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ABSTRACT 2. MODEL

The Manchester Decoding Algorithm (MDA) presented in o hase-pand, a received mode S SSR reply consists of a

[1] succeeds i.n sgpgrating Secondary Sur.veillance Rada'oinary sequence with alphabft, 1}, modulated by a com-

(SSR) repl_les impinging on an array. The fl_nal step of the plex exponential due to a residual carrier frequency [2]rédo

MDA consist of jointly diagonalizing a collection of sevéra e the binary sequence is encoded in a Manchester scheme:

symmetric cubes by a sub-optimal technique. In this arti- 5 pi: b, = 0 is coded ab, = [0,1], and a bith, = 1 as

cle, we demonstrate that it is in fact a PARAFAC problem b, = [1,0]. Therefore three consecutive samples of a reply

with an almost symmetric solution. Furthermore, compar- pova 4 product equal to zero (see Figure 1):

isons with other algorithms are carried out, with the help of

computer simulations. Property 1 Independently of the data transmitted, due the
Manchester Encoding, a mode Sreply signal s[n] obeys:

1. INTRODUCTION sin—1] s[n] s[n +1] =0, Yn e N 1)
Secondary Surveillance Radar (SSR) is essential for Afr Tra
fic Control (ATC). This radar establishes a communication-
link between the ground-station and the aircraft, in which
the aircraft identity or altitude is transmitted on a redques |
and reply basis. Under the present circumstances of opera-
tion, SSR uses two protocols, while in the future, only mode
S will be operated [2].

It has been foreseen to replace the conventional rotating an |
tenna by a distribution of receiving passive array antenna. ﬁ l

The expected gain from this change is a better localization

of the airplane based on multi-lateration principle (as@ e  Fig. 1. The cross-product of three consecutive bits is always
[3]). The drawback is that more replies are received due toequal to zero, with a Manchester encoding.

the antennas omni-directionality. On the other hand, using

an array allows to perform source separation on incoming |tis assumed that &/-element antenna receivéseplies.

replies. After sampling at twice the data rate, the received signal

With this goal, several algorithms tailored to this applica .5 he modeled as an instantaneous linear combination of
tion have been proposed [4, 5, 6, 1]. These Algorithms ¢4 rce signals:

need in their final step to solve either a joint diagonaliza-

tion of matrices, or a Generalized Eigenvalue Problem, or x[n] = Ms[n]| +njn] Vne{l,.,N} (2)
even a Quadratic Eigenvalue Problem. Hebe the num-

ber of sources. One of the algorithms, the Manchester De-where

coding Algorithm (MDA), needs to jointly diagonalize a
collection ofd third order symmetric tensors of dimension
d x d x d. We show in this article that it is equivalent to find e x[n] = [x1[n], -+ ,zp[n]]T is ap x 1 vector of re-
the PARAFAC decomposition of a fourth-order tensor. ceived signals at timeT’,

e N is the total number of samples,



e M is the M x d mixing matrix, taking account the data made by rearranging entrieswgfin U, along the first
direction of arrival, and a possible decalibration of the dimension, then the second, and lastly the third. Then:

array,

d
e s[n] = [s1[n], - ,saq[n]]” is ad x 1 vector of source U ST W 6
signals sampled at time s;[n] being then-th sample ¢ ; LYYl (6)

of thei-th source,
e n[n] is a white Gaussian noise. where tensor$V;’s are produced by the’s. Thesel sym-
metric tensordJ; can be jointly diagonalized by the same
Note that the mixture is instantaneous because possible multransformQ, which allows to determine the desirétheam-
tipaths affect onlyM, or have so large time delays that they formers.

may be considered as an independent sources. In [1], the joint diagonalization is indirect, indeed the
columnsuy’s are reshaped intd®> x d matricesU;, such
3. ALGORITHMS that veqU;) = u;. Then
3.1. Manchester Decoding Algorithm d . .
U,; = (T)Z] (Wj ® Wj)Wj = (W o W)AlW

The aim of [1] is to find beamformens;, Vi € {1, ..,d}, J
such that the outputs:

1

whereA, is a diagonal matrix which entries afd;);; =

wi'x[n] = [n] (T);;. We can define thé? x d* matrix U’ as
are the SSR replies; this is a Zero-Forcing solution (ZF). ; def
; ; H U = [Uy,---,U4]
Using property (1), and replacing[n] by w'' x[n], one ob-
tains: = (WoW) AW ... AWT] (7)

[x[n + 1] ® x[n] @ x[n — 1]]H (wawow)=0 (3) This shows thall’ should be of ranki. Thus letV be an
estimatedd-dimensional basis for the column span'@f,
forn =2,--- | N — 2, wherew is the Kronecker product.  obtained viaan SVD o€/, and letQ = V# (WoW), with

To collect these conditions, define the matfix N — 2 x sized x d. ThenVHU' is a dimension-reduced (x d?)
d3 built by stacking rowsx[n + 1] ® x[n] ® x[n — 1]]", matrix with squarel x d blocksV# Uy, each of the form
so that

ot VAU) =QA,WT,  i={1,---.d}
Pw® =0, withw=E=wowow (4)
Thus, the problem is reduced to a standard (unsymmetric)

Ford sources, there arélinearly independent separat-  joint diagonalization problem, and the algorithm in [7] can
ing beamformersv;, i« = 1,--- ,d. Thus we havel lin- be applied to estimat.

early independent vectoss; that belong to the null space
of P. If the null space isl-dimensional, then the subspace
spanned by thev{ is exactly equal to the null space, and 3.2. PARAFAC model

any basis of the null space must be a linear combination of A pARAFAC decomposition of a third-order tensor of rank

thewy’s. . r can be described as the sumrafink-one tensors:
In [5], a proposition states that the null spacebis
d-dimensional if the replies are totally overlapping. The r
MDA, similarly to [7], estimates an arbitrary basis of the Tabe = ZAalelCcl
null space of matri¥; a matrixU such that: =1
U:[W?Wg'-'wg]T:WQT (5) WhereA:[alu-aT],B:[b1~-~br],andC:[c1~~-cr]

are matrices of dimensid x r. It can be then written as:
whereT is an invertible matrix. Leti; be thei-th column ,
. . d
of Uy with sized?, thenui.: Z_j:l (T)zg W?-_ ) T = Z ajobjoc;=AocBoC
The last step of the algorithm is to find the linear combina- —
tions to map the basis to the structured vectefsand sub-
sequently to estimate the correspondingfor each vector.  whereo denotes the outer product between two tensors (see
From each vecton, (of sized?) of the basisU, it is [8D).
possible to create a tend0y of sized x d x d, a “cube” of Similarly, defineD = [d; ---d,] a matrix of dimension



k4 x r, then the PARAFAC decomposition of a fourth-order
tensor of rank: can be written:

T:ZaZOblOCZOdl:AoBoCoD
=1

where the entry in positiofiabed} is:

Taped = Z AyuByuCoDy
=1

3.3. TheMDA: a PARAFAC problem?

First of all, note that th&V; are rank one sinc&/; = w; o
w; o w;. Therefore equation (6) may be written as:

d
U, = E T;; wW; 0w, 0w

=1

wherel; is a square symmetric tensor of ordedimension
d, and rankd. Next, let us build the fourth-order tensor
U™ such that the-th slice along the last dimensioni:
U,z :0) = U,

Then, this tensor is equal to:

U(4):Zwlowlowlotl:WOWOWOT
=1

and is of rankd, therefore the PARAFAC model applies to
the tensor issued for the final resolution of the MDA prob-
lem.

3.4. Pre-processing

The U; are a sum of square symmetric tensors, therefore
they should be symmetric as well, but due to noise, and
to the method used to estimate them, it is often not the
case. Given that the desired solutions are symmetric in ways
(1,2, 3), we pre-process the received data in order to sym-

metrize thel;. Denote(.)(.s¢ the permutation of indices

in the first 3 ways, where ways are re-arranged in the order

[abc]; the symmetrized version of thig’s takes the form:

U, = Us) 23] + (Us) 231y + (Us)312))

+ ol

((
1
6 ((Ui)[213] + (Ui)[321) + (Ui)[132])
During the simulations, we try both cases.

3.5. Rank-one approximation

approximation of a square symmetric third-order teriBor
of rank ideally equal td:

Auouou (8)

We propose two approaches: one is derived from the
Power Method, and the other is an ad-hoc technique based
on a Singular Value Decomposition.

Remind that(e;) is the inner product between two tensors
along wayi (see [8]). Then Equation (8) gives:

The pseudo-Power Method consists to cyclically multiply
the tensofT along two dimensions, and to use the result as
a new estimate for the next multiplication.
Rk: This technique should be applied only to model (8),
and not with general tensdrs

In the second method, the idea is to use all the slices (in
any dimension) of the cube. Since the tensor is square, the
number of slices i8d. DenotesT . ; .), thei-th slice along
the second dimension, it is equal t&. ;.) = w;u u’,
which is symmetric. We construct the matrix of size6d?:

M = [T TE T Than - Ty - .T@,:7:)} .
The estimate ofi is the main left singular eigenvector.
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Fig. 2. RMSE of the estimated vector as a function of SNR,
for the pseudd?M, and the ad-ho&VD technique.

In order to assess the quality of each method, we sim-
ulate a rank one square symmetric third-order tensor of di-
mension5 x 5 x 5 plus a noise tensor, whose entries are
zero-mean Gaussian. The SNR is defined as the ratio of the
Frobenius norm of the signal tensor over the noise tensor.

1A striking counter-example would be to try this procedureadensor

_In th(_e process of the various algorithms adgpted Or proposed,ch asT — (Ui)(123) + (Ui)[231) + (Ui)[312), whereU = uy oug o
in this article, we need a tool that can give the rank-one us 4 uz o uj o u; with an initialu = u;, andu; Lus.



The RMSE vector is the power of the noise orthogonal to which is the result of the minimization of the cost function:

the direction ofu. The simulation is run ovel000 indepen- 5

dent runs. Figure 2 demonstrates that the ad-Hoc method is K d (K]
more efficient. Crs(bi) =Y wy Uk =D N brobioby

k=1 =1 FRO
3.6. Competiting Algorithms Definingb, = 3, with 3 an unit-norm vector, ancda real

/Ty d (k]

e One historical algorithm to find the PARAFAC decom- vaIued—;;caIar. B&, = Uk — 2ipi M brobioby, and

L . . _ (K] oy y* _\d (k] |2 .
position is the Alternating Least Square algorithm (ALS) P = Dokt wiA; (Ug)" andp = 370 5 wiA[%, then:
[9] [10], which estimates Alternatively in the Least Square
sense the matricgsA, B, C, D} of the decomposition un- { ﬁ3: Alrgmax RePei Se: 3033}
til convergence. Unfortunately, the ALS algorithm deliv- r* = yRe(Pe; Ge; Be3 3}
ers the matriceW,, Wy, W3, T}, where théW; would
converge towards the same mafi& only in the absence of
(unsymmetric) noise. Therefore, a final averaging between
theW;’s is necessary.
An alternate solution, which we call Modified ALS (M-
ALS), tends to overcome this drawback. Note thadif=
B = C = W, we may only alternate betweéW and

D. Let Xg = [Ta,l,:,:)Ta,Q,:,:) e 'T@,l,:,:) te T,(I:i,d,:,:) ' 2
then: ) (W) = [[U® — WeWowor| ©9)
X;=(WoWoW)DT, FRO

¢ JADE [12] jointly diagonalize a collection of matrices
A,’s, with the modelA;, = UA, U, whereU is unitary.
As well, the algorithm STOD from [13] jointly diagonalize
a collection of third-order tensors by an unitary transfarm
tion, like JADE. Because the desir8d is not unitary, these
two techniques are not applicable in our case.

e Another approach is to minimize directly the criterion:

where® is the Khatri-Rao product. So at the iteratiom 1, With the notation from subsection 3.1, defﬁ%\, =1I-
we have: W (W°)t, where(.)! is the Moore-Penrose pseudo-inverse.
Then using Equation (5), the cost function can be rewritten:

D+ — {(W(k) oW® @ Vv(k))Jr Xdl , and 2
C(W) = HH\LNUHFRO (10)

(WoOWo W)(’H'l) =Xy ((D(kJrl))T)

. (k1) This is the cost function we minimize using the Maffab
where we denotdv° = (WO W © W) "". Now, we  fynctionf ni nsear ch. m we test it with two different ini-
need to estimate the;’s: each vector oW, of sized?, is tial point: 1) the true solution, e.gW = M, so we have
transformed into a square cubic tensor, and is equalto 5 henchmarkfor comparison2) the initial W is obtained
w;ow;. \We estimate the;'s by a rank-one approximation  py the joint diagonalization of the first slice of the tensors
of theW,’s. U, andU, denotedA; and A, so two matrices. the pro-

AC and DC, jointly diagonalize a collection of matrices \hijch yields the (joint) eigenvectors.

A’s with the modelA;, = BA;B*, where(.)* can be
either transposg)” or transpose-conjugate) . It is also

a modified ALS, indeed it iterates along dimensidhs2),
the AC step, and3), the DC step. Moreover, the DC step is
identical to the corresponding ALS step. The difference lie . _ . :
on the estimation oB F\)Nhich igs equal t(f& forthe ACDC,  With the raw tensob/¥), and its symmetrized versiof”

Indeed each columb;, is obtained by the minimization of (dashed lines in the -f|gur.es)3 sources Impinge on a-
the cost function: element array from directiori§0, 90, 120]. Matrix M has

a conditioning number of .58, and the maximum antenna

4. SIMULATION

Every aforementioned algorithm has been implemented both

K ) gain is3.02 dB. The data-batch i$00 samples long, the
Crs = wi ||Ax = BMB”|| 10 SNR range i$0, 20] dB, and1000 independent runs are ex-
k=1 ecuted.

Figure 3 reports the failure rate as a function of SNR,
and Figure 4 the output SINR minus the input SNR. To de-
clare a failure, we use @&dB threshold as it corresponds to
the radar concept of tangential sensitivity. First, we lost

while keeping the other columris;, j # 4, and the\;’s
constant. Thev,, are some positive weights.

We extended the ACDC algorithm to a collection of sym-
metric tensors, in the simulation it is nam&@DC-3. The
algorithm is the same, except for the estimation of dagh 21t gives the Zero-Forcing solution.




-%- ALS

- ALS (S)
-O- M-ALS
-© M-ALS ()
-3- ACDC

-8~ ACDC (S)
-+- ACDC-3
— ACDC-3 (S)
— MDA

:2_— Cost

Cost (Wo)
- 0 .. .

Fail rate

9--
-9

1
SNR (dB)

Fig. 3. Failure rate for each method as a function of SNR.
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Fig. 4. The output SINR minus the input SNR for each
method as a function of SNR.

the algorithms applied oﬁgl) behave better for failure rate
and SINR than when applied @{*. Next, the cost func-
tion minimization needs to start near the solution otheswis
it gets lost in a local minimum. Initialized by the ZF solu-
tion, it has only0.25 dB loss with respect to the maximum
achievable SINR. The ALS, M-ALS, ACDC, and ACDC-
3 behave similarly (within &.5 dB fork for SINR). The
MDA performs better a SNR less thai dB. We think that
the indirect step (7) implicitly performs a enhanced noise
reduction, whose benefit overcomes the sub-optimality of
the method,; this effect is lost when the SNR is larger.

5. CONCLUSIONS

We presented how the final step of an algorithm that aims

replies is linked to a PARAFAC model via an almost sym-
metric square fourth-order tensor of reduced rank. We have
evaluated several algorithms performing a decomposition o
this tensor. We have presented a technique based on SVD to
perform a rank-one decomposition of a symmetric tensor.
The ad-Hoc method from [1] outperforms at low SNR di-
rect techniques, due to an implicit noise reduction. Inrfeitu
works, we shall investigate speed of convergence, identifia
bility, and enhanced noise reduction.
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