
column index j in a matrix A i.e. (A)ij is symbolized
by aij. Also (A)i = ai and (A)i1 i2… iN=ai1 i2… iN.

Furthermore, the i-th column vector of a matrix A is
denoted as Ai, i.e., A= [A1 A2 …]. To enhance the
overall readability, we have made one exception to
this rule: as we frequently use the characters i, j, r
and n in the meaning of indices (counters), I, J, R
and N will be reserved to denote the index upper
bounds, unless stated otherwise. We define the n-
mode product of a tensor

€

A ∈ ℜ I1×I2×...×IN with a
matrix

€

U ∈ ℜ J nxIn as the

€

( I1 × I2 × ..In−1 × Jn × In+1 × ..IN )

tensor with entri es

€

A ×n U( )i1i2 ..in−1 jnin+1..iN = a
i1i2 ..in−1inin+1 ..iN

u
jnin .

in =1

In

∑
Although the resul ts can be easil y generalized for

complex tensors and matri ces, we describe these here
only for real, in order not to compl icate the notat ion.

2 GENERALIZED HIGHER ORDER
SINGULAR VALUE DECOMPOSITION OF A
MATRIX PAIR

2.1 The multilinear SVD or HOSVD of a tensor

A multi linear SVD (HOSVD) of a tensor has
recently been discussed in [10,11]. Through an
unfolding (see figure 1) of an N-th order tensor as a
matrix we can apply the regular matrix SVD and
obtain the orthogonal or unitary transformation
matri ces. This matrix unfolding cuts the tensor resp.
along verti cal, front al and horizontal planes into
patches, and pastes these patches resp. into the
matri ces A(1) , A(2) and A(3)

Figur e 1 Matrix unfolding of a 3rd order tensor A produces 3
matrices A(1), A(2) and A(3) to which the matrix SVD can be
applied.

Theorem 1 [HOSVD] Every (I1x I2x… IN) tensor A
can be decomposed as the product of N or- thogonal
matri ces and an all-orthogonal tensor S, i.e.,

€

A = S×1 U(1) ×2 U(2)...×N U(N ) (2)
in which all U(n) are orthogonal (InxIn) matri ces for
n=1,. .N, and in which S is an (I1x I2x… IN) tensor

whose subtensors Sin=α and Sin=β are orthogonal for
all possible values of n, α and β subject to α≠β,
i.e.,

€

Sin = α,Sin = β = 0when α≠β (3)
The subtensors of S are ordered as follows:

€

Sin =1 ≥ Sin =2 ≥ ... Sin =I N ≥ 0 (4)

for all possible values of n.
Observe that the remaining tensor S is not diagonal
unlike the matrix case, but the information in the
original tensor A is compressed in an all-orthogonal
tensor, in which, generally speaking, the strongest
contributions occur for the small est values of the
indices.

2.2 The generalized multilinear SVD or HOSVD of
a tensor pair

When two tensors A and B have the same range for
one of their indices (here we assume that this is the
first index I1), then we can define the new concept of
the generalized HOSVD of this pair.

Theorem 2 [Generalized HOSVD] Given an arbit rary
pair of tensors with the same first index I1, say, (I1x
I2x… IN) tensor A and (I1x J2x… JM) tensor B, then
the generalized HOSVD of this tensor pair exist s and
is basically unique, where A and B are decomposed
each as product of orthogonal matri ces and one
nonsingular (I1x I1)-mat rix W and all-orthogonal
tensors S and R, i.e.,

€

A = S×1W×2 U(2)...×N U(N ) (5)

€

B =R ×1W×2 V(2)...×M V(M ) (6)
where all U(n) for n=2,. .N (resp. V(n) for n=2,. .M) are
orthogonal (InxIn) (resp. (JnxJn) ) matri ces, and in
which S (resp. R) is a real (I1x I2x… IN) tensor of

which the subtensors Sin=α and Sin=β are orthogonal
for all possible values of n, α and β when α≠β,
i.e.,

€

Sin = α,Sin = β = 0
Rin = α,Rin = β = 0

when α≠β (7)

The subtensors of S and R are ordered as follows:

€

Si1=1
/ R i1=1

≥ Si1=2
/ R i1=2

≥ ... ≥ Si1=I1
/ R i1=I1

≥ 0

(8).
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Abstr act − Two newgeneralizations of tenso r concepts
for signa l processing are presented. These generali-
zatio ns are typically relev ant for appli cations where
one tenso r consi sts of valua ble measured data or
signa ls, that shoul d be retai ned, while the second
tenso r conta ins data or information that shoul d be
rejected. First the higher order singular value
decomposition for a singl e tenso r is extended to pairs
of tenso rs; this is the multi linear equiv alent of the
generalized or quoti ent SVD (GSVD, QSVD) for pairs
of matri ces. Next the notio n of oriented signa l-to-
signa l ratio s that was deriv ed for pairs of matri ces is
extended to pairs of tenso rs. These signa l to signa l
ratio s can be linked to the previ ously defined
generalized higher order singular value
decomposition.

1 INTRODUCTION

In recent years more and more instances of
appli cations occur, where the data have more than
two indices and hence are not organized in a matrix
but in a tensor, also called a multiway or
multi dimensional array. Let us mention here
psychometrics [16], chemometrics [7, 8, 15, 17] and
stati stical signal and image processing [6, 9, 10, 18].
In typical image appli cations, the 4 different indices
of a 4th order image tensor can be the x, y, t and
color axes. A recent appli cation is the websearch
tensor. Here we will mainly work in a signal
processing, but many concepts can be carri ed over to
the other domains. Typically the methods of matrix
theory and relat ed numerical computations [1] are no
longer adequate and valuable for tensors. Therefore a
number of studi es [10-14, 19-20] have been
performed to extend some matrix concepts to tensors,
like the higher order singular value decomposition or
the canonical decomposition of a tensor. Also the use
of tensors for finding independent components [9] in
signals is a topic of current interest.

Many appli cations occur where the measured data
lead to two tensors A and B rather than to a single
tensor A. Typically one tensor (call ed A) contains
the valuable information, whereas the other (call ed B)
contains information that is irrel evant and hence
should be rejected. This is the class of problems that
are tackl ed in this paper. It turns out that there are

several ways to extend the relevant matrix concepts,
and that their extensions are not trivi al.

The matrix counterpart of this paper, was already
known in the 80ies with the work of Golub and Van
Loan [1] on the Generalized Singular Value
Decomposition of a matrix penci l and its numerically
reliable computation. We studied [5] the oriented
signal to signal ratios for the matrix case, their
relevance for signal processing [2-5] and relat ed
computational issues. In [10, 11] we discussed a
possible multi linear generalization of the Singular
Value Decomposition (SVD), called the Higher Order
SVD (HOSVD). The different n-rank values can
easily be read from this decomposition. In [12-14,
19] some techniques to compute the least -squares
approximation of a given tensor by a tensor with
rank 1 or with a prespecified n-rank are discussed.

In section 2 the generalized higher order singular
value decomposition of a pair of tensors is presented,
which generalizes the HOSVD. The oriented signal
to signal ratio of a tensor pair is described in section
3 and is brought in relat ion to the generalized
HOSVD. The paper ends with conclusions and views
on signal processing appli cations.

Let us conclude the introduction with some basic
definitions and a comment on the unavoidably
compl icated notat ion that is used. The scalar product
<A,B> of two tensors

€

A,B ∈ ℜ I1×I2×...×IN is defined
in a straightforward way as

€

< A ,B >= ... a
i1i2 ..iN

b
i1i2 ..iNiN =1

IN
∑

i2=1

I2
∑

i1=1

I1
∑ (1)

The Frobenius-norm of a tensor is defined as

€

A = < A,A > Two tensors are called orthogonal
when their scalar product is zero.

In order to facil itate the disti nction between scalars,
vectors, matrices and higher-order tensors, the type of
a quant ity will be reflected by its representation:
scalars are denoted by lower-case letters (a, b…),
vectors are writt en as lower-case itali c letters (a,b,. .),
matri ces correspond to bold-face capit als (A, B…)
and tensors are writt en as calli graphic letters (A,
B…). This notat ion is consi stently used for entri es
of a given structure. The entry with row index i and
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column index j in a matrix A i.e. (A)ij is symbolized
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Furthermore, the i-th column vector of a matrix A is
denoted as Ai, i.e., A= [A1 A2 …]. To enhance the
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complex tensors and matri ces, we describe these here
only for real, in order not to compl icate the notat ion.
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2.1 The multilinear SVD or HOSVD of a tensor

A multi linear SVD (HOSVD) of a tensor has
recently been discussed in [10,11]. Through an
unfolding (see figure 1) of an N-th order tensor as a
matrix we can apply the regular matrix SVD and
obtain the orthogonal or unitary transformation
matri ces. This matrix unfolding cuts the tensor resp.
along verti cal, front al and horizontal planes into
patches, and pastes these patches resp. into the
matri ces A(1) , A(2) and A(3)

Figur e 1 Matrix unfolding of a 3rd order tensor A produces 3
matrices A(1), A(2) and A(3) to which the matrix SVD can be
applied.

Theorem 1 [HOSVD] Every (I1x I2x… IN) tensor A
can be decomposed as the product of N or- thogonal
matri ces and an all-orthogonal tensor S, i.e.,
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A = S×1 U(1) ×2 U(2)...×N U(N ) (2)
in which all U(n) are orthogonal (InxIn) matri ces for
n=1,. .N, and in which S is an (I1x I2x… IN) tensor

whose subtensors Sin=α and Sin=β are orthogonal for
all possible values of n, α and β subject to α≠β,
i.e.,

€

Sin = α,Sin = β = 0when α≠β (3)
The subtensors of S are ordered as follows:

€

Sin =1 ≥ Sin =2 ≥ ... Sin =I N ≥ 0 (4)

for all possible values of n.
Observe that the remaining tensor S is not diagonal
unlike the matrix case, but the information in the
original tensor A is compressed in an all-orthogonal
tensor, in which, generally speaking, the strongest
contributions occur for the small est values of the
indices.

2.2 The generalized multilinear SVD or HOSVD of
a tensor pair

When two tensors A and B have the same range for
one of their indices (here we assume that this is the
first index I1), then we can define the new concept of
the generalized HOSVD of this pair.

Theorem 2 [Generalized HOSVD] Given an arbit rary
pair of tensors with the same first index I1, say, (I1x
I2x… IN) tensor A and (I1x J2x… JM) tensor B, then
the generalized HOSVD of this tensor pair exist s and
is basically unique, where A and B are decomposed
each as product of orthogonal matri ces and one
nonsingular (I1x I1)-mat rix W and all-orthogonal
tensors S and R, i.e.,
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A = S×1W×2 U(2)...×N U(N ) (5)
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orthogonal (InxIn) (resp. (JnxJn) ) matri ces, and in
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for all possible values of n, α and β when α≠β,
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Sin = α,Sin = β = 0
Rin = α,Rin = β = 0
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The subtensors of S and R are ordered as follows:
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≥ ... ≥ Si1=I1
/ R i1=I1

≥ 0

(8).

The Generalized Higher Order Singular Value
Decomposition and the Oriented Signal-to-signal Ratios of
Pairs of Signal Tensors and their Use in Signal Processing

Joos Vandewalle1 ,  Lieven De Lathauwer2,  and Pierre Comon3

1 Department of Electrical Engineering,(ESAT), Kasteelpark Arenberg 10, Katholieke Universiteit Leuven B3001,
Belgium. e-mail: [joos.vandewalle,lieven.delathauwer]@esat.kuleuven.ac.be, tel.: +32 16 321052, fax: +32 16321970].
2 ETIS, CNRS, 6 av du Ponceau, 95014 Cergy-Pontoise cedex, France [lieven.delathauwer@ensea.fr]
3 I3S, CNRS, 2000 route des Lucioles, Sophia-Antipolis cedex, France [comon@i3s.unice.fr].

Abstr act − Two newgeneralizations of tenso r concepts
for signa l processing are presented. These generali-
zatio ns are typically relev ant for appli cations where
one tenso r consi sts of valua ble measured data or
signa ls, that shoul d be retai ned, while the second
tenso r conta ins data or information that shoul d be
rejected. First the higher order singular value
decomposition for a singl e tenso r is extended to pairs
of tenso rs; this is the multi linear equiv alent of the
generalized or quoti ent SVD (GSVD, QSVD) for pairs
of matri ces. Next the notio n of oriented signa l-to-
signa l ratio s that was deriv ed for pairs of matri ces is
extended to pairs of tenso rs. These signa l to signa l
ratio s can be linked to the previ ously defined
generalized higher order singular value
decomposition.

1 INTRODUCTION

In recent years more and more instances of
appli cations occur, where the data have more than
two indices and hence are not organized in a matrix
but in a tensor, also called a multiway or
multi dimensional array. Let us mention here
psychometrics [16], chemometrics [7, 8, 15, 17] and
stati stical signal and image processing [6, 9, 10, 18].
In typical image appli cations, the 4 different indices
of a 4th order image tensor can be the x, y, t and
color axes. A recent appli cation is the websearch
tensor. Here we will mainly work in a signal
processing, but many concepts can be carri ed over to
the other domains. Typically the methods of matrix
theory and relat ed numerical computations [1] are no
longer adequate and valuable for tensors. Therefore a
number of studi es [10-14, 19-20] have been
performed to extend some matrix concepts to tensors,
like the higher order singular value decomposition or
the canonical decomposition of a tensor. Also the use
of tensors for finding independent components [9] in
signals is a topic of current interest.

Many appli cations occur where the measured data
lead to two tensors A and B rather than to a single
tensor A. Typically one tensor (call ed A) contains
the valuable information, whereas the other (call ed B)
contains information that is irrel evant and hence
should be rejected. This is the class of problems that
are tackl ed in this paper. It turns out that there are

several ways to extend the relevant matrix concepts,
and that their extensions are not trivi al.

The matrix counterpart of this paper, was already
known in the 80ies with the work of Golub and Van
Loan [1] on the Generalized Singular Value
Decomposition of a matrix penci l and its numerically
reliable computation. We studied [5] the oriented
signal to signal ratios for the matrix case, their
relevance for signal processing [2-5] and relat ed
computational issues. In [10, 11] we discussed a
possible multi linear generalization of the Singular
Value Decomposition (SVD), called the Higher Order
SVD (HOSVD). The different n-rank values can
easily be read from this decomposition. In [12-14,
19] some techniques to compute the least -squares
approximation of a given tensor by a tensor with
rank 1 or with a prespecified n-rank are discussed.

In section 2 the generalized higher order singular
value decomposition of a pair of tensors is presented,
which generalizes the HOSVD. The oriented signal
to signal ratio of a tensor pair is described in section
3 and is brought in relat ion to the generalized
HOSVD. The paper ends with conclusions and views
on signal processing appli cations.

Let us conclude the introduction with some basic
definitions and a comment on the unavoidably
compl icated notat ion that is used. The scalar product
<A,B> of two tensors

€

A,B ∈ ℜ I1×I2×...×IN is defined
in a straightforward way as
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< A ,B >= ... a
i1i2 ..iN
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i1i2 ..iNiN =1
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The Frobenius-norm of a tensor is defined as

€

A = < A,A > Two tensors are called orthogonal
when their scalar product is zero.

In order to facil itate the disti nction between scalars,
vectors, matrices and higher-order tensors, the type of
a quant ity will be reflected by its representation:
scalars are denoted by lower-case letters (a, b…),
vectors are writt en as lower-case itali c letters (a,b,. .),
matri ces correspond to bold-face capit als (A, B…)
and tensors are writt en as calli graphic letters (A,
B…). This notat ion is consi stently used for entri es
of a given structure. The entry with row index i and
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The proof stems from the fact that we can apply the
generalized SVD [1, 4] on the matrix unfolding
along the first index of the tensors A and B and the
regular SVD on the matrix unfoldings along the
other indices of A and B . Observe that the matrix W
is not orthogonal, like in the matrix case. So its
columns or rows are not mutually orthogonal. The
condi tions under which a tensor pair with more than
one common dimension have a simil ar
decomposition, with more than one nonsingular
matrixW, are still under inves tigation.

3 ORIENTED SIGNAL TO SIGNAL RATIOS
OF TENSOR PAIRS

3.1 The oriented signal to signal ratio of a matrix
pair

In [5] the notion of oriented energy of a vector
signal was defined as follows. We consider an (mxn)
matrix A, whose rows typically correspond to sensors
and whose columns to time instants when the signals
of the sensors are measured. The oriented energy
Ee(A) is then the energy that is sensed in the
direction of a unit vector e, i. e.,

€

Ee(A) =
i=1

n

∑ (eTai )
2 = eTA

2
(9)

Of course the oriented energy varies for varying
orientations of the unit vector e. In figure 2 the left
picture shows how the oriented energy for two
matri ces A and B varies for a case where m=2. It
turns out [5] that the directions of maximal oriented
energy of a matrix A are mutually orthogonal and
correspond to the directions of the left singular
vectors of the SVD of A. This allows to find vectors
and subspaces where a maximal signal contribution
is present in the vector signal. Next, one can define
the oriented signal to signal ratio of a pair of
matri ces A and B as follows

€

Ee(A) /Ee(B) =
i=1

n

∑ (eTai )
2 /

i=1

n

∑ (eTbi )
2 (10)

Figur e 2 (left) orien ted energy plots ,

Again the oriented signal to signal ratio varies for
varying sensing direction e (see right picture of figure
2). The direction of maximal signal to signal ratio
shows a direction of a linear combination of rows
where the signal A is relat ively more pronounced
than signal B. When the generalized SVD (GSVD or
also called QSVD) [1-5] of this matrix pair (A, B) is
computed, the rows of the nonsingular matrix W-1

correspond with the directions of maximal oriented
signal to signal ratio . Since the matrix is
nonsingular but not necessarily orthogonal, these
directions are not mutually orthogonal.

3.2 The oriented signal to signal ratio of a tensor
pair

The oriented energy Ee(A) of a tensor signal A is
the energy that is sensed in the direction of a unit
vector e i. e.

€

Ee (A ) = ..
i2=1

I2

∑ (ei1ai1i2 ..in )
i1=1

I1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

in =1

IN

∑ = A ×
1
eT

F

2

(11)
Of course the oriented energy varies for varying

orientations of the unit vector e. The directions of
maximal oriented energy of a tensor A are mutually
orthogonal and correspond with the directions of the
left singular vectors of the SVD of 1-unfolding A(1)
of the tensor A. These directions correspond also
with the columns of U(1) in the HOSVD of the tensor
A. Next, one can define the oriented signal to signal

ratio of a pair of tensors, A and B, that have the same
first index I1, as follows

€

Ee (A )
Ee (B)

=

..
i2=1

I2

∑ (ei1ai1i2 ...i n )
i1=1

I1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

in =1

IN

∑

..
i2=1

I2

∑ (ei1bi1i2 ...i n )
i1=1

I1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

in =1

IN

∑
=

A ×
1
eT

F

2

B ×
1
eT

F

2 (12)

t index I1 , as follows

signal to signal ratio plot

(right) orien ted signa l-to-signa l plot
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whose subtensors Sin=α and Sin=β are orthogonal for
all possible values of n, α and β subject to α≠β,
i.e.,
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Sin = α,Sin = β = 0when α≠β (3)
The subtensors of S are ordered as follows:
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for all possible values of n.
Observe that the remaining tensor S is not diagonal
unlike the matrix case, but the information in the
original tensor A is compressed in an all-orthogonal
tensor, in which, generally speaking, the strongest
contributions occur for the small est values of the
indices.

2.2 The generalized multilinear SVD or HOSVD of
a tensor pair

When two tensors A and B have the same range for
one of their indices (here we assume that this is the
first index I1), then we can define the new concept of
the generalized HOSVD of this pair.

Theorem 2 [Generalized HOSVD] Given an arbit rary
pair of tensors with the same first index I1, say, (I1x
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The proof stems from the fact that we can apply the
generalized SVD [1, 4] on the matrix unfolding
along the first index of the tensors A and B and the
regular SVD on the matrix unfoldings along the
other indices of A and B . Observe that the matrix W
is not orthogonal, like in the matrix case. So its
columns or rows are not mutually orthogonal. The
condi tions under which a tensor pair with more than
one common dimension have a simil ar
decomposition, with more than one nonsingular
matrixW, are still under inves tigation.

3 ORIENTED SIGNAL TO SIGNAL RATIOS
OF TENSOR PAIRS

3.1 The oriented signal to signal ratio of a matrix
pair

In [5] the notion of oriented energy of a vector
signal was defined as follows. We consider an (mxn)
matrix A, whose rows typically correspond to sensors
and whose columns to time instants when the signals
of the sensors are measured. The oriented energy
Ee(A) is then the energy that is sensed in the
direction of a unit vector e, i. e.,

€

Ee(A) =
i=1

n

∑ (eTai )
2 = eTA

2
(9)

Of course the oriented energy varies for varying
orientations of the unit vector e. In figure 2 the left
picture shows how the oriented energy for two
matri ces A and B varies for a case where m=2. It
turns out [5] that the directions of maximal oriented
energy of a matrix A are mutually orthogonal and
correspond to the directions of the left singular
vectors of the SVD of A. This allows to find vectors
and subspaces where a maximal signal contribution
is present in the vector signal. Next, one can define
the oriented signal to signal ratio of a pair of
matri ces A and B as follows

€

Ee(A) /Ee(B) =
i=1

n

∑ (eTai )
2 /

i=1

n

∑ (eTbi )
2 (10)

Figur e 2 (left) orien ted energy plots ,

Again the oriented signal to signal ratio varies for
varying sensing direction e (see right picture of figure
2). The direction of maximal signal to signal ratio
shows a direction of a linear combination of rows
where the signal A is relat ively more pronounced
than signal B. When the generalized SVD (GSVD or
also called QSVD) [1-5] of this matrix pair (A, B) is
computed, the rows of the nonsingular matrix W-1

correspond with the directions of maximal oriented
signal to signal ratio . Since the matrix is
nonsingular but not necessarily orthogonal, these
directions are not mutually orthogonal.

3.2 The oriented signal to signal ratio of a tensor
pair

The oriented energy Ee(A) of a tensor signal A is
the energy that is sensed in the direction of a unit
vector e i. e.

€

Ee (A ) = ..
i2=1

I2

∑ (ei1ai1i2 ..in )
i1=1

I1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

in =1

IN

∑ = A ×
1
eT

F

2

(11)
Of course the oriented energy varies for varying

orientations of the unit vector e. The directions of
maximal oriented energy of a tensor A are mutually
orthogonal and correspond with the directions of the
left singular vectors of the SVD of 1-unfolding A(1)
of the tensor A. These directions correspond also
with the columns of U(1) in the HOSVD of the tensor
A. Next, one can define the oriented signal to signal

ratio of a pair of tensors, A and B, that have the same
first index I1, as follows

€

Ee (A )
Ee (B)

=

..
i2=1

I2

∑ (ei1ai1i2 ...i n )
i1=1

I1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

in =1

IN

∑

..
i2=1

I2

∑ (ei1bi1i2 ...i n )
i1=1

I1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

in =1

IN

∑
=

A ×
1
eT

F

2

B ×
1
eT

F

2 (12)

t index I1 , as follows

signal to signal ratio plot

(right) orien ted signa l-to-signa l plot

Again the oriented signal to signal ratio varies for
varying sensing direction e. The direction of
maximal signal to signal ratio shows a direction of a
linear combination of rows where the signal A is

relat ively more pronounced than signal B. When the
generalized HOSVD of the tensor pair (A, B) is
computed according to theorem 2, it turns out that
the rows ofW-1 correspond to these directions. Again
these are not mutually orthogonal.

4 CONCLUSIONS

Several notions that are relevant for tensor signal
pairs have been defined. It would be nice to extend
these even for the cases where more than
one index among the pair of tensors is in common.

Acknowledgments

This work is suppo rted by sever al insti tutions:
(1) Resea rch Counc il K.U.Leuven: Conce rted Resea rch Action
GOA-MEFISTO-666 (Mathematical Engineering for Information
and Communication Syste ms Technology), IDO, (2) the Fund for
Scien tific Resea rch-Flande rs (F.W.O.) proje cts G.0240.99
(Mult ilinear Gener alisations of the Singu lar Value
Decomposition and Applications in Signa l Proce ssing and Syste m
Identification) and G.0407.02 suppo rt vecto r machines, and
G.0262.97; the F.W.O . Resea rch Communities ICCoS
(Iden tification and Contr ol of Complex Syste ms) and ANMMM
(Adva nced Numer ical Methods for Mathematical Modelling),
(3) the Belgian State , Prime Minis ter's Offic e - Feder al Offic e
for Scien tific, Techn ical and Cultu ral Affairs - Inter university
Poles of Attra ction Progr amme (IUAP V-22 (2002 -2006):. (4)
Lieve n De Latha uwer and Pierr e Comon hold a perma nent
resea rch posit ion with the Frenc h Centr e National de la
Reche rche Scien tifique (C.N.R.S.); L. De Latha uwer has also an
honor ary post- doctoral resea rch posit ion with the K.U.Leuven.
Joos Vande walle is a Full Profe ssor with the K.U.Leuven,
curre ntly on a sabba tical leave at the I3S labor atory of the CNRS
at Sophia Antipolis, Franc e sponsored by F.W.O .

References

[1] G.H. Golub and C.F. Van Loan, Matri x Compu tations,
3rd ed., Johns Hopki ns University Press , Balti more,
Maryl and, 1996.

[2] Doclo S., Moonen M., ``GSVD-Based Optimal
Filtering for Single and Multi-Microphone Speech
Enhancement'', IEEE Trans on Signal Processing, vol.
50, no. 9, Sep. 2002, pp. 2230-2244.

[3] Moonen M., Vandewalle J., ``A QSVD approach to on-
and off-line state space identification'', Int. Journal
of Control, vol.51, no.5, 1990, pp. 1133-1146.

[4] De Moor B., ``On the structure of generalized singular
value and QR decompositions'', SIAM J. Matrix
Analysis & Applications, vol.15-1, Jan. 1994, pp.
347-358.

[5] De Moor B., Staar J., Vandewalle J., ``Oriented energy
and oriented signal-to-signal ratio concepts in the
analysis of vector sequences and time series'', in `SVD
and Signal Processing: Algorithms, Applications
and Architectures', E. Deprettere (ed.), Elsevier
Science Publishers B.V. (North-Holland), 1988, pp.
209-232.

[6] C.J. Appel lof and E.R. David son, “Stra tegies for
analy zing data from video fluoromatric monit oring
of liqui d chromatographic efflu ents”, Analy tical
Chemi stry, 53, 1981, pp.~2 053--2056.

[7] R. Bro, “PARAFAC. Tutor ial & appli cation s”
Chemom. Intel l. Lab. Syst. , Speci al Issue 2nd
Internet Conf. in Chemometrics (INCINC'96), 38,
1997, pp.~1 49--171.

[8] D. Burdi ck, X. Tu, L. McGown, and D. Milli can,
“Reso lution of multi component fluorescent
mixtu res by analy sis of the excit ation-emissio n-
frequ ency array s”, Journ al of Chemometrics, 4
,1990 , pp.15 -28.

[9] P. Comon , “Independent compo nent analy sis, a new
concept?” Signa l Process., Speci al Issue on Higher
Order Stati stics, 36, 1994, pp. 287-3 14.

[10] L. De Lathauwer, Signa l Processing Based on
Multi linear Algeb ra, Ph.D. thesi s, K.U.Leuven,
E.E.Dept. (ESAT), Belgi um, 1997.

[11] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A
multi linear singu lar value decomposition”, SIAM J.
Matri x Anal. Appl., 21, 2000, pp. 1253--1278.

[12] L. De Lathauwer, B. De Moor, and J. Vande- walle ,
“On the best rank-1 and rank-R1,R2, appro ximation
of higher-order tenso rs”, SIAM J. Matri x Anal. Appl.,
21, 2000, pp. 1324--1342.

[13] E. Kofid is and P.A. Regal ia, “On the best rank-1
appro ximation of higher-order supersymmetric
tenso rs”, SIAM J. Matri x Anal. Appl., 23, 2002, pp.
863-8 84.

[14] T. Kolda , “A count erexample to the possi bility of
an exten sion of the Eckar t-Young low-rank
appro ximation theorem for the ortho gonal rank
tenso r decomposition”, accep ted for publi cation in:
SIAM J. Matri x Anal. Appl.

[15]E. Sanch ez and B.R. Kowal ski, “Tens orial
resol utiona direc t trili near decomposition”, Journ al
of Chemometrics, 4, 1990, pp. 29-45 .

[16] R. Sands and F. Young , “Comp onent model s for
three-way data : an alterna ting least squares
algor ithm with optimal scali ng featu res”,
Psych ometrika, 45, 1980, pp. 39-67 .

[17] N. Sidiropoulos and R. Bro, “On the uniqu eness of
multi linear decomposition of N-way array s”, J. of
Chemometrics, 14, 2000, pp. 229-2 39.

[18] A. Yeredor , “Non-orthogonal joint diago na-
lizat ion in the least -squares sense with appli cation
in blind source separation”, IEEE Trans . Signa l
Processing, 50, 2002, pp.15 45-1553.

[19] T. Zhang and G.H. Golub , “Rank -one appro ximation
to high order tenso rs”, SIAM J. Matri x Anal. Appl.,
23, 2001, pp. 534--550.

[20] P. Comon , ``Ten sor Decompositions, '' In J. G.
McWhi rter and I. K. Proud ler, eds, Mathematics in
Signa l Processing V, pp. 1-24. Clarendon Press ,
Oxford, UK, 2002.

I-389 I-390 I-391 I-392



The proof stems from the fact that we can apply the
generalized SVD [1, 4] on the matrix unfolding
along the first index of the tensors A and B and the
regular SVD on the matrix unfoldings along the
other indices of A and B . Observe that the matrix W
is not orthogonal, like in the matrix case. So its
columns or rows are not mutually orthogonal. The
condi tions under which a tensor pair with more than
one common dimension have a simil ar
decomposition, with more than one nonsingular
matrixW, are still under inves tigation.

3 ORIENTED SIGNAL TO SIGNAL RATIOS
OF TENSOR PAIRS

3.1 The oriented signal to signal ratio of a matrix
pair

In [5] the notion of oriented energy of a vector
signal was defined as follows. We consider an (mxn)
matrix A, whose rows typically correspond to sensors
and whose columns to time instants when the signals
of the sensors are measured. The oriented energy
Ee(A) is then the energy that is sensed in the
direction of a unit vector e, i. e.,

€

Ee(A) =
i=1

n

∑ (eTai )
2 = eTA

2
(9)

Of course the oriented energy varies for varying
orientations of the unit vector e. In figure 2 the left
picture shows how the oriented energy for two
matri ces A and B varies for a case where m=2. It
turns out [5] that the directions of maximal oriented
energy of a matrix A are mutually orthogonal and
correspond to the directions of the left singular
vectors of the SVD of A. This allows to find vectors
and subspaces where a maximal signal contribution
is present in the vector signal. Next, one can define
the oriented signal to signal ratio of a pair of
matri ces A and B as follows

€

Ee(A) /Ee(B) =
i=1

n

∑ (eTai )
2 /

i=1

n

∑ (eTbi )
2 (10)

Figur e 2 (left) orien ted energy plots ,

Again the oriented signal to signal ratio varies for
varying sensing direction e (see right picture of figure
2). The direction of maximal signal to signal ratio
shows a direction of a linear combination of rows
where the signal A is relat ively more pronounced
than signal B. When the generalized SVD (GSVD or
also called QSVD) [1-5] of this matrix pair (A, B) is
computed, the rows of the nonsingular matrix W-1

correspond with the directions of maximal oriented
signal to signal ratio . Since the matrix is
nonsingular but not necessarily orthogonal, these
directions are not mutually orthogonal.

3.2 The oriented signal to signal ratio of a tensor
pair

The oriented energy Ee(A) of a tensor signal A is
the energy that is sensed in the direction of a unit
vector e i. e.

€

Ee (A ) = ..
i2=1

I2

∑ (ei1ai1i2 ..in )
i1=1

I1

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

in =1

IN

∑ = A ×
1
eT

F

2

(11)
Of course the oriented energy varies for varying

orientations of the unit vector e. The directions of
maximal oriented energy of a tensor A are mutually
orthogonal and correspond with the directions of the
left singular vectors of the SVD of 1-unfolding A(1)
of the tensor A. These directions correspond also
with the columns of U(1) in the HOSVD of the tensor
A. Next, one can define the oriented signal to signal

ratio of a pair of tensors, A and B, that have the same
first index I1, as follows
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Ee (A )
Ee (B)

=
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i2=1

I2

∑ (ei1ai1i2 ...i n )
i1=1
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∑
⎛
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t index I1 , as follows

signal to signal ratio plot

(right) orien ted signa l-to-signa l plot

Again the oriented signal to signal ratio varies for
varying sensing direction e. The direction of
maximal signal to signal ratio shows a direction of a
linear combination of rows where the signal A is

relat ively more pronounced than signal B. When the
generalized HOSVD of the tensor pair (A, B) is
computed according to theorem 2, it turns out that
the rows ofW-1 correspond to these directions. Again
these are not mutually orthogonal.

4 CONCLUSIONS

Several notions that are relevant for tensor signal
pairs have been defined. It would be nice to extend
these even for the cases where more than
one index among the pair of tensors is in common.
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