) with
multiplicity exactlyµ(α)), we finally introduce

gu : A → C[x1, . . . ,xN]
v̄ 7→ gu(v, t) := ∑α∈ZC(I) µ(α)v(α) χ̃u(t)

t−u(α) .

This can be rewritten as

gu(v, t) = ∑
α∈ZC(I)

µ(α)v(α) ∏
β∈ZC(I)\{α}

(t−u(β )).

For α ∈ZC(I) andt = u(α), we get

gu(v,u(α)) = µ(α)v(α) ∏
β∈ZC(I)\{α}

(u(α)−u(β )).

Hence, the central result of the rational univariate representation,

gu(v,u(α))
gu(1,u(α))

= v(α), (7)

since forv = x1, . . . ,xN, we obtain

α =
[

gu(x1,u(α))
gu(1,u(α))

,
gu(x2,u(α))
gu(1,u(α))

, . . . ,
gu(xN,u(α))
gu(1,u(α))

]
.

Hence, the following theorem giving a one-to-one mapping of the
solutions of the multivariate system(P) onto the roots of the uni-
variate polynomialχu(t),

Theorem. If α is a solution of the system, then u(α) is a root of
χu(t) with the same multiplicity and conversely, ifζ is a root of

χu(t), then

[
gu(x1,ζ )
gu(1,ζ )

,
gu(x2,ζ )
gu(1,ζ )

, ...,
gu(xN,ζ )
gu(1,ζ )

]
is a solution of

the system with the same multiplicity.

Now, all we have to detail is a practical way to computegu(v, t). In
a similar way to what is done to computeχu(t), we have

gu(v, t)
χ̃u(t)

= ∑
k≥0

trace(Mukv)t
−(k+1).

Writing χ̃u(t) = ∑r
k=0akt

r−k and letHk(χ̃u)(t) = ∑k
l=0al t

k−l be its
Hörner sequence of polynomials, we then get

gu(v, t) =
r−1

∑
k=0

trace(Mukv)Hr−1−k(χ̃u)(t).

So, thegu(v, t) are again easily computed from̃χu(t) and the scalars:
trace(Mukv), for k = 0, . . . , r. There is furthermore an easy way to
compute these traces by noticing that trace(M f g) = TR( f )[g] where

TR( f ) := [trace(M f ω1), . . . , trace(M f ωd)] .

Now, since TR(uk+1) = TR(uk)Mu, we get by induction onk that
trace(Muk+1) = TR(uk)[u] and trace(Mukv) = TR(uk)[v].

As a result, all the scalars trace(Mukv), for k = 0, . . . , r and v =
1,x1, . . . ,xN are easily derived from the trace matrix TRM defined
by [TRM]k,l := trace(Mωkωl ), i.e.

TRM :=

 trace(Mω1ω1) ... trace(Mω1ωd
)

...
...

trace(Mωdω1) ... trace(Mωdωd
)

 .

Furthermore since rank(TRM) = #ZC(I) = r, we also have an easy
way of testing whether a polynomialu is separating and thus of
validating the solutions obtained: in such a case, deg(χ̃u) should
be equal tor. Moreover, the set of linear polynomialsS (I) :=
{x1+kx2+ . . .+kN−1xN |0≤ k≤ (N−1)

(r
2

)
} contains at least one

separating polynomial. Another way of getting with probability 1 a
separating polynomial is to take at randomu = U1x1 + . . .+UNxn
whereU1, . . . ,UN are iid continuous uniform[0,1].

4. LINEAR ALGEBRA IN THE QUOTIENT

In this approach, most of the computational cost lies in getting the
parametric trace matrix TRM(γ0,γ1,γ2) of the system. This expen-
sive symbolic computation is however done once for all, i.e. for
any value of the parametersγ0,γ1,γ2 and also for any type of mod-
ulation afore-mentioned. This gives us a sparse parametric matrix
(given in Figure 1 for the caseN = 3 and 3π/8-D8PSK) that we can
now evaluate on the considered block of signal by plugging in the
set of parameters obtained from the non-circular statistics ony[n].
E.g. for system(P) with γ0 = 3,γ1 = 0 andγ2 = 1, we get

TRM(3,0,1) =


8 0 0 0−10 8 −4 0
0 10 −10 8 0 0 0 −6
0 −10 6 8 0 0 0 −2
0 8 −4 6 0 0 0 4

−10 0 0 0 14 −6 −2 0
8 0 0 0 −6 4 4 0
−4 0 0 0 −2 4 −12 0
0 −6 −2 4 0 0 0 −10

 .

From this matrix, we test thatu := x1 +2x2 +4x3 is separating, and
get the following RUR for(P):

χu(t) = t8−45t6 +544t4−6165t2 +4225

and gu(1, t) = 90t6−2176t4 +36990t2−33800,

gu(x1, t) = 22t7−776t5 +8450t3−20800t,

gu(x2, t) =−14t7 +600t5−11890t3 +23400t,

gu(x3, t) = 24t7−650t5 +13080t3−14950t.

Now, the roots ofχu(t) are usually easily isolated from the trace
matrix [14]. But in this special case, we can even compute an exact
factorization,

χu(t) = (t− 5
2 −

3
2

√
5)(t− 5

2 + 3
2

√
5)(t + 5

2 −
3
2

√
5)(t+

5
2 + 3

2

√
5)(t−3−2 j)(t−3+2 j)(t +3−2 j)(t +3+2 j),



Figure 1: Parametric trace matrix for N=3.

and so the following eight solutions for[h[0]4,h[1]4,h[2]4]

{[− 1
2 + 1

2

√
5,0, 1

2 + 1
2

√
5], [− 1

2 −
1
2

√
5,0, 1

2 −
1
2

√
5],

[ 1
2 + 1

2

√
5,0,− 1

2 + 1
2

√
5], [ 1

2 −
1
2

√
5,0,− 1

2 −
1
2

√
5],

[−1,− j,−1], [−1, j,−1], [1,− j,1], [1, j,1]}.

By solving now for[h[0],h[1],h[2]], we thus get 512 possible solu-
tions for system (3).

This second (on-line) stage of the algorithm does not require any
symbolic computation. The RUR of the system is easily computed
from the evaluated trace matrix using Matlab or Scilab. The best
solution is then selected from the set of possible solutions by intro-
ducing for example the circular statistics ofy[n], as in [9],

cp := E(y[n]y∗[n− p]) =
N−1

∑
m=p

h[m]h∗[m− p]. (8)

or alternatively, another method making use of higher-order statis-
tics to parse directly through the solutions[h[0]4,h[1]4,h[2]4] in or-
der to reduce the size of the set of valid solutions.

5. CONCLUSION

We introduced here a new approach to the problem of blind chan-
nel identification for PSK-like modulations. With this approach,
we are able to get an exhaustive description of the solution space.
Furthermore, the algorithm proposed shows a rather small on-line
computational cost since the expensive symbolic computation of the
parametric trace-matrix is obtained offline once for all and depends
only on the modulation type and the channel length but not on the
channel itself. The solutions of the problem are then easily obtained
from this representation by solving a single univariate polynomial
equation. Also, this approach is general enough to be applied to
many other problems that can be written in the form of systems of
polynomial equations of the form (1) or (2).
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