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ABSTRACT

Blind source extraction aims at estimating the source
signals which appear mixed at the output of a sensor array.
A novel approach to blind source extraction is presented in
this contribution, which exploits the discrete character (fi-
nite alphabet property) of digital modulations in the case
where sources with different alphabet exist. An alphabet
polynomial fitting (APF) criterion matched to the specific
signal constellation is employed to extract, through defla-
tion, the sources with the same modulation. Using the ap-
propriate APF criteria, the sources with different modula-
tions can be extracted in parallel. This new concept, referred
to as parallel deflation, presents the potential of reducing
both the signal estimation errors that typically accumulate
in the conventional deflationary approach and the spatio-
temporal diversity required for a satisfactory source extrac-
tion. In addition, APF criteria can be optimized through
a cost-effective optimal step-size technique that can escape
local extrema.

Keywords: blind equalization, deflation, finite alphabet,
MIMO, parallel processing, underdetermined mixtures.

1. INTRODUCTION

Channel equalization aims to reconstruct the transmitted sig-
nals that have distorted by the propagation medium. Blind
equalization has been the subject of intense research interest
since the pioneering work of Sato [1] and Godard [2]. The
main advantage of blind techniques is arguably that training
sequences are not required, so that the effective transmis-
sion rate, and thus the spectral efficiency, are increased. In
multiple-input multiple-output (MIMO) scenarios, the spa-
tial mixing of several transmitted sources adds to the inter-
symbol interference introduced by the time dispersive chan-
nel. Blind signal extraction can be accomplished through a
deflation approach, where the input signals are estimated
one after another [3, 4]. The major limitation of classical
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deflation is that estimation errors accumulate along succes-
sive extraction stages. Also, sufficient diversity must be
available in general; i.e., for a satisfactory equalization, the
number of sensors needs to be higher than the number of
sources.

The present contribution addresses the problem of blind
extraction of discrete signals, particularly in the underdeter-
mined case where there are less sensors than sources. The
originality of this work lies in the use of a polynomial cri-
terion namedalphabet polynomial fitting (APF), which ex-
ploits the knowledge of the modulation alphabet in order to
accomplish the source extraction [5, 6]. In contrast to tra-
ditional source-distribution independent principles such as
constant modulus [2] or kurtosis maximization (KM) [7],
the APF criterion targets a specific modulation. This fea-
ture leads to the novel concept of parallel deflation: a poly-
nomial criterion can be used in a deflationary process to ex-
tract the signals of each modulation. Parallel deflation can
thus reduce the diversity required for the extraction of all
sources from a mixture while extracting different modula-
tions simultaneously. As a result, this new approach can in-
crease the extraction performance while reducing the com-
putational cost compared to classical deflation.

Moreover, APF criteria can be optimized by efficient
gradient- or Newton-descent procedures based on an opti-
mal step size computed algebraically at each iteration. The
optimal step-size strategy is able to avoid local extrema at
an affordable computational cost.

2. BLIND SOURCE EXTRACTION

2.1. Problem and Signal model

We consider a time-dispersive MIMO linear time-invariant
(LTI) system with the input-output relationship

w(n) =

Lc
∑

k=0

Cks(n − k) + b(n), n ∈ N
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where
s(n) ∈ CN source signal vector,
w(n) ∈ CP channel output signal vector,
b(n) ∈ CP noise vector,
Ck ∈ C

P×N channel impulse response.
The sequenceCk, k = 0, . . . , Lc corresponds to the

impulse response matrix taps of the finite impulse response
(FIR) MIMO channel. An equalizer described by the im-
pulse response matrix tapsHk ∈ CN×P , k = 0, . . . , Lh,
processes the channel output signals and aims at extracting
the sources. The output signal vector is thus given by

ŝ(n) =

Lh
∑

k=0

Hkw(n − k), n ∈ N.

The extraction of thepth output component̂sp(n) can alter-
natively be expressed as:

ŝp(n) = hp
Tw̃(n) (1)

wherew̃(n) = [w(n)T, w(n − 1)T, . . . , w(n − Lh)T]T ∈
CP (Lh+1) (symbolT stands for transposition) and
hp = [(H0)(p,:), (H1)(p,:), . . . , (HLh

)(p,:)]
T ∈ CP (Lh+1),

notation(Hj)(p,:) denoting thepth row of the equalizer ma-
trix tapHj .

2.2. Classical deflation

Classical deflation aims at extracting one by one theN source
signals mixed at the output ofP sensors. This scheme can
be employed with a source-distribution independent crite-
rion such as the CM or KM principles; for instance, the KM
cost function [7] is used in the original paper [3]. Thus, a
unique criterion is applied to extract each source from the
observations. In order to avoid extracting the same signal
twice, the contribution of the extracted source has to be esti-
mated (e.g., via correlation techniques) and subtracted from
the sensors. This procedure is repeated until theN sources
are extracted. The required diversity for theN -source ex-
traction is limited by a number of sensorsP ≈ N . More-
over, estimation errors accumulate with the number of ex-
tractions, so that the extraction quality gradually decreases.
Classical deflation is illustrated in Fig. 1.

3. ALPHABET-BASED SOURCE EXTRACTION

3.1. Alphabet-based criteria

In the sequel,N =
∑

i Ki denotes the total number of emit-
ted signals, whereKi is the number of signals having the
same alphabetAi. This corresponds to the following addi-
tional hypothesis about the input signals:

S1. Sourcess(i) = [s
(i)
1 , . . . , s

(i)
Ki

]T belong to a finite al-
phabetAi, characterized bydi complex distinct roots
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Fig. 1. Classical deflation. Extraction of 3 signals
{s

(1)
p }3

p=1, typically (but not necessarily) having the same
modulationA1. Conventional deflation estimates the input
signals one by one.

Modulation A Q(s)
BPSK {−1, +1} s2 − 1

q-PSK {e2kπ/q}|k∈0,...,q−1 sq − 1

QAM-16 {±1,±3}+ {±,±3}
∑4

k=0 αks4k

α0 = 50625/256, α1 = 12529/16, α2 = −221/8,
α3 = 17, α4 = 1.

Table 1. Alphabets and associated polynomials of some
discrete modulations.

of the polynomialQi(s(n)) = 0, wheredi corre-
sponds to the total number of possible symbols in the
constellation.

This hypothesis is essential to alphabet-based criteria.
For instance, aq-PSK modulated signals is characterized
by the roots of polynomialQ(s) = sq − 1. Thus, each dis-
crete modulation can be associated with an APF criterion,
as illustrated by the examples in Table 1.

Considering hypothesisS1 on the discrete inputs of a
MIMO channel, it is possible to perform source extraction
by minimizing the following polynomial criterion [5]:

Theorem 1 : ConsiderSi the set of processes taking their
values in alphabetAi, andH the set of FIR filters. Crite-
rion:

J
(i)
APF (H i, ŝ

(i)) =

Ki
∑

n=1

∑

m

∣

∣Qi

(

ŝ(i)
n (m)

)
∣

∣

2
(2)

is a contrast function under hypothesisS1.

An APF criterion can be used for classical deflation when
the emitted signals have all the same alphabet, i.e.,N = K1

andKi = 0, ∀i > 1. However, novel extraction approaches
are enabled by the discriminating character of APF criteria,
which is stronger than that of traditional principles such as
CM and KM. The new approaches consist of extracting the
sources with different alphabets in parallel, thus the terms
of parallel extraction and parallel deflation, which are ex-
plained next.
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ŝ
(1)

w
(1,2,3,4)
4

w
(1,2,3,4)
3

w
(1,2,3,4)
2

w
(1,2,3,4)
1

C

s
(1)

s
(2)

s
(3)

Fig. 2. Parallel Extraction. From the observed sensor out-
put, parallel extraction allows the simultaneous separation
of source signals having different modulations.

3.2. Parallel extraction

Parallel extraction can take place when theN emitted sig-
nals all have different modulations, i.e.,Ki = 1, ∀i. Each
equalizer is computed from an APF criterion corresponding
to one alphabet. Thus, the equalizers for each modulation
can be determined in parallel from the observed sensor out-
put. Fig. 2 shows an example of parallel extraction of sig-
nals{s(i)}4

i=1 with alphabets{Ai}
4
i=1, respectively. Paral-

lel extraction can be considered as a particular case of the
more general parallel deflation.

3.3. Parallel deflation

In the general case, the sensor output observes mixtures of
M groups of sources where theith group is composed of
Ki signals having the same modulation. Thus we haveN =
∑M

i=1 Ki. Then, it is possible to extract the sources of the
same group by means of a deflation approach operating on a
criterion matched with the corresponding modulation. This
process can be carried out in parallel for other groups having
a different modulation and hence their own APF criterion.
Consequently, the discriminating property of APF criteria
is able to decouple a separating problem ofN signals into
M extraction problems ofKi sources,i = 1, . . . , M . Con-
trary to classical deflation, the required diversity for paral-
lel deflation is reduced toP ≈ max(Ki). This diversity
improvement offers further advantages in terms of perfor-
mance (e.g., less error accumulation), computational com-
plexity and cost. Parallel deflation reduces to parallel ex-
traction whenM = N , so that deflation is no longer re-
quired.

4. OPTIMIZATION OF APF CRITERIA

In order to estimate a source with alphabetAi, contrast
function (2) must be minimized with respect to the equalizer
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Fig. 3. Parallel deflation in an underdetermined case. The
extraction of more sources than sensors is possible with par-
allel deflation, provided that enough diversity is available
for extracting the sources of each alphabet.

tap vectorh, which is used to extract a single component as
in eqn. (1). After a suitable initialization (e.g., via the con-
ventional center-tap filter), the equalizer vector is iteratively
updated in the descent directiong:

h′ = h − µg

In a gradient-based algorithm, we haveg = ∇J
(i)
APF (h),

whereas a Newton-based algorithm would involve the Hes-
sian ofJ (i)

APF as well.

The interesting feature of APF criteria is thatJ
(i)
APF (h′)

is a2qth-degree polynomial in the step sizeµ, for constella-
tions composed ofq symbols. This feature is not exclusive
of APF contrasts, but it is also shared by other equaliza-
tion criteria such as CM and KM [5]. As a result, steepest
descent minimization of contrast (2) can be carried out by
finding the optimal step size

µopt = min arg
µ

J
(i)
APF (h − µg)

among the roots of the(2q − 1)th-degree polynomial
∂J

(i)
APF (h−µg)/∂µ. In some cases, this root finding can be

accomplished algebraically: the APF criterion matched to
BPSK signals and the CM criterion are associated with re-
spective 3rd-degree polynomials, solved by Cardano’s for-
mula; the normalized KM criterion involves a 4th-degree
polynomial whose roots are obtained by Ferrari’s formula.
The coefficients of these polynomials are simple polynomial
functions of the observed data vectors and the current equal-
izer and gradient vectors [6, 8]. Consequently, the incorpo-
ration of the optimal step-size technique only entails a mod-
erate increase in computational complexity. In return, since
µopt yields the global minimum ofJ (i)

APF along directiong,
the optimal step-size technique shows an improved robust-
ness against local extrema relative to conventional gradient-
descent minimization [9].

After convergence of the equalizer vector, the contribu-
tion of the estimated source signal to the observations is

3



0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Lc=2, Lh=13

Signal to Noise ratio (dB)

S
ym

bo
l E

rr
or

 R
at

e 
(%

)

QAM16
QPSK
PSK−6

Fig. 4. Parallel extraction of 3 different sources for various
SNRs.

calculated and subtracted from the sensor output, to pre-
vent extracting the same source twice. This contribution
is easily obtained as the cross-correlation between the esti-
mated source signal and the sensor output vector. To extract
the next source, the APF criterion needs to be minimized
again, but using the sensor output data without the contri-
bution from the source previously extracted. This process
is repeated until all sources with the same modulation have
been obtained In parallel deflation, the deflation processes
of the different APF criteria can be executed in parallel.

5. PRELIMINARY EXPERIMENTAL RESULTS

5.1. Parallel extraction

In this experiment,N = 3 sources with different modu-
lations (QPSK, QAM-16, PSK-6) are mixed by a length-3
channel (Lc = 2). P = 3 noisy observations are processed
by a parallel extraction algorithm made up of the APF cri-
teria associated with each modulation. The channel coeffi-
cients are randomly drawn from a Gaussian distribution, and
so is the noise added to the observations. Fig. 4 summarizes
the parallel extraction performance for different signal-to-
noise ratios (SNRs).

5.2. Parallel deflation

The second experiment tests a channel spanning two baud
periods (Lc = 1) and mixingN = 4 source signals (2
QPSK and 2 QAM16, i.e.,M = 2) at the output of only
P = 3 sensors:

C(z) = C0 + C1z
−1
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Fig. 5. APF extraction of a QPSK signal from an underde-
termined mixture.

with

C0 =





−0.66 −0.19 0.65 0.92
0.22 −0.96 0.43 −0.85
−0.30 −0.76 0.95 0.85





C1 =





0.75 −0.98 −0.75 −0.38
−0.97 0.27 0.90 0.53
0.95 0.65 0.30 −0.52





Hence, this situation describes the underdetermined mixture
context. The extraction of one of the QPSK signals is il-
lustrated in Fig. 5. Note that, despite the hardness of the
underdetermined scenario, the APF extraction performance
lies very close to the MMSE bound.

6. CONCLUSIONS

The use of contrast functions matched to the signal mod-
ulation enables the definition of a novel approach to blind
source extraction whereby sources with different constella-
tions can be extracted in parallel, provided that no alphabet
be a subset of another. Parallel deflation may prove use-
ful when different modulations coexist in the same trans-
mission environment. Such a scenario is likely in future-
generation wireless communication networks, where sig-
nal constellations will be dynamically allocated according
to the service required and the channel conditions, analo-
gously to the bit-loading schemes used in multicarrier com-
munications [10]. The preliminary experiments reported in
this paper are encouraging. More detailed experimental re-
sults illustrating the performance of the parallel deflation
approach will be presented at the conference.
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