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Abstract. This paper deals with the problem of estimating atrial ac-
tivity during atrial fibrillation periods in the electrocardiogram (ECG).
Since the signal of interest differs in kurtosis sign from the dominant
sources in the ECG, we propose an independent component analysis
method for source extraction based on the different kurtosis sign and
extend it with a constraint of spectral concentration in the 3-12Hz fre-
quency band. Results show that we are able to estimate the atrial fib-
rillation with a single algorithm having low computational complexity
(O(7n-7)T).

1 Introduction

This paper describes a method to recover narrow band independent signals from
a linear mixture model where high impulsive (high kurtosis) signals are the
main source of interference. This set-up is a commonly encountered problem
in biomedical signal analysis, e.g. when considering spectral bands of activity
in electroencephalographic recordings or atrial fibrillation (AF) signals in the
electro cardiogram (ECG) where the main sources of interference are respectively
the ocular activity and the QRS(-T) complex.

The focus here is on the recovery of atrial activity during AF from an ECG
recording, whatever the conditions of noise or interference from other physio-
logical signals (e.g. QRS complex). Since we consider narrow band spectra in a
volume conductor, a linear approximation of the electromagnetic Maxwell equa-
tions is valid and hence we may suppose that a general linear mixing model holds.
This mixture model translates the measured potentials at the chest or body sur-
face into bio-electrical source signals (generally specified by their currents) and
vice versa. If we consider the mixing-demixing model, all relations exhibit the
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characteristics of a linear model and thus we can rewrite our system of mea-
surements y into an equivalent set of potentials x, where each xi is associated
with a column of A, ai. The latter represent the mappings of the sources on the
measurement surface (known as source topographies). Or, in matrix notation:

y (t) = Ax (t) + η (t) , (1)

which explains the relations between the measurements y ∈ IRm×1, the mixing
matrix A ∈ IRm×n, the sources x ∈ IRn×1 and the noise η ∈ IRm×1.

The measurements and the sources can be seen as realisations of random vari-
ables. Therefore we will drop the time index in the subsequent work to improve
readability. For the biomedical case we might assume that these sources are quasi
statistically independent. In the case of atrial fibrillation, we can restrict the AF
source characteristics even further by imposing the extra constraint that the AF
signal should have a narrow band spectrum, thus having platokurtic statistics.
This is in contrast to the QRS(-T) complex - the main masking source - which
is highly leptokurtic (see e.g. [1]). In the rest of this paper we will develop this
idea further, sketching a framework in which we can extract the independent
AF source based on the difference in kurtosis sign and under the constraint of
narrow band source spectra. The solution is given as the ensemble of subsequent
algebraic solutions to the pairwise separation problem, subjected to a condi-
tional update. This guarantees a robust algorithm, with only few parameters to
estimate and omitting the need for exhaustive search algorithms.

2 Methods

2.1 The Kurtic Difference as an Object Function to ICA

ICA. The solution to the ICA problem has been proposed by different authors,
using different contrast functions. Despite the diversity at the basis of the algo-
rithms, the solution space is almost always given by components whose higher
order cross cumulants vanish [2,3], which in its turn is equivalent to a reduction
of the mutual information between the components [4,5]. Solutions have been
proposed to solve the problem by deflation approaches [6] - estimating source by
source - or to interact on the whole subset at once. The deflation approach offers
the ability to solve for independence in a component-by-component way, sorted
according to the value they take in the cost function, see e.g. RobustICA [7],
FastICA [8]. However, when considering the a priori constraint of a narrow
spectrum, most algorithms lack the possibility to include this without going to
excessive computational complexity, see e.g. the number of tensor slices or cor-
relation matrices needed in JADE [4]-like, respectively SOBI [9]-like, algorithms
especially when applied to high data dimensionalities n.

Givens Rotations. The method proposed here is an extraction (or deflation)
approach with pairwise optimisation. The advantage is that there exists an alge-
braic expression able to update the source estimates, avoiding computationally
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unattractive search methods. Moreover, since the signals are prewhitened (i.e.
mutually decorrelated), it suffices to find an orthogonal matrix to find maxi-
mally independent source estimates. We can thus constrain our parameter space
to only one parameter per signal pair if we do not take into account permuta-
tion and scaling, which are irrelevant parameters when considering the indepen-
dence criterion. Our search space can thus be limited to the optimal rotation
angle for each pair to process [4,3]. This amounts to the following algorithm for
prewhitened signals ẑ ∈ IRn×1:

x̂ij = Q (θ�)xij , where Q (θ�) =
(

cos θ� sin θ�

− sin θ� cos θ�

)
, (2)

where θ� is the optimal rotation angle that is to be specified, and the matrix
Q (θ�) represents a plane rotation, also known as Givens rotation. xij and x̂ij are
the ith and jth component of x, respectively x̂. The result of the left multiplica-
tion of the data x̂ij by Q−1 = QT would thus results in the standarized sources
x̂, with additional constraints imposed by the objective function to which θ� is
a solution. If the objective function is chosen well, these sources are maximally
independent, an assumption that is believed to hold true for many, if not all, bio-
electrical source signals. When the objective function meets the requirements of
being maximal if and only if the components are independent, while being blind
to possible permutations and scaling, it becomes a contrast function for ICA [3].

Kurtic Difference as a Contrast. We have shown in [10] that the objective
function

Ψ (Q) =
n∑

i=1

εiκ
x̂
iiii (3)

fulfils all requirements to be a contrast function for ICA, where εi is the sign
of the fourth order auto cumulant of the ith source and κx̂

iiii the fourth order
cumulant of the ith output. Based on this fact, together with the assumption
that the atrial activity caused by AF is a (the sole) platokurtic source in the
ECG, the contrast would translate into:

ΨAF (Q) =

(
n∑

i=2

κx̂
iiii

)
− κx̂

1111, (4)

which can be solved using subsequent Givens rotations as defined above. The
next paragraph gives the algebraic solution for θ when a pair of signals is con-
sidered.

The Optimal θ-value: θ�. We can now obtain the optimal value for θ, θ�,
by calculating the stationary point of our contrast function ΨAF (4) by setting
its derivative to zero. It is sufficient to consider the pairs with opposite kurtosis
signs, the other cases being known. As a function of the observed whitened
signals x̂ = Qx we obtain for ΨAF :

ΨAF (θ) = λ2 − λ1 = α cos 2θ + 2β sin 2θ, (5)
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where α and β are given by
(
κx̂

1111 − κx̂
2222

)
and

(
κx̂

1112 + κx̂
1222

)
, respectively

and λ1, λ2 are the kurtosis values of x̂ij , which can be written as a multi lin-
ear function of the source kurtosis values [3] using Eq. (2). Equation 5 has its
stationary points at

2θ� = arctan
2β

α
, (6)

where θ� is the rotation angle to be found.
Equation 6 is also the equation obtained in [11] based on centroid estimators.

2.2 Inclusion of the Spectral Concentration Constraint

AF is typically characterised by a sinusoidal to triangular waveform (depending
on the relative power in the harmonics) with a frequency and amplitude mod-
ulation. This spectrally rather narrow banded signal has its main frequency in
the 3 to 12 Hz band. This enables us to create additional constraints regarding
the spectra, forcing us to redefine the update sequence of the pairwise processing
for source extraction as given in [10]. The method extends the natural sweeping
procedure for source extraction to a criterion based sweeping procedure. The
update criterion is given as

Criterion 1. Replace the source estimates x̂i and x̂j with their updates x̂�
i and

x̂�
j by using the relation x̂�

ij = QT x̂ij iff the spectral concentration in the 3-
12Hz band of one of the new estimates exceeds the spectral concentration of the
reference source estimate.

The spectral concentration in criterion 1 is taken as the ratio of spectral den-
sity in a ±10% band around the center frequency fc to the total energy in

the signal’s spectrum, i.e. SC =
1.1fc∫
.9fc

P (τ)e−2πτfdf/ Fs/2∫
0

P (τ)e−2πτfdf, if

fc ∈ [3Hz, 12Hz], otherwise SC = 0. With this information we can define the
sweep procedure as described in table 1, where the stopping criterion is defined
to be positive when a sweep occurs without update of the reference source
estimate.

Table 1. The pseudo-code for the sweep algorithm

Initialise reference source with x̂1

While false(stopping criterion)
StartSweep: For j from 2 to m

Compute θ� for the reference source estimate x̂1 and estimate x̂j

Compute spectral concentration for x̂�
1 and x̂�

j

If criterion 1: replace x̂1 (x̂j) with x̂� having highest (lowest) SC
EndSweep
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3 Results

3.1 Data

Patient Data. The data upon which the algorithm was run consists of 51
patient registrations with known AF. All ECG sets are standard 12 lead ECG
measurements consisting of the leads I-III, aVR, aVL, aLL and the potentials at
the electrodes V1-V6. The dataset is by definition overdetermined for the bio-
potentials since I-III, aVR, aVL and aLL can all be expressed in terms of the
left arm (LA), right arm (RA) and left leg (LL) electrode potentials. This means
that there is a redundancy of factor 2 in the leads. If we take the LL electrode
as the reference electrode for all measurements (which is generally the physical
measurement setup), then we are left with 8 independent variables. We can thus
reduce our set to 8 recording sites or derivations only without compromising the
information in the data. Taking V1-V6 and extracting the potentials at LA and
RA from the leads would eliminate this data redundancy.

One has to be careful though in highly noisy environments where the noise at
the electrodes is not stationary and the noise term would thus take a sufficiently
high amount of the total data subspace. In that case it might not suffice to
take only the 8 electrode potentials and the extra derivations might add extra
information to solve the ill-conditioned problem.

Simulated Data. To have an idea of the quality of separation we introduce
a simulated dataset. This dataset contains an AF signal constructed following
the method in [12], whereas the QRS-T simulation has been done using high
kurtosis components using the model:

QRS-Ti (t) =
∑

j

tan (aj (t) sin (jω (t) t)) . (7)

The model allows for amplitude modulation in aj , where max
t

∑
j

|aj (t) | ≤ 1, and

modulation in ω (t). By changing the number of harmonics and the parameters
in the modulations we can change the statistics of the total time series. Addi-
tionally we added two sources that are of no physiological meaning but have a
positive kurtosis value, so we do not violate the model assumptions. The ran-
domly drawn square mixing matrix is orthonormal, avoiding the need of the
prior whitening step as described in the introduction without restricting the
generality.

3.2 Estimating the Central Frequency

To evaluate our method, we focus on the value of the main frequency estimated
by our method. The main frequency is defined as the frequency at which the
power spectral density is the highest in the 3 - 12Hz band. For the 51 patient
registrations we compare the resulting frequencies with those found from a com-
bined FastICA and SOBI approach as it was applied in [13]. We compare the
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results as well for AEML, EML and the combEML methods [11] in the same
constrained updating framework. In table 2 the results of the central frequency
difference among the methods with their respective standard deviation are dis-
played. To exclude biasing toward short time artefactual instances in the data,
the data has been resampled at each iteration before calculation of the opti-
mal rotation angle θ� based on a bootstrap sampling, allowing for overlap. We
choose a bootstrap sample size of 2 · 103. To exclude the bootstrap based differ-
ences between the methods, we consider 100 Monte Carlo runs per method over
the whole dataset of which the mean of the results so obtained are used as the
frequencies to construct table 2.

Table 2. Differences in main frequency estimation. The upper right triangle displays
the results when 12 leads are considered, in the lower left triangle displays the results
for the reduced set of 8 electrode potentials are given.

fastICA+SOBI AEMLa AEMLc combEML

fastICA+SOBI 0 -0.026 (0.444) 0.083 (0.294) 0.425 (0.429)
AEMLa 0.467 (1.025) 0 0.142 (0.384) 0.032 (0.291)
AEMLc 0.291 (0.526) -0.085 (0.755) 0 -0.110 (0.338)
combEML 0.425 (0.761) 0.063 (0.767) 0.148 (0.390) 0

Visualisation of the Results. To evaluate the performance on simulated and
real datasets, we present the artificial mixture, respectively the observations of
the electrode potentials and the source extraction results in Figs. (1) & (2).

00:00:00 00:00:01 00:00:02

4

3

2

1

7 uV

00:00:00 00:00:01 00:00:02

4

3

2

1

7 uV

00:00:00 00:00:01 00:00:02

1
3 uV

Fig. 1. Extraction of an AF like signal from an artificially generated mixture. left: the
original sources; center: the mixture; right: the extracted source.

Fig. (3) gives the PSD for both source estimates in Figs. (1) & (2).
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Fig. 2. Extraction of an AF signal from the ECG. upper: 12 channel ECG signal; lower:
extracted AF signal.
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Fig. 3. PSD for the extracted sources from (a) the artificially generated mixture in
Fig. (1) and (b) the ECG signal in Fig. (2)

4 Discussion

From Table 2 it is clear that From the figures we can see that the restriction
of the spectral concentration does not prevent to extract signals with multiple
harmonics, a result that is supported by the fact that the main harmonic is
still the central frequency. Moreover, the sources are maximally independent,
being a solution to the contrast in [10] subjected to the constraint of spectral
concentration in the 3-12Hz band. Moreover, since our technique is based on
source extraction, there is no need to do a full decomposition with a posteriori
source selection, which is computationally attractive, since the overall complexity
is of order O (7n-7)T.

5 Conclusion

The results of the method based on constrained extended AEML are promising
toward the extraction of AF from the ECG. Although the presented values and
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figures are already showing the strengths of the method, it remains to explore
how to obtain a quantitative and objective measure for the evaluation of the
proposed source extraction technique against the widely accepted techniques of
unmasking the AF through suppression of the QRS-T complex.
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