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ABSTRACT

This paper introduces a new Blind Source Separation al-
gorithm for convolutive mixtures. In addition to separate
sources, this algorithm respects the paraunitary property of
the model considered, obtained after whitening observa-
tions. In order to do this, the equalizer is factorized in a
novel manner. After a presentation of theoretical results,
a numerical algorithm is then derived. This algorithm is
based on the solution of a polynomial system, which some
values of output cumulant multi-correlations enter. Simula-
tions and performances of the numerical algorithm are pre-
sented in the last section.
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1. INTRODUCTION

The method presented in this paper is intended to Multiple
Input Multiple Output (MIMO) paraunitary channels. The
fact that the channel is considered as paraunitary is not re-
strictive since prewhitening can always be performed in a
first stage (in a non unique manner).
Most blind MIMO equalization techniques use High Or-

der Statistics (HOS) for separating signals [1] [2] [3] [4] ;
this can be implicit through constant modulus [5] [6] or con-
stant power [7] criteria. Indeed, this paper presents an algo-
rithm based on HOS.Moreover, our algorithm is very attrac-
tive since it can be implemented ”off-line”. Contrary to ”on-
line” algorithms which need long data block to converge
(typically from 10,000 to 100,000 symbols), ”off-line” al-
gorithms exhibit much shorter convergence times.
Algorithms like PAJOD [8] have already been proposed

for MIMO channels. Unfortunately, the paraunitary con-
straint was not accurately verified for equalizers when it was
considered for channels, especially for low SNR.
Our main contribution consists of a block algorithm dedi-

cated to blind MIMO equalization. The goal of this algo-
rithm is to build a paraunitary equalizer in order to correct
channel mixing effects. It has been shown to maximize a
well-defined contrast, as pointed out in section 3. Simu-
lations and performances obtained are reported in the last
section of the paper.

2. MODEL AND NOTATIONS

Throughout the paper, (T) stands for transposition, (H) for
conjugate transposition, and (∗) for complex conjugation,
and j =

√−1. Vectors and matrices are denoted with bold
lowercase and bold uppercase letters respectively. Next,
let {G(k), k ∈ Z} denote the matrix impulse response of
the global system. Then, we denote its transfer function as

G[z] def=
∑

k G(k)z−k. Furthermore, the entries of the ma-
trix G are denoted Gij , where subscript ij denotes the i-th
row and the j-th column ofG.
Now, consider the linear time-invariant (LTI) invertible

system of lengthL, mixingN white random processes. This
system (depicted in figure 1) is described by:

w(n) =
L∑

k=0

C(n − k)s(k) (1)

where {C(n), n ∈ Z} is a sequence of N × N matri-
ces denoting the complex Finite Impulse Response (FIR)
of channel C[z], s = (s1, . . . , sN )T denotes the N −
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Figure 1: Source s is filtered by channel C[z] and observa-
tion w is equalized byH[z].

dimensional source vector of baseband complex signals,
w = (w1, . . . , wN )T the N − dimensional observation vec-
tor, and a = (a1, . . . , aN )T the N − dimensional estimated
source vector. All these vectors are spatially and temporally
white at second order. Note that L = 0 corresponds to an
instantaneous mixture.
The multichannel blind deconvolution problem consists

of finding a LTI filter H[z], the equalizer, in order to re-
trieve the N input signals si(n), i ∈ {1, . . . , N}, solely
from the observations w(n) of the output of the unknown
LTI channel C[z]. The signals recovered may be reordered

1



by a permutation matrix P , and delayed by a diagonal fil-
ter Λ[z], so thatC[z]H[z] = Λ[z]P . The estimated source
vector is a(n) =

∑
k H(n−k)w(k) and the global LTI sys-

temG[z] is defined according to a(n) =
∑

k G(n−k)s(k).
Definition 1: Paraunitarity. A N × N polynomial matrix
H[z] is said to be paraunitary [9] if :

HH[1/z∗]H[z] = IN (2)

where IN is the N × N identity matrix.

The following hypotheses are assumed:

H1. Inputs si(n), i ∈ {1, . . . , N}, are mutually indepen-
dent and identically distributed (i.i.d.) zero-mean ran-
dom processes, with unit variance.

H2. The vector s(n) is stationary up to the considered order
r, r ≥ 3, i.e. ∀i ∈ {1, . . . , N}, the order-r marginal
cumulants,

Cq
p [si] = Cum[si(n), . . . , si(n)︸ ︷︷ ︸

p terms

, s∗i (n), . . . , s∗i (n)︸ ︷︷ ︸
q=r−p terms

]

do not depend on n. For definitions of cumulants, refer
to [10] and references therein.

H3. At most one source has a zero marginal cumulant of
order r.

H4. C[z], H[z], and hence G[z] = H[z]C[z] are all pa-
raunitary, as defined in definition 1.

Remark 1. The constraint of hypothesis H4 is not restric-
tive. Indeed, one can always whiten the observations by us-
ing a filter that factorizes the second-order power spectrum,
i.e. a classical prewhitening of the observations [11]. Thus,
paraunitary filters can be easily obtained by standardization
of observations (second order white with unit covariance).

Considering the previous hypotheses and models, and as-
suming that N = 2, we can make a first proposition:
Proposition 1: A N × N FIR paraunitary filter of length
L ≥ 0, H[z], can be factorized in 3 filters:

H[z] = A[z]W �b
B[z] (3)

where A[z] and B[z] are FIR paraunitary filters of length
�a and �b respectively, with:

0 ≤ �a ≤ L and 0 ≤ �b ≤ L
�a + �b = L.

and W �b
is a N × N unitary matrix.

Proof. For convenience, we prove the proposition for
N = 2. Extending the factorization of [9] to the non real
case, one gets the following factorization:

H[z] = W LZ[z]W L−1 . . . Z[z]W 0 (4)

p
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Figure 2: Factorization of the paraunitary equalizer in 3 fil-
ters.

where W p, p ∈ {0, . . . , L}, are 2 × 2 unitary, and Z[z] is
2 × 2 diagonal:

Z[z] =
(

1 0
0 z−1

)
.

When �a = 0 (respectively �b = 0), we can replace A[z]
(respectively B[z]) by I2. When �a > 0, filter A[z] is de-
fined as the product:

A[z] = W LZ[z] . . . W �b+1Z[z] (5)

and when �b > 0, we have:

B[z] = Z[z]W �b−1 . . . Z[z]W 0. (6)

Thus, between A[z] and B[z], it remains W �b
. Hence, we

can factorizeH[z] like in (3). ♦
For the sake of clarity, it will be now assumed that N =

2. In the remaining, we assume the following notation for
cumulants, e.g. cumulants of vector w:

Γw
eg,fh(ν) = Cum[we(n − ν1), w∗

f (n − ν2),
wg(n − ν3), w∗

h(n − ν4)]. (7)

where {e, f, g, h} take their values in {1, 2}, and νi ∈
N,∀i ∈ {1, . . . , 4}.
Now, consider the following input-output relations for the

convolutive model:

ai(n) =
∑

q,r,m

Aiq(m)Wqrxr(n − m), (8)

and xr(n − m) =
∑
s,l

Brs(l)ws(n − m − l). (9)

From (8), thanks to the multilinearity property of cumulants,
we can express the input-output relations between cumu-
lants of input x and output a:

Γa
ik,jl =

∑
abcd

∑
τ

∑
qrst

Aiq(τ1)A∗
jr(τ2)Aks(τ3)

A∗
lt(τ4)WqaW ∗

rbWscW
∗
tdΓ

x
ac,bd(τ ) (10)

with τ = (τ1, τ2, τ3, τ4). The range of each τi is [0, . . . , �a]
and indices {a, b, c, d, i, j, k, l, q, r, s, t} take their values in
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{1, 2}. It is the same for input-output relations between ob-
served cumulants of w and computed cumulants at the out-
put ofB[z] (i.e. cumulants of x):

Γx
ac,bd(τ ) =

∑
ρ

∑
efgh Bae(ρ1)B∗

bf (ρ2)Bcg(ρ3)

B∗
dh(ρ4)Γw

eg,fh(τ + ρ) (11)

with ρ = (ρ1, ρ2, ρ3, ρ4). The range of each ρi is
[0, . . . , �b]. The global input-output relation of equalizer
H[z] is not given in this paper since it is not necessary
for the algorithm. Nevertheless it can be easily deduced by
combining (10) and (11) as shown in [12].

Remark 2. For N = 2, unitary matrices W p can be gene-
rated ∀p as:

W p =
(

cos θp sin θpe
jφp

− sin θpe
−jφp cos θp

)
. (12)

Thus, only one pair of angles (θp, φp) is needed for each
W p.

3. CONTRAST PROPOSED

The reader is invited to consult [13] for definitions and pro-
perties about contrasts.

Proposition 2: The separation of sources, solely from out-
puts of the channel, can be performed by maximizing the
following contrast:

Υ1,4 =
N∑

i=1

∣∣Γa
ii,ii

∣∣ . (13)

Here, Γa
ii,ii includes entries of W p matrices. So, in order

to estimate H[z], the criterion can be written:

H = Arg max
W

Υ1,4 (14)

where W stands for the set of W p, p ∈ {0, . . . , L}.
It has been proved in [13] thatΥ1,4 is a contrast. We max-

imizeΥ1,4 with respect to each pair (θp, φp) in turn. The se-
quence of values ofΥ1,4 obtained this way is monotonically
increasing. Since it is also bounded above, it converges.
For sake of clarity, we drop index p. Thus we have to find

all pairs (θ, φ) which maximize (13) independently from
other pairs. To reach this goal, we have to simplify (10)
firstly by expanding it, and secondly by collecting terms in-
volving θ or φ. In this manner, we obtain the following
equation for the output cumulants of a:

Γa
ii,ii =

∑4
α=0

(∑4−α
β=0 K2β+α−4

α (cos θ)α(sin θ)4−α

ej(2β+α−4)φ
)

(15)

where each K2β+α−4
α denotes the product of 4 entries of

A[z], depending on indices a, b, c, d and q, r, s, t, and in ac-
cordance with α and β.
Next, make the change of variables: cos φ = 1−t2

1+t2 ,

sin φ = 2t
1+t2 with t = tan φ

2 , and cos θ = 1√
1+u2 ,

sin θ = u√
1+u2 with u = tan θ.

Now, in order to maximize contrast (13) , we find all the
roots of polynomial system (16), i.e. stationary points of
Υ1,4, thanks to derivatives:

Φ1(u, t) = ∂Υ1,4

∂u
=

∑4
k=0 λ4−k(t) uk

Φ2(u, t) = ∂Υ1,4

∂t
=

∑3
k=0 ξ3−k(t) uk

⎫⎪⎪⎬
⎪⎪⎭ (16)

Polynomial system (16) can be solved by using the resul-
tant of a Sylvester matrix. Thus, considering only variable
u for Φ1(u, t) and Φ2(u, t), and collecting terms of same
degree in u, we obtain a Sylvester matrix of size 7 × 7. See
[12] for more details about resolution of (16). When all
roots are found, we plug them back in (15) in order to select
the best solution for (14).

4. ALGORITHM

In this section we present the algorithm derived from pre-
vious statements. It has been implemented for N = 2 and
results are shown in section 5.
The algorithm is the following:

1. Compute the tensor of cumulants Γw
eg,fh(τ + ρ) de-

fined in (7) and of length L = max {τ} + max {ρ}.

2. Initialize equalizer H[z] with (θp = 0, φp = 0), ∀p ∈
{0, . . . , L}

3. Loop on k = 0, . . . , L.

(a) Compute the cumulant tensor Γx
ac,bd(τ ),

(b) Search for pair (θk,φk) maximizing Υ1,4,

(c) Plug back angles (θk, φk) in W k (update filters
A[z] andB[z] as in (5) and (6)).

4. Goto 3 until number of sweeps ≤ T .

Of course, this algorithm considers that angles are all
independent. The resulting tensor of (3a) is composed of
N2(L − �b + 1)2 matrices each of size N(L − �b + 1) ×
N(L − �b + 1). In order to increase the precision of the
angles, we suggest to execute T = �√L � + 1 sweeps. Ac-
tually, the first angles computed are not well defined since
all other angles are null (set at stage 2). Hence, when loop
3 is repeated T times, angles are better estimated.
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5. COMPUTER RESULTS

One considers a FIR complex mixture of length L = 3 of
N = 2 unit variance QPSK white processes. The channels
are paraunitary in order to preserve second-order whiteness
and are constructed as explained in section 2. The 8 an-
gles θp, φp, for 0 ≤ i ≤ L, are drawn according to a
uniform distribution in [0, 2π) in order to generate para-
unitary channels. For each randomly generated channel,
blocks of noisy observations are generated according to
w(n) =

∑L
k=0 C(n − k)s(k) + ρv(n) where v(n) is a

white circular complex Gaussian noise with identity covari-
ance matrix, and si(n) the source sequences. Parameter ρ is
introduced in order to control the Signal to Noise Ratio per
bit (SNR), and is defined as: SNRdB = −20 log10 ρ.
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Figure 3: Symbol Error Rate obtained when a length-3
equalizer is built from blocks of 400 symbols. Zero values
are replaced by the minimal resolution (2.10−6).

Equalizers returned by the algorithm are then tested with
two different white processes of 10000 symbols in order to
compute the Symbol Error Rate (SER). Figure 3 shows me-
dian SER for blocks of 400 symbols, over 25 trials. Thus,
the minimal resolution is (2∗10000∗25)−1 = 2.10−6. The
inter-quartile interval is also represented, i.e. 25% of values
on both sides of the median, since it is a good representa-
tion of global performances for an algorithm. Simulations
prove that our algorithm works well on short data length
since from 400 symbols and with a noise of 20dB, the me-
dian SER is below the minimal resolution.

6. CONCLUDING REMARKS

Through this paper, we have presented a parametrization of
paraunitary equalizers, in order to respect the paraunitarity

of the channel after prewhitening. Then, from theoretical
results of section 2, a numerical algorithm has been imple-
mented and performances evaluated. Results obtained are
very attractive since the algorithm works very well on data
blocks as short as 400 symbols.
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