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ABSTRACT
Approximate Joint Diagonalization (AJD) of a set of symmet-
ric matrices by an orthogonal transform is a popular problem
in Blind Source Separation (BSS). In this paper we propose a
gradient based algorithm which maximizes the sum of squares
of diagonal entries of all the transformed symmetric matri-
ces. Our main contribution is to transform the orthogonal-
ity constrained optimization problem into an unconstrained
problem. This transform is performed in two steps: First
by parameterizing the orthogonal transform matrix by the
matrix exponential of a skew-symmetric matrix. Second,
by introducing an isomorphism between the vector space of
skew-symmetric matrices and the Euclidean vector space of
appropriate dimension. This transform is then applied to
a gradient based algorithm called GAEX to perform joint
diagonalization of a set of symmetric matrices.

1. INTRODUCTION

Joint diagonalization of a set of symmetric matrices is a
popular problem in BSS [2], [3], [5], [18].

A necessary and sufficient condition for the exis-
tence of an orthogonal matrix that will diagonalize all
matrices in a finite set of symmetric matrices is that all
the matrices contained in the set must mutually com-
mute with each other [10], and hence only an approxi-
mate solution to the joint diagonalization problem can
in general be obtained.

One of the first AJD algorithms to handle a set of
symmetric matrices was proposed by De Leeuw in [6].
Since there in general doesn’t exist an analytical solution
to this problem a Jacobi procedure was proposed to nu-
merically solve the problem. Another Jacobi procedure
to this problem known as JADE, was later proposed by
Cardoso in [3], [4].

Another way to try impose orthogonality of the
transform matrix is by the penalty method and Joho
proposed a gradient method in [7] to diagonalize a set
of symmetric matrices by the aid of the penalty method.
Furthermore Joho proposed a gradient and a Newton
method in [8] to diagonalize a set of symmetric matri-
ces by applying the projection based method proposed
by Manton in [12] which projects every update to the
manifold of orthogonal matrices.

Afsari [1] and Tanaka [16] proposed gradient based
methods by exploiting the geometry of matrix Lie
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groups. Furthermore Yamada proposed in [17] to apply
the Cayley transform as a global parameterization of
the set of orthogonal matrices with positive determi-
nant and eigenvalues different from minus one.

The approach taken in this paper is also to make use
of a proper parameterization of a set orthogonal matri-
ces which will transform the constrained optimization
problem into an unconstrained problem by the use of
appropriate transforms so that the transform matrix will
remain orthogonal after each update. The difference
between the approach in [17] and the one presented in
this paper is that a local parameterization will also be
considered here and secondly the matrix exponential
will be applied as a parameterization of the orthogonal
matrices. Before presenting a gradient based AJD al-
gorithm some notation used throughout the paper and
the problem formulation will be presented.

1.1 Notations
Let R and R+ denote the set of real and nonnegative
real numbers respectively. Furthermore let SOm(R),
Sm(R) and S⊥m(R) denote the set of m×m orthogonal
matrices with determinant equal to one, the symmet-
ric matrices and skew-symmetric matrices respectively.
Moreover let (·)T, (·)H, Vec(·), Unvec(·), ⊗ and ‖ ·‖ de-
note the transpose, conjugate-transpose, matrix vector-
ization operator, inverse matrix vectorization operator,
the Kronecker product of two matrices and the Frobe-
nius norm of a matrix respectively. Let A ∈Rm×n, then
let Ai j denote the ith row- jth column entry of A and let
ei ∈ Rm denote the unit vector with one in the entry i
and zero elsewhere. Let δi j be the Dirac delta function
which is zero except when the two indices are equal, in
which case δii = 1.

1.2 Problem Formulation
Given a finite set of symmetric matrices {Tk}nk=1 ⊂ Sm(R),
then let the transform matrix be U ∈ SOm(R) and the
transformed matrices be Kk =UTkUT∀k ∈ {1, . . . ,n}, then
the matrix U which would imply that Kk is as diagonal
as possible for every k ∈ {1, . . . ,n} is sought.

A measure on how diagonal the set of transformed
matrices are is given by the functionalΨ : SOm(R)→R
given by

Ψ(U) =
1
2

n∑

k=1

‖UTkUT −diag
(
UTkUT

)
‖2, (1)
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where diag(A) ∈Rm×m and diag(A)i j =Ai jδi j.
Due to the invariance property of the Frobenius

norm wrt. any orthogonal operator, minimizing (1) is
equivalent to maximizing the functional J : SOm(R)→R
given as

J (U) =
1
2

n∑

k=1

‖diag
(
UTkUT

)
‖2.

A gradient based solution to the constrained maxi-
mization problem

arg max
U∈SOm(R)

J(U) (2)

will be proposed in this paper.

2. GRADIENT BASED AJD

2.1 Parameterization and Update of an Orthogonal
Matrix
It is well-known that the orthogonality property of the
transform matrix can be preserved by parameterizing
them by the matrix exponential eX !

∑∞
n=0

Xn

n! . Moreover
since SOm(R) is a multiplicative group and the map-
ping e : S⊥m(R)→ SOm(R) given by eX is surjective [9],
the following local parameterization of the transform
matrix will ensure that the transform matrix will remain
orthogonal after each update:

U(n+1) = U(n)eµŨ,

where Ũ ∈ S⊥m(R), U(n) ∈ SOm(R), µ ∈R+ and the upper
index denotes the iteration number. Alternatively the
following global parameterization could be used:

U(n+1) = eŨ
(n)
+µŨ,

where Ũ
(n)
,Ũ ∈ S⊥m(R),µ ∈ R+ and the upper index de-

notes the iteration number. By the use of the matrix
exponential the problem has turned from finding an or-
thogonal matrix to finding a skew-symmetric matrix.
In general the computation of the matrix exponential
must be considered computationally demanding, but
here only the computation of the matrix exponential
wrt. a skew-symmetric matrix is required and this can
for instance be done by an EigenValue Decomposition
(EVD).

The following subsection will show that it is pos-
sible to turn the constrained problem (2) into an un-
constrained problem by the use of a second transform
introduced in the following subsection.

2.2 Isomorphism between S⊥n (R) and R
n(n−1)

2

In [14] an explicit expression of an isomorphism be-
tween Sn(R) and R

(n+1)n
2 was derived. By a similar

procedure, an explicit expression of an isomorphism
between S⊥n (R) and R

(n−1)n
2 can be found.

Let A ∈ S⊥n (R) and let w(A) denote the (n−1)n
2 ×1 vec-

tor that is obtained by eliminating all the diagonal and

supradiagonal elements from A and thereafter stacking
the infradiagonal elements into the vector

w(A) =
[
A12, · · · ,A1n,A23, · · · ,A2n, · · · ,A(n−1)n

]T
.

Definition 2.1. (Skew-Symmetric Elimination Matrix )

The skew-symmetric elimination matrix L̃ ∈R (n−1)n
2 ×n2

is
defined to be the matrix representation of the linear mapping
L̃ : S⊥n (R)→ R (n−1)n

2 and it satisfies L̃Vec (A) = w(A)∀A ∈
S⊥n (R).

Definition 2.2. (Inverse Skew-Symmetric Elimination Ma-
trix)

Let the inverse skew-symmetric elimination matrix L̃
−1 ∈

Rn2× (n−1)n
2 be defined to be the matrix representation of

the linear mapping L̃−1 : R
(n−1)n

2 → S⊥n (R) and it satisfies
Vec (A) = L̃

−1
w (A)∀A ∈ S⊥n (R).

Before giving an explicit expression of the skew-
symmetric elimination matrix, let

I (n−1)n
2
=
[
ũ21, ũ31, . . . , ũn1, ũ32, . . . , ũn2, ũ43, . . . , ũn(n−1)

]
,

where Im is the m×m identity matrix and and ũi j =

e( j−1)n+i− 1
2 j( j+1) ∈R

(n−1)n
2 .

Proposition 2.3. Let ũi j = e( j−1)n+i− 1
2 j( j+1) ∈R

(n−1)n
2 and let

Rn×n + Ei j = eieT
j then L̃ =

∑

i> j

ũi jVec
(
Ei j
)T
=
∑

i> j

ũi j⊗ eT
j ⊗

eT
i .

Proof. By making use of the identities Vec
(
yxT
)
= y⊗x

and xyT = x⊗yT we get

w(A) =
∑

i> j

Ai jũi j

=
∑

i> j

ũi jeT
i Ae j

=
∑

i> j

ũi jVec
(
Ei j
)T

Vec(A)

=
∑

i> j

(
ũi j⊗eT

j ⊗eT
i

)
Vec(A) .

"

To obtain the matrix expression of the linear map-
ping L̃−1 the following lemma will be used.

Lemma 2.4. Let Ã denote the lower triangular matrix con-
sisting of the infradiagonal elements of A then L̃

T
w(A) =

Vec
(
Ã
)

.



Proof. Since ũT
ijũhk = δi−h, j−k we get

L̃
T

L̃Vec(A) =
∑

i> j

∑

h>k

(
ũT

ij⊗e j⊗ei
)(

ũhk⊗eT
k ⊗eT

h

)
Vec(A)

=
∑

i> j

∑

h>k

(
ũT

ijũhk⊗e jeT
k ⊗eieT

h

)
Vec(A)

=
∑

i> j

(
e jeT

j ⊗eieT
i

)
Vec(A)

=
∑

i> j

Vec
(
eieT

i Ae jeT
j

)

= Vec



∑

i> j

Ai jEi j




= Vec
(
Ã
)
.

Hence

Vec
(
Ã
)
= L̃

T
L̃Vec(A)

= L̃
T

w(A).

"

By using the above lemma it is possible to obtain
an explicit expression of L̃−1, but before reaching this
result the commutation matrix will be introduced.
Definition 2.5. (Commutation Matrix [13], [15] )

Let Rm×n +Hi j ! ei,meT
j,n, where ei,m is the ith column of

Im and e j,n is the jth column of In. Then the commutation
matrix Cmn ∈Rmn×mn is defined to be

Cmn =
m∑

i=1

n∑

j=1

Hi j⊗HT
ij.

The commutation matrix relates Vec(A) and
Vec
(
AT
)

by the equation CmnVec(A) = Vec
(
AT
)
∀A ∈

Rm×n [13].
Proposition 2.6. The matrix representation of the linear
map L̃−1 is given by the expression L̃

−1
= L̃

T −CnnL̃
T

.

Proof. By lemma 2.4 and the commutation matrix we
get

(
L̃

T −CnnL̃
T
)
w(A) = L̃

T
w(A)−CnnL̃

T
w(A)

= Vec
(
Ã
)
−Vec

(
Ã

T
)

= Vec(A) ∀A ∈ S⊥n (R).

"

By the use of the previously introduced isomor-
phism the search for a skew-symmetric matrix has now

turned into a search for a vector in R
(n−1)n

2 . Hence
any conventional iterative method operating in a vector
space can now be applied to the problem. In particular
a gradient ascent method will be described next.

2.3 Calculation of the Gradient
Now a matrix based formulation of the partial deriva-
tives will be given. Let X ∈ Rm×m, then we have
the identities ‖X‖2 =Vec(X)T Vec(X) and Vec

(
diag(X)

)
=

Diag(Vec(Im))Vec(X), where Diag(Vec(Im)) is a diago-
nal matrix with Diag(Vec(Im))ii = Vec(Im)i and the ma-
trix P ! Diag(Vec(Im)) is idempotent. By the use of
the identities we will derive ∂J(U)

∂w(Ũ)T from the differential
d(J(U)).

In [11] the differential of the matrix exponential wrt.
a symmetric matrix was found. By a slight modification
of their derivation the differential of the matrix expo-
nential wrt. any square matrix can be found to be

d
(
eA
)
=

∫ 1

0
eAtd(A)eA(1−t)dt. (3)

Let U be fixed and let us recall the identity Vec(ABC) =(
CT ⊗A

)
Vec(B), then by applying the introduced iso-

morphism and by equation (3) we get

d
(
Vec
(
UeŨ
))
= (Im⊗U)d

(
Vec
(
eŨ
))

= (Im⊗U)
∫ 1

0
eŨ(t−1)⊗eŨtdtVec

(
d
(
Ũ
))

= (Im⊗U)
∫ 1

0
eŨ(t−1)⊗eŨtdtL̃

−1
d
(
w(Ũ)

)
,

(4)

where L̃
−1

denotes the inverse skew-symmetric elimi-
nation matrix.

Let U(n+1) =U(n)eŨ and Kk =UTkUT, then the partial
derivatives for the gradient ascent method can be found
via the following differential and the use of (4) to be

d(J(U)) =
1
2

n∑

k=1

d
(
‖diag

(
UTkUT

)
‖2
)

=
n∑

k=1

Vec(Kk)T Pd
(
Vec
(
UTkUT

))

=
n∑

k=1

Vec(Kk)T P ((UTk⊗ Im)+ (Im⊗UTk)Cmm)

× d(Vec(U))

=
n∑

k=1

Vec(Kk)T P ((UTk⊗ Im)+ (Im⊗UTk)Cmm)

× (Im⊗U)
∫ 1

0
eŨ(t−1)⊗eŨtdtL̃

−1
d
(
w(Ũ)

)
.

From the differential we can deduce that the gradient
when evaluated at iteration n reduces to

∂J (U)

∂w(Ũ)T
=

n∑

k=1

Vec(Kk)T P ((UTk⊗ Im)+ (Im⊗UTk)Cmm)

× (Im⊗U) L̃
−1
,



since U(n) =U(n)e0 at iteration n. For the global param-

eterization U(n+1) = eŨ
(n)
+µŨ, the gradient vector can be

found by similar calculations to be

∂J (U)

∂w(Ũ)T
=

n∑

k=1

Vec(Kk)T P ((UTk⊗ Im)+ (Im⊗UTk)Cmm)

×
∫ 1

0
eŨ(t−1)⊗eŨtdtL̃

−1
.

Given the EVD Ũ = RΛRH the above integral can be
expressed as
∫ 1

0
eŨ(t−1)⊗eŨtdt = (R⊗R)

∫ 1

0
eΛ(t−1)⊗eΛtdt (R⊗R)H .

Furthermore the diagonal elements of
∫ 1

0 eΛ(t−1)⊗eΛtdt
can be found to be

∫ 1

0
eλi(t−1)eλ jtdt =

∫ 1

0
e
(
λi+λ j

)
t−λidt

=


eλ j−e−λi
λi+λ j

,λi ! −λ j

e−λi ,λi = −λ j

where λi is the ith eigenvalue of Ũ.
Applying the local parameterization, then the search
direction is now set to

Ũ =Unvec


L̃
−1 ∂J (U)

∂w(Ũ)T

/∣∣∣
∣∣∣ ∂J (U)

∂w(Ũ)T

∣∣∣
∣∣∣

 .

Next a simple and inexact linesearch procedure will be
applied to solve the maximization problem

argmax
µ∈R+

J
(
U(n−1)eµŨ

)
. (5)

By selecting µ sufficiently small convergence to a crit-
ical point is guaranteed. More specifically let ω =
{0, 1

20 ,
2
20 , . . . ,1}, then

µ(n) = argmax
µ∈ω

J
(
U(n−1)eµŨ

)

will be used as an approximation to (5) in the following
simulation section. It should be pointed out that a
guarantee of convergence to a global maximum is still
an open problem.

3. SIMULATION

The performance of the proposed gradient based algo-
rithm, which will be called GAEX, will be compared
with the JADE algorithm proposed in [3].

To compare the different orthogonal simultaneous
matrix diagonalization algorithms, the performance
will be measured on a set of matrices {Tk}nk=1 ⊂ Rm×m,
where Tk =UDkUT +βE, where U is a randomly gener-
ated orthogonal matrix, Dk is a random diagonal matrix,

Figure 1: The diagonalization of a set random matrices
where α is varying.

Figure 2: The convergence of the GAEX algorithm for
different trials when β = 0.

Figure 3: The convergence of the GAEX algorithm for
different trials when α = 0.5.



E ∈Rm×m is a random matrix and β ∈R is a gain factor.
Let x be uniformly distributed

U(a,b)(x) ∼
{ 1

b−a ,a < x < b
0 ,elsewhere

Then let Dkii and Ei j be randomly drawn elements in
U(−100,100)(x) and U is an orthogonal basis of the sub-
space spanned by the columns of random matrices con-
tained in Rm×m and which entries are randomly drawn
elements in U(−100,100)(x). Moreover in all simulations
m = n = 5 and the proposed gradient based method will
be initialized with U(0) = Im.

A measure on how diagonal a set of matrices is, is
the following

γ =

∑n
k=1 ‖diag(Tk)‖2
∑n

k=1 ‖Tk‖2
.

This is indeed a measure on how diagonal the set of
matrices is, since 0 ≤ γ ≤ 1 and when orthogonal trans-
forms are applied then γ decreases continuously as Tk
deviates continuously from a diagonal form.

Let α =
∑n

k=1 ‖Dk‖2
‖βE‖2 and let α vary from 0 to 0.9 with

a hop size of 0.1, then a comparison between the men-
tioned procedures as a function of α can be seen on
figure 1.

Furthermore the convergence of the GAEX algo-
rithm for different trials as a function of the iteration
number when β = 0 and α = 0.5 can be seen on figure 2
and figure 3 respectively.

4. SUMMARY

We have proposed a joint diagonalization algorithm
which transforms the constrained optimization prob-
lem into an unconstrained problem. This means that
any conventional iterative method operating in a vec-
tor space could be applied to the problem.

An explicit expression for an isomorphism between
S⊥n (R) and R

n(n−1)
2 was introduced. Furthermore ex-

pressions of the first order derivatives of the proposed
method was also presented.

Simulations indicate that the gradient based method
converges to the same point as the JADE algorithm does.
Hence a potential application of introduced method is
in the field of adaptive BSS and this topic is left open
for future investigation.
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