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ABSTRACT

The Manchester Decoding Algorithm (MDA) presented in
[1] succeeds in separating Secondary Surveillance Radar
(SSR) replies impinging on an array. The final step of the
MDA consist of jointly diagonalizing a collection of several
symmetric cubes by a sub-optimal technique. In this arti-
cle, we demonstrate that it is in fact a PARAFAC problem
with an almost symmetric solution. Furthermore, compar-
isons with other algorithms are carried out, with the help of
computer simulations.

1. INTRODUCTION

Secondary Surveillance Radar (SSR) is essential for Air Traf-
fic Control (ATC). This radar establishes a communication-
link between the ground-station and the aircraft, in which
the aircraft identity or altitude is transmitted on a request
and reply basis. Under the present circumstances of opera-
tion, SSR uses two protocols, while in the future, only mode
S will be operated [2].
It has been foreseen to replace the conventional rotating an-
tenna by a distribution of receiving passive array antenna.
The expected gain from this change is a better localization
of the airplane based on multi-lateration principle (as in e.g.
[3]). The drawback is that more replies are received due to
the antennas omni-directionality. On the other hand, using
an array allows to perform source separation on incoming
replies.
With this goal, several algorithms tailored to this applica-
tion have been proposed [4, 5, 6, 1]. These Algorithms
need in their final step to solve either a joint diagonaliza-
tion of matrices, or a Generalized Eigenvalue Problem, or
even a Quadratic Eigenvalue Problem. Letd be the num-
ber of sources. One of the algorithms, the Manchester De-
coding Algorithm (MDA), needs to jointly diagonalize a
collection ofd third order symmetric tensors of dimension
d×d×d. We show in this article that it is equivalent to find
the PARAFAC decomposition of a fourth-order tensor.

2. MODEL

At base-band, a received mode S SSR reply consists of a
binary sequence with alphabet{0, 1}, modulated by a com-
plex exponential due to a residual carrier frequency [2]. More-
over the binary sequence is encoded in a Manchester scheme:
a bit bn = 0 is coded asbn = [0, 1], and a bitbn = 1 as
bn = [1, 0]. Therefore three consecutive samples of a reply
have a product equal to zero (see Figure 1):

Property 1 Independently of the data transmitted, due the
Manchester Encoding, a mode S reply signal s[n] obeys:

s[n − 1] s[n] s[n + 1] = 0 , ∀n ∈ N (1)

Fig. 1. The cross-product of three consecutive bits is always
equal to zero, with a Manchester encoding.

It is assumed that aM -element antenna receivesd replies.
After sampling at twice the data rate, the received signal
can be modeled as an instantaneous linear combination of
source signals:

x[n] = Ms[n] + n[n] ∀n ∈ {1, .., N} (2)

where

• N is the total number of samples,

• x[n] = [x1[n], · · · , xp[n]]T is a p × 1 vector of re-
ceived signals at timenT ,



• M is theM × d mixing matrix, taking account the
direction of arrival, and a possible decalibration of the
array,

• s[n] = [s1[n], · · · , sd[n]]T is ad× 1 vector of source
signals sampled at timen, si[n] being then-th sample
of thei-th source,

• n[n] is a white Gaussian noise.

Note that the mixture is instantaneous because possible mul-
tipaths affect onlyM, or have so large time delays that they
may be considered as an independent sources.

3. ALGORITHMS

3.1. Manchester Decoding Algorithm

The aim of [1] is to find beamformerswi, ∀i ∈ {1, .., d},
such that the outputs:

wH
i x[n] = ŝi[n]

are the SSR replies; this is a Zero-Forcing solution (ZF).
Using property (1), and replacingsi[n] by wHx[n], one ob-
tains:

[x[n + 1] ⊗ x[n] ⊗ x[n − 1]]
H

(w ⊗ w ⊗ w) = 0 (3)

for n = 2, · · · , N − 2, where⊗ is the Kronecker product.
To collect these conditions, define the matrixP : N − 2 ×
d3 built by stacking rows[x[n + 1] ⊗ x[n] ⊗ x[n − 1]]

H ,
so that

Pw⋄ = 0 , with w⋄ def
= w ⊗ w ⊗ w (4)

For d sources, there ared linearly independent separat-
ing beamformerswi, i = 1, · · · , d. Thus we haved lin-
early independent vectorsw⋄

i that belong to the null space
of P. If the null space isd-dimensional, then the subspace
spanned by thew⋄

i is exactly equal to the null space, and
any basis of the null space must be a linear combination of
thew⋄

i ’s.
In [5], a proposition states that the null space ofP is

d-dimensional if the replies are totally overlapping. The
MDA, similarly to [7], estimates an arbitrary basis of the
null space of matrixP; a matrixU such that:

U = [w⋄
1w

⋄
2 · · ·w

⋄
d]T = W⋄T (5)

whereT is an invertible matrix. Letui be thei-th column
of U0 with sized3, thenui =

∑d

j=1 (T)ij w⋄
j .

The last step of the algorithm is to find the linear combina-
tions to map the basis to the structured vectorsw⋄

i , and sub-
sequently to estimate the correspondingwi for each vector.

From each vectorui (of sized3) of the basisU, it is
possible to create a tensorUi of sized× d× d, a “cube” of

data made by rearranging entries ofui in Ui along the first
dimension, then the second, and lastly the third. Then:

Ui =

d
∑

l=1

Tl,iWl (6)

where tensorsWi’s are produced by thew⋄
i ’s. Thesed sym-

metric tensorsUi can be jointly diagonalized by the same
transformQ, which allows to determine the desiredd beam-
formers.

In [1], the joint diagonalization is indirect, indeed the
columnsui’s are reshaped intod2 × d matricesUi, such
that vec(Ui) = ui. Then

Ui =
d

∑

j=1

(T)ij (wj ⊗ wj)w
T
j = (W ◦ W)ΛiW

T

whereΛi is a diagonal matrix which entries are(Λi)jj =
(T)ij . We can define thed2 × d2 matrixU′ as

U′ def
= [U1, · · · ,Ud]

= (W ◦ W)[Λ1W
T , · · · ,ΛdW

T ] (7)

This shows thatU′ should be of rankd. Thus letV be an
estimatedd-dimensional basis for the column span ofU′,
obtained via an SVD ofU′, and letQ = VH(W◦W), with
sized × d. ThenVHU′ is a dimension-reduced (d × d2)
matrix with squared × d blocksVHUi, each of the form

(VHUi) = QΛiW
T , i = {1, · · · , d}

Thus, the problem is reduced to a standard (unsymmetric)
joint diagonalization problem, and the algorithm in [7] can
be applied to estimateW.

3.2. PARAFAC model

A PARAFAC decomposition of a third-order tensor of rank
r can be described as the sum ofr rank-one tensors:

Tabc =
r

∑

l=1

AalBblCcl

whereA = [a1 · · ·ar], B = [b1 · · ·br], andC = [c1 · · · cr ]
are matrices of dimensionki × r. It can be then written as:

T =
r

∑

l=1

al ◦ bl ◦ cl = A ◦ B ◦ C

where◦ denotes the outer product between two tensors (see
[8]).
Similarly, defineD = [d1 · · ·dr] a matrix of dimension



k4× r, then the PARAFAC decomposition of a fourth-order
tensor of rankr can be written:

T =

r
∑

l=1

al ◦ bl ◦ cl ◦ dl = A ◦ B ◦ C ◦ D

where the entry in position{abcd} is:

Tabcd =
r

∑

l=1

AalBblCclDdl

3.3. The MDA: a PARAFAC problem?

First of all, note that theWl are rank one sinceWl = wl ◦
wl ◦ wl. Therefore equation (6) may be written as:

Ui =
d

∑

l=1

Tl,i wl ◦ wl ◦ wl

whereUi is a square symmetric tensor of order3, dimension
d, and rankd. Next, let us build the fourth-order tensor
U

(4) such that thei-th slice along the last dimension isUi:
U

(4)(:, :, :, i) = Ui.
Then, this tensor is equal to:

U
(4) =

r
∑

l=1

wl ◦ wl ◦ wl ◦ tl = W ◦W ◦ W ◦ T

and is of rankd, therefore the PARAFAC model applies to
the tensor issued for the final resolution of the MDA prob-
lem.

3.4. Pre-processing

The Ui are a sum of square symmetric tensors, therefore
they should be symmetric as well, but due to noise, and
to the method used to estimate them, it is often not the
case. Given that the desired solutions are symmetric in ways
(1, 2, 3), we pre-process the received data in order to sym-
metrize theUi. Denote(.)[abc] the permutation of indices
in the first 3 ways, where ways are re-arranged in the order
[abc]; the symmetrized version of theUi’s takes the form:

Ûi =
1

6

(

(Ui)[123] + (Ui)[231] + (Ui)[312]
)

+
1

6

(

(Ui)[213] + (Ui)[321] + (Ui)[132]
)

During the simulations, we try both cases.

3.5. Rank-one approximation

In the process of the various algorithms adapted or proposed
in this article, we need a tool that can give the rank-one

approximation of a square symmetric third-order tensorT

of rank ideally equal to1:

T ≈ u ◦ u ◦ u (8)

We propose two approaches: one is derived from the
Power Method, and the other is an ad-hoc technique based
on a Singular Value Decomposition.
Remind that(•i) is the inner product between two tensors
along wayi (see [8]). Then Equation (8) gives:

T •
2
u∗ •

3
u∗ ≈ u

The pseudo-Power Method consists to cyclically multiply
the tensorT along two dimensions, and to use the result as
a new estimate for the next multiplication.
Rk: This technique should be applied only to model (8),
and not with general tensors1.

In the second method, the idea is to use all the slices (in
any dimension) of the cube. Since the tensor is square, the
number of slices is3d. DenotesT(:,i,:), thei-th slice along
the second dimension, it is equal to:T(:,i,:) = uiu uT ,
which is symmetric. We construct the matrix of sized×6d2:

M =
[

T(:,:,1)T
T
(:,:,1)T(:,:,2)T

T
(:,:,2) . . . T(:,1,:) . . . TT

(d,:,:)

]

.

The estimate ofu is the main left singular eigenvector.
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Fig. 2. RMSE of the estimated vector as a function of SNR,
for the pseudo-PM, and the ad-hocSVD technique.

In order to assess the quality of each method, we sim-
ulate a rank one square symmetric third-order tensor of di-
mension5 × 5 × 5 plus a noise tensor, whose entries are
zero-mean Gaussian. The SNR is defined as the ratio of the
Frobenius norm of the signal tensor over the noise tensor.

1A striking counter-example would be to try this procedure ona tensor
such as:T = (Ui)[123] + (Ui)[231] + (Ui)[312], whereU = u1 ◦ u2 ◦

u2 + u2 ◦ u1 ◦ u1 with an initialu = ui, andu1⊥u2.



The RMSE vector is the power of the noise orthogonal to
the direction ofu. The simulation is run over1000 indepen-
dent runs. Figure 2 demonstrates that the ad-Hoc method is
more efficient.

3.6. Competiting Algorithms

• One historical algorithm to find the PARAFAC decom-
position is the Alternating Least Square algorithm (ALS)
[9] [10], which estimates Alternatively in the Least Square
sense the matrices{A,B,C,D} of the decomposition un-
til convergence. Unfortunately, the ALS algorithm deliv-
ers the matrices{W1, W2,W3,T}, where theWi would
converge towards the same matrixW only in the absence of
(unsymmetric) noise. Therefore, a final averaging between
theWi’s is necessary.
An alternate solution, which we call Modified ALS (M-
ALS), tends to overcome this drawback. Note that ifA =
B = C = W, we may only alternate betweenW and

D. Let XT
D =

[

T
T
(1,1,:,:)T

T
(1,2,:,:) . . .TT

(2,1,:,:) . . .TT
(d,d,:,:)

]

,

then:
Xd = (W ⊙ W ⊙ W)DT ,

where⊙ is the Khatri-Rao product. So at the iterationk+1,
we have:

{

D(k+1) =
[

(

W(k) ⊙ W(k) ⊙ W(k)
)†

Xd

]

, and

(W ⊙ W ⊙ W)(k+1) = Xd

(

(D(k+1))T
)†

where we denoteW⋄ = (W ⊙ W ⊙ W)
(k+1). Now, we

need to estimate thewi’s: each vector ofW⋄, of sized3, is
transformed into a square cubic tensor, and is equal towi ◦
wi ◦wi. We estimate thewi’s by a rank-one approximation
of theWi’s.

• The ACDC algorithm [11] consisting of two phases,
AC and DC, jointly diagonalize a collection of matrices
Ak ’s with the modelAk = BΛkB

⋆, where(.)⋆ can be
either transpose(.)T or transpose-conjugate(.)H . It is also
a modified ALS, indeed it iterates along dimensions(1, 2),
the AC step, and(3), the DC step. Moreover, the DC step is
identical to the corresponding ALS step. The difference lies
on the estimation ofB, which is equal toA for the ACDC.
Indeed each columnbi is obtained by the minimization of
the cost function:

CLS =

K
∑

k=1

wk

∥

∥Ak − BλkB
T
∥

∥

2

FRO

while keeping the other columnsbj , j 6= i, and theλk ’s
constant. Thewk are some positive weights.
We extended the ACDC algorithm to a collection of sym-
metric tensors, in the simulation it is namedACDC-3. The
algorithm is the same, except for the estimation of eachbi,

which is the result of the minimization of the cost function:

CLS(bi) =

K
∑

k=1

wk

∥

∥

∥

∥

∥

Uk −

d
∑

l=1

λ
[k]
l bl ◦ bl ◦ bl

∥

∥

∥

∥

∥

2

FRO

Definingbi = rβ, with β an unit-norm vector, andr a real
valued-scalar. BeU′

k = U
′
k −

∑d

l 6=i λ
[k]
l bl ◦ bl ◦ bl, and

P =
∑K

k=1 wkλ
[k]
l (U′

k)∗, andp =
∑d

k=1 wk|λ
[k]
l |2, then:

{

β = Argmax Re{P •1 β •2 β •3 β}
r3 = 1

p
Re{P •1 β •2 β •3 β}.

• JADE [12] jointly diagonalize a collection of matrices
Ak ’s, with the modelAk = UΛkU

H , whereU is unitary.
As well, the algorithm STOD from [13] jointly diagonalize
a collection of third-order tensors by an unitary transforma-
tion, like JADE. Because the desiredW is not unitary, these
two techniques are not applicable in our case.

• Another approach is to minimize directly the criterion:

C(W) =
∥

∥

∥
U

(4) − W ◦ W ◦ W ◦ T

∥

∥

∥

2

FRO
(9)

With the notation from subsection 3.1, defineΠ⊥
W

= I −
W⋄(W⋄)†, where(.)† is the Moore-Penrose pseudo-inverse.
Then using Equation (5), the cost function can be rewritten:

C(W) =
∥

∥Π⊥
W

U
∥

∥

2

FRO
(10)

This is the cost function we minimize using the Matlabc©

functionfminsearch.m, we test it with two different ini-
tial point: 1) the true solution, e.g.W = M†, so we have
a benchmark2 for comparison.2) the initialW is obtained
by the joint diagonalization of the first slice of the tensors
U1 andU1, denotedA1 andA2, so two matrices. the pro-
cedure is to perform the eigendecomposition ofA−1

1 A2

which yields the (joint) eigenvectors.

4. SIMULATION

Every aforementioned algorithm has been implemented both
with the raw tensorU(4), and its symmetrized version,U

(4)
S

(dashed lines in the figures).3 sources impinge on a3-
element array from directions[60, 90, 120]. Matrix M has
a conditioning number of1.58, and the maximum antenna
gain is 3.02 dB. The data-batch is100 samples long, the
SNR range is[0, 20] dB, and1000 independent runs are ex-
ecuted.

Figure 3 reports the failure rate as a function of SNR,
and Figure 4 the output SINR minus the input SNR. To de-
clare a failure, we use a3 dB threshold as it corresponds to
the radar concept of tangential sensitivity. First, we notethat

2It gives the Zero-Forcing solution.
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Fig. 3. Failure rate for each method as a function of SNR.
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Fig. 4. The output SINR minus the input SNR for each
method as a function of SNR.

the algorithms applied onU(4)
S behave better for failure rate

and SINR than when applied onU(4). Next, the cost func-
tion minimization needs to start near the solution otherwise
it gets lost in a local minimum. Initialized by the ZF solu-
tion, it has only0.25 dB loss with respect to the maximum
achievable SINR. The ALS, M-ALS, ACDC, and ACDC-
3 behave similarly (within a0.5 dB fork for SINR). The
MDA performs better a SNR less than17 dB. We think that
the indirect step (7) implicitly performs a enhanced noise
reduction, whose benefit overcomes the sub-optimality of
the method; this effect is lost when the SNR is larger.

5. CONCLUSIONS

We presented how the final step of an algorithm that aims
at separating a mixture of Secondary Surveillance Radar

replies is linked to a PARAFAC model via an almost sym-
metric square fourth-order tensor of reduced rank. We have
evaluated several algorithms performing a decomposition of
this tensor. We have presented a technique based on SVD to
perform a rank-one decomposition of a symmetric tensor.
The ad-Hoc method from [1] outperforms at low SNR di-
rect techniques, due to an implicit noise reduction. In future
works, we shall investigate speed of convergence, identifia-
bility, and enhanced noise reduction.
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