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Abstract—This paper focuses on the constant power (CP) crite-
rion for blind linear equalization of digital communication chan-
nels. This recently proposed criterion is specially designed for the
extraction of -ary phase shift keying ( -PSK) signals using finite
impulse response equalizers. When zero-forcing equalizers exist,
the CP cost function accepts exact analytic solutions that are un-
affected by undesired local extrema and spare costly iterative op-
timization. A subspace-based method exploiting the Toeplitz-like
structure of the solution space is put forward to recover the min-
imum-length equalizer impulse response from the overestimated-
length solutions. The proposed method is more robust to the rel-
ative weights of the minimum-length equalizer taps than existing
techniques. In less ideal scenarios where the analytic solutions are
only approximate minimizers of the criterion, a gradient-descent
algorithm is proposed to minimize the cost function. To reduce the
detrimental effects of suboptimal equilibria and accelerate conver-
gence, the iterative algorithm is initialized with the approximate
closed-form solution, and an optimal step size is incorporated into
its updating rule. This optimal step size, which globally minimizes
the cost function along the search direction, can be computed al-
gebraically. A semi-blind implementation, which is useful when
training data are available, further reduces the impact of unde-
sired local extrema and enhances the convergence characteristics
(particularly the robustness to the equalizer initialization) of the
iterative algorithm from just a few pilot symbols. All these benefi-
cial features are demonstrated with an experimental study of the
proposed CP-based methods in a variety of channels and simula-
tion conditions.

Index Terms—Analytical constant power algorithm, blind equal-
ization, closed-form solutions, iterative algorithms, optimal step
size, semi-blind equalization, subspace methods, tensor algebra.

I. INTRODUCTION

A. Background

In digital communications, transmission effects such as mul-
tipath propagation and limited bandwidth produce linear dis-
tortion in the emitted signal, causing intersymbol interference
(ISI) at the receive sensor output. To enable the recovery of the
input symbols, channel equalization aims to compensate these
distorting effects [1]. Since the late 1970s, the drawbacks of
training-based methods [1], [2] have aroused considerable re-
search interest in the so-called blind equalization techniques,
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which spare the use of bandwidth-consuming pilot sequences
and prove especially attractive in broadcast and noncooperative
scenarios. In the fundamental single-input single-output (SISO)
scenario, nonminimum phase (NMP) channels cannot be blindly
identified using only second-order statistics (SOS); hence, the
need for blind SISO equalizers to rely (explicitly or not) on
higher-order statistics (HOS) [3]–[5]. Most blind methods are
essentially property restoral techniques: The equalizer filter is
updated to produce an output signal that recovers an a priori
known property of the input signal, such as the finite alphabet
or constant modulus of its data symbols.

The constant modulus (CM) criterion [4], [5]—which
can be considered as a particular member of the more gen-
eral family of Godard’s methods [4]—is arguably the most
widespread blind equalization principle. Although Godard’s
methods were proven to be globally convergent in the combined
channel-equalizer parameter space, they were later shown to
generally present suboptimal equilibria in the equalizer pa-
rameter space [6], [7]. Suboptimal equilibria are stable local
extrema associated with filter tap settings that cannot suffi-
ciently open the equalizer output signal eye pattern so that
the detecting device is then unable to extract the transmitted
symbols with a reasonably low probability of error.1 This
shortcoming renders the performance of gradient-based imple-
mentations of Godard’s criterion very dependent on the initial
value of the equalizer impulse response. As discussed in [6]
and [7], the misconvergence problems of iterative blind SISO
equalization methods calls for the design of suitable initial-
ization schemes and, perhaps, additional strategies to keep the
equalizer tap trajectories away from undesired local equilibria.

Analytic methods can be used as judicious initializations for
iterative equalizers. A closed-form CM solution is obtained in
[8], where the CM criterion is posed as a nonlinear least squares
(LS) problem. Through an appropriate mapping of the equal-
izer parameter space, the nonlinear setting is transformed into a
linear LS problem subject to a constraint on the solution struc-
ture. Recovering the right structure of the solution space is par-
ticularly important when multiple zero-forcing (ZF) solutions
exist; for instance, in all-pole channels with overparameterized
finite impulse response (FIR) equalizers, different ZF equal-
ization delays are possible. From a matrix algebra perspective,
imposing this structure can be considered as a matrix diago-
nalization problem, in which the matrix performing the diag-
onalization of the unstructured solution matrix is composed of

1Suboptimal equilibria are sometimes referred to as spurious equilibria in
the literature. However, as will be illustrated in Section VII, such solutions
often lie near Wiener equalizers, which questions the appropriateness of the
term “spurious.”
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the equalizers’ tap vectors. After obtaining a nonstructured LS
solution via pseudoinversion, the minimum-length equalizer is
extracted by a subspace-based approach or two other simpler
structuring procedures. Least mean squares (LMS) and recur-
sive least squares (RLS) algorithms are also designed to solve
the linear LS problem; hence, they still require structuring after
convergence. Alternatively, the linearized LMS algorithm can
be modified to partially impose the appropriate structure. How-
ever, the introduction of nonlinear constraints precludes the for-
mulation of a closed-form solution.

The blind equalization method of [8] is strongly related to
the analytical CM algorithm (ACMA) of [9] for blind source
separation, which is a related but somewhat different problem.
ACMA provides, in the noiseless case, exact closed-form solu-
tions for the spatial filters that extract the source signals from
their observed instantaneous linear mixtures. Interestingly, re-
covering the separating spatial filters from a basis of the solu-
tion space turns out to be tantamount to the joint diagonalization
of the corresponding matrices. This joint diagonalization can be
achieved through the generalized Schur decomposition [10] of
several (more than two) matrices, for which convergence proof
has yet to be found. Whether for source separation or for equal-
ization, ACMA requires special modifications to handle input
signals with a one-dimensional (i.e., binary) alphabet [8], [9],
[11]. These modifications give rise to the so-called real ACMA
(RACMA) method [11].

Multichannel (fractionally spaced) implementations are also
able to avoid some of the deficiencies of SISO equalizers. In the
first place, single-input multiple-output (SIMO) channels can
be blindly identified using only SOS, regardless of their phase
characteristics. In addition, FIR SIMO channels can be per-
fectly equalized, in the absence of noise, by FIR filters. Seminal
methods are presented in [12]–[14]. Godard SIMO equalizers do
not present suboptimal minima for noiseless channels satisfying
length and zero conditions [15]. All minima are global and co-
incide with the minimum mean square error (MMSE) solutions
associated with the attainable equalization delays. In the pres-
ence of noise, however, some of the minima become local, their
respective equalizers providing different levels of MSE perfor-
mance [16]. Depending on its performance, a local minimum
may also become suboptimal. Hence, the need for techniques
to avoid local extrema remains pertinent in the multichannel
context. In certain practical scenarios, it may not be possible
to achieve the degree of spatio-temporal diversity required by a
SIMO formulation, due to lack of excess bandwidth or to hard-
ware constraints limiting the number of receiving sensors (e.g.,
antennas in a mobile handset). This paper is mainly concerned
with, but not restricted to, the basic SISO model.

B. Contribution and Outline

The present contribution studies a novel criterion for the blind
equalization of digital channels excited by input signals with
-ary phase shift keying ( -PSK) modulations for arbitrary
. The criterion can be considered as a modification on the orig-

inal Godard’s family of blind equalizers, with a power value
matched to the signal constellation, hence, the suitable name of
constant power (CP) criterion. It is shown that if multiple ZF
solutions exist—e.g., when the noiseless SISO channel follows

a pure autoregressive (AR) model and the FIR equalizer filter
is of sufficient length—the criterion accepts, much in ACMA’s
fashion, an exact solution that can be computed analytically,
i.e., without iterative optimization. The minimum-length equal-
izer impulse response can then be obtained from a joint decom-
position of th-order tensors: the so-called rank-1 combination
problem [17]. Since no effective tool has yet been developed
for this task, an approximate solution is proposed in the form of
a subspace-based method, which exploits the particular struc-
ture of the tensors associated with satisfactory equalization so-
lutions. As opposed to [8], the subspace method proposed herein
takes into account a whole basis of the solution space. This use
of extra information is expected to increase the algorithm’s ro-
bustness to the minimum-length equalizer structure. In addition,
our closed-form blind equalization method naturally deals with
binary inputs (e.g., BPSK, MSK) without further modification.

In additive noise or less ideal channel-equalizer conditions,
the CP cost function can be minimized through a gradient-de-
scent algorithm. The impact of undesired extrema are consid-
erably reduced by initializing the algorithm with the approxi-
mate closed-form solution. In computationally limited systems,
however, simple initializations may be preferred to more so-
phisticated, and thus more complex, alternatives. Whatever the
option, the value of the step size (adaptation coefficient) that
globally minimizes the cost function along the search direction
can be computed analytically at each iteration. This optimal
step size provides remarkable benefits in convergence speed
and avoidance of local extrema, even with conventional (e.g.,
center-tap) initializations. The CP criterion is easily modified to
operate in semi-blind mode, which is relevant in communica-
tion scenarios where training sequences are available. The op-
timal step size can also be algebraically computed in pilot-as-
sisted operation. Using just a few pilot symbols, this semi-blind
optimal step-size algorithm shows an outstanding robustness to
the equalizer filter initialization.

The material is organized as follows. A brief explanation of
the problem and the signal model is given in Section II. After
presenting the CP criterion in Section III, its closed-form solu-
tions are found in Section IV with the aid of a subspace-based
algorithm for recovering the minimum-length equalizer. Iter-
ative implementations are the focus of Section V, featuring
the optimal step-size gradient-descent algorithm. Semi-blind
solutions, in block and iterative operation, are put forward in
Section VI. An experimental study is reported in Section VII.
Finally, the summary and concluding remarks of Section VIII
bring the paper to an end. For the sake of clarity, proofs and
other mathematical derivations are postponed to the Appendix.

C. Notations

In the following, scalars, vectors, and tensors (of which
matrices are assumed a particular case) will usually be denoted
by plain lowercase , boldface lowercase , and boldface
uppercase symbols, respectively, the only exceptions being
the structures derived from Kronecker tensorial products, as ex-
plained below. refers to the identity matrix, whereas

is the length- zero vector; , , and indicate
the transpose, Hermitian (conjugate-transpose), and inverse
matrix operators, respectively; is the conventional 2-norm.
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denotes the entry located in position
of the th-order tensor . is the set of complex numbers;

and denote the real and imaginary part, respec-
tively, of their complex argument; is the imaginary
unit. represents the mathematical expectation. Symbol

denotes the convolution operator, whereas and stand
for the outer and elementwise products, respectively. Given a
vector , we define its th-order rank-1 Kronecker tensor
product as (e.g., ). A

symmetric tensor of order and dimension can be stored
in a vector , which contains only the
distinct entries of , scaled by the square root of the number of
times they appear so that the Frobenius norm is preserved [17].
In particular, we denote . Similarly, given a
vector of dimension , denotes the symmetric
th-order tensor constructed from its entries.

II. PROBLEM STATEMENT AND SIGNAL MODEL

The problem of channel equalization can simply be posed as
follows. A digital signal is transmitted
at a known baud-rate through a time dispersive channel
with impulse response . The channel is assumed linear and
time-invariant (at least over the observation window) with a
stable, causal, and possibly nonminimum phase transfer func-
tion. The continuous-time baseband signal at the receive sensor
output is given by , where
denotes the noiseless observation and the additive noise.
Assuming perfect synchronization and carrier-residual elimina-
tion, baud-rate sampling produces the discrete-time output

(1)

in which , and analogous definitions hold for
, , and . Each observed sample consists of a noisy

linear mixture of the original data symbols, which is an
undesired phenomenon known as intersymbol interference
(ISI). Our goal is to recover the original data symbols from
the received signal corrupted by ISI and noise. To this end,
a baud-spaced linear equalizer with impulse response taps

is sought so that the equalizer output
is a close estimate of the source symbols , where

.
In this paper, the data symbols are assumed to belong to a

-ary phase shift keying ( -PSK) constellation ,
with , in which depends on the actual con-
stellation; for instance, for BPSK, and

for QPSK.2 By allowing a time-varying , the above def-
initions are readily extended to encompass other non-PSK mod-
ulations such as MSK [18], modeled with .

III. BLIND EQUALIZATION CRITERION FOR PSK MODULATIONS

A. Constant Power Criterion

Since , it follows that . In particular, the
th power of input symbols drawn from a -PSK constellation

2Defining the QPSK alphabet as A = f1;�1; j;�jg, we would have
(q; d) = (4; 1).

is constant. Thus, a somewhat natural cost function to measure
the closeness of the equalizer output to the original data symbols
is given by the constant power (CP) criterion

(2)

Cost function (2) is a particular case of the more general class of
alphabet polynomial fitting (APF) criteria, where the equalizer
output constellation is matched to the source alphabet, charac-
terized by the complex roots of a specific polynomial [19], [20].
In the context of blind source separation, criterion (2) is shown
to be equivalent, for sufficiently low noise levels, to the max-
imum a posteriori (MAP) principle [21], [22]. In addition, it is
proved in [19] that, when the total channel-equalizer impulse
response is of finite length and the input signal sufficiently ex-
citing, the global minima in the combined noiseless channel and
equalizer parameter space of the sample estimate of criterion (2)
correspond to ZF equalization solutions. However, this result
does not assure that the desired solutions can always be reached
or that undesired equilibria do not exist when the cost function
is observed from the actual equalizer parameter space, as noted
in [6] and [7] for Godard’s criterion. The existence of subop-
timal extrema in the CP criterion will be illustrated with a few
simple experiments in Section VII.

B. Connections With Existing Criteria

CP functional (2) bears close resemblance to Godard’s class
of cost functions [4], which in the PSK case shows the general
form

(3)

For , the above function corresponds to the CM criterion
[4], [5]. For BPSK sources and a real-valued channel and equal-
izer, the CP and CM criteria are identical; in such a case, we an-
ticipate that the closed-form treatment of the CP minimization
(Section IV) is equivalent to that of the specialized ACMA for
binary modulations [8], [11]. This parallelism between the CM
and CP cost function points to the existence of local extrema in
the latter, even for .

The phase insensitivity of the CM criterion is one of its main
advantages, as it allows the decoupled simultaneous operation
of the equalization and carrier recovery stages [4], [5]. The CP
criterion, in contrast, requires either a previous carrier-residual
elimination or the incorporation of appropriate carrier-residual
compensation mechanisms. However, all PSK constellations
being CM, the CM principle is not discriminant over the set
of PSK constellations. Similarly, it is not clear, at least at first
glance, how the more general criterion (3) could privilege a
particular PSK modulation. By contrast, criterion (2) explicitly
takes into account the discrete nature of PSK-type alphabets
so that it should exhibit enhanced discriminating properties
among the CM constellations.

If is substituted by the available pilot symbols (where
symbol stands for “training”), the CP cost function (2) re-
duces, with , to the supervised MMSE equalization prin-
ciple. This fact will be revisited when designing the semi-blind
methods of Section VI.
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IV. BLIND CLOSED-FORM SOLUTIONS

When the channel accepts a noiseless AR model and the FIR
equalizer is sufficiently long, perfect ZF SISO equalization is
possible. In particular, the CP criterion (2) can be perfectly min-
imized (zeroed), and an exact global minimum can be computed
in closed-form, that is, without iterative optimization. This ana-
lytic solution can be considered as an extension of the ACMA al-
gorithm [9] to the CP principle. Consequently, the method may
be called the analytical constant power algorithm (ACPA).

A. Obtaining a Basis of the Solution Space

The perfect minimizers of (2) are given by the solutions to the
set of equations:

(4)

where , and denotes the observation
length in number of samples. This nonlinear system can be lin-
earized by taking into account that (see
the Appendix) and can be compactly expressed as

(5)

where , and
. Equation (5) is to be solved under

the structural constraint that be written as for
certain (see the Appendix).

Let us assume an all-pole channel with AR-model order of
. Such a channel can be equalized with a minimum-length

FIR filter composed of taps. Assume the
equalizer filter is overparameterized, that is, the equalizer length

has been overestimated, and . Then,
ZF solutions exist, each of them corresponding to a different
equalization delay

(6)

Since there are linearly independent solutions, the dimen-
sion of the null space of is equal to . Hence,
the solutions to (5) can be written as an affine space of the
form , where is a particular so-
lution to the nonhomogeneous system, and ker ,

.
As in [9], we find it more convenient to work in a fully linear

subspace, which is obtained through a unitary trans-
formation such that . For instance,
can be a Householder transformation [10] or, if is composed
of equal values, an -point DFT matrix. Then

(7)

and system (5) reduces to

(8)

subject to the constraint . Along the lines of [9, Lemma
4], it can be proved (Appendix A) that this problem is equivalent
to solving

(9)

and then scaling the solution to impose

(10)

or, equivalently

(11)

If dim ker and

(12)

(or ), then dim ker (see the Appendix).
Hence, all solutions to are linearly spanned by a
basis of ker . This basis can be computed from
the singular value decomposition (SVD) of by taking its
least significant right singular vectors. The structured solutions

are also a basis of the same subspace, and therefore,
a set of scalars exists such that

(13)

where matrix is full rank. The problem of struc-
turing the solution to the linearized system (5) consists of im-
posing the rank-1 symmetric Kronecker structure to the basis

, which, in turn, yields . This is a particular
subspace-fitting problem with structural constraints. In terms of
th-order tensors, (13) can be expressed as

(14)

where . This is the rank-1 combination
problem: Given the set , find the scalars producing ten-
sors of rank one. The obtained rank-1 tensors will precisely cor-
respond to . Such a tensor decomposition is, in general, a
notoriously nontrivial task (see, e.g., [17], [23], and references
therein).

Before continuing, it is worth remarking that sample-size
bound (12) is too restrictive. In practice, satisfactory
closed-form equalization usually requires shorter observa-
tion windows, as will be demonstrated in the experiments of
Section VII.

B. Solution Structuring: Subspace-Based Approach

A subspace-based method, reminiscent of [14], can be used
to recover the minimum-length equalizer impulse response
from a basis of (generally) unstructured solutions .
The subspace-fitting problem (13) can be compactly written as

, with and .
Since is full rank, matrices and span the same column
space: range range . In particular, ker ,

. There are dim ker such linearly
independent vectors.

Now, since equalization solutions are of the form (6), the cor-
responding columns of have a particular structure whereby
the elements not associated with the minimum-length equal-
izer are all zero. The remaining entries

form . Denote by the set of positions of in ,
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that is, , with
, , and . Ac-

cordingly, is the subvector composed of the el-
ements of in positions . Let

. Hence

(15)

In total, the above equalities define a set of linear
equations, characterized by matrix

, on the entries of . As long as , this
linear system determines, up to a scale, the properly structured

; its scale can later be set via (11) from a zero-padded ver-
sion (any ) of the estimated . In practice, we minimize the
quadratic form so that can be
estimated as the least significant left singular vector of matrix .
Once matrix has been reconstructed, an LS estimate of coef-
ficients can be obtained as

. These coefficients relate th-order tensors with
their rank-1 symmetric tensor decomposition (14). Hence, the
elements of solve the rank-1 combination problem.

To recover the equalizer impulse response from its sym-
metric Kronecker vectorization , one can resort to the SVD
of a matrix unfolding of [24], [25]. Let
matrix such that

Then, , with
. Therefore, can be estimated (up to

a scale) as the dominant left singular vector of the rank-1
matrix unfolding . In the presence of noise, it will generally
be impossible to express the estimated as the symmetric
vectorization of a rank-1 tensor, that is, a vector cannot
be found such that holds exactly. As a
result, the matrix unfolding will not be of rank one, and the
above SVD-based procedure will yield inaccuracies that may
ultimately limit the equalization performance. Results could be
improved with more sophisticated methods for finding the best
rank-1 approximation of symmetric tensor [26].

C. Other Structuring Methods

In the context of the CM criterion, a similar subspace-based
structuring method was proposed in [8, Sec. III.C], which
operates on a single (LS) unstructured solution (see also
[27]). Such structure-forcing procedure can be interpreted
as the diagonalization of the matrix associated with the
unstructured solution. By contrast, our approach takes advan-
tage of a full basis of the solution subspace, which should
lead to a subsequent increase in robustness, especially for
large . The method of [8, Sec. III.B] and [24] is based on
the observation that the top entries of a solution are
equal to ,

from which can be extracted. This inge-
nious simple method is bound to be inaccurate when either the
coefficient or the equalizer leading tap are small relative
to the noise level.

To circumvent this drawback, one may notice
that the entries at the bottom of are equal to

[8,
Sec. III.B]. This second option can provide, when properly

combined with the estimate from the first entries, an
improved estimate of . In the experiments of Section VII,
we use the following (still suboptimal) LS linear combination.
Assume that the filter estimate from the top and bottom
nonoverlapping entries of an unstructured solution are,
respectively, and , with .
Then, the unit-norm minimum-length equalizer LS estimate is

given by , with , . The
coefficients in are simply estimated as , , 2.
This kind of maximal-ratio combining (MRC) is reminiscent of
the RAKE receiver and the matched filter [28]. Robustness can
be further enhanced by exploiting a whole set instead of
just one solution.

D. Approximate Solution in the Presence of Noise

In the presence of additive noise at the receive sensor output,
the exact solution to (4) may no longer exist. An approximate so-
lution in the LS sense can be reached by minimizing

, always subject to the structural constraint . This
minimization generally requires an iterative method, as will be
detailed in the next section.

Nevertheless, the guidelines to obtain the exact solution in the
noiseless case may still provide a sound initialization for the it-
erative search. After applying transformation , the LS problem
turns out to be equivalent to the minimization of

. To find a basis of the (approximate) solution space,
we look for a set of vectors that minimize (e.g., the
least significant right singular vectors of ), then structure them
as in Section IV-B, and finally normalize the solution to fulfil

[see (10) and (11)].

V. BLIND ITERATIVE SOLUTIONS

A. Gradient-Based Algorithm

In practice, exact ZF equalization may not be feasible,
due to the presence of noise, the existence of an FIR SISO
channel, or just because the equalizer length is insuffi-
cient. In such cases, the CP cost function must be itera-
tively minimized, e.g., via a gradient-descent algorithm.
The gradient of function (2) with respect to is given by

and can be
expressed as

(16)

We refer to the resulting iterative method as the constant power
algorithm (CPA). As a sensible initialization, one can use the
equalizer vector provided by an ACPA method, such as the
approximate structured solution described in Section IV-D or
the (generally unstructured) direct LS solution to the linearized
problem (5), . At each iteration, the equalizer
vector is updated in the LMS fashion as

(17)

The iterations are terminated when

(18)

where is a small positive constant.
We advocate the use of block (or “windowed”) iterative im-

plementations, as opposed to stochastic algorithms. The latter



4368 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 11, NOVEMBER 2005

methods approximate the gradient by using a one-sample es-
timate, which is tantamount to dropping the expectation oper-
ator. This simplification generally leads to a rather slow conver-
gence and poor misadjustment. By contrast, the former methods
approximate the gradient by its sample estimate from a block
of channel output samples, repeatedly using the received data
block at each iteration. This more precise gradient estimate im-
proves convergence speed and accuracy [22], [29]. In addition,
tracking capabilities are not necessarily sacrificed since good
performance can be obtained from quite small block sizes; it suf-
fices that the channel be stationary over the (short) observation
window. Block methods are particularly suited to burst-mode
transmission systems.

It is well known that gradient-based optimization algorithms,
though simple, are plagued with a number of drawbacks, such
as convergence to local extrema, lack of robustness to initializa-
tion, and slow convergence [6], [7], [16]. These problems persist
in block implementations, although convergence is often faster.
When the function to be optimized is quadratic in the unknowns,
more elaborate approaches, such as conjugate-direction algo-
rithms, alleviate these shortcomings [30]. However, the fact that
function (2) is not quadratic leads us to seek alternative opti-
mization strategies.

B. Closed-Form Steepest Descent

Steepest descent (or exact line search) methods look for the
value of the step size that minimizes the cost function along the
search direction:

(19)

A sensible search direction is the gradient . These
algorithms are generally unattractive due to their complexity, for
the one-dimensional minimization must usually be performed
using costly numerical methods. Another drawback is the or-
thogonality of consecutive gradient vectors, which, depending
on the initialization and the shape of the cost-function surface,
may slow down convergence [30].

However, it is observed in [19], [25], and [31] that the CP
cost is a rational function in the step size , so that

can be found in closed form. This fact allows the global line
minimization of the cost function while reducing complexity. In
effect, can be found among the roots of the th-de-
gree polynomial , where

(20)

with , (see the
Appendix). The cost function can then be evaluated at the can-
didate roots in order to find the global minimum along direction

. Numerical conditioning is improved by normalizing vector
before evaluating (20) and updating the equalizer taps.

Although undesired equilibria (especially those lying near flat
areas) are not avoided in all cases, our experiments indicate that
this optimal step-size CPA (OS-CPA) converges much faster and

more accurately than the CPA with a constant adaptation coeffi-
cient. In addition, the frequency of misconvergence to nonequal-
izing solutions is remarkably diminished. These benefits will be
demonstrated in Section VII. An analogous optimal step-size al-
gorithm for the CM criterion (OS-CMA) is developed in [32].

VI. SEMI-BLIND EQUALIZATION

A. Semi-Blind CP-Based Criterion

The previous sections have developed CP-based equalization
algorithms in the fully blind case. However, practical communi-
cation systems typically feature pilot sequences to aid synchro-
nization and channel equalization. For example, the second-gen-
eration GSM wireless system uses 26 out of the 148 bits in its
data frame for training. Exploiting this available information
can notably improve equalization performance. In order to take
advantage of these benefits, the CP criterion can be easily mod-
ified to incorporate training symbols, resulting in a semi-blind
equalization method. The minimization of the following hybrid
cost function constitutes a semi-blind CP-MMSE criterion:

(21)

where is the pilot-based MMSE
cost function, denote the available training symbols, and
represents the equalization delay. Parameter is a real constant
in the interval [0, 1], which can be considered as the relative
degree of confidence between the blind- and the training-based
parts of the criterion. By looking at expression (2), it turns out
that can be derived from by setting and
substituting for . This equivalence will be useful in sim-
plifying some of the following mathematical derivations. As in
the blind scenario, closed-form and iterative solutions for this
semi-blind CP-based criterion exist and are developed next.

B. Semi-Blind Closed-Form Solutions

Assume training symbols are transmitted and are known
to the receiver. We are looking for the simultaneous solution of
the compound system

(22)

(23)

subject to , with ,
, , and
.

First, let us consider the case of a possibly noisy AR-channel
with a sufficiently long equalizer. An approximate suboptimal
solution can be found by combining the solutions computed sep-
arately for both systems. Let be the solution to (22), and

the same delay solution to (23), computed as in Section IV.
Unfold into an matrix , as de-
scribed at the end of Section IV-B. Then, the joint solution to
(22) and (23) can be approximated as the most significant left
singular vector of matrix . In the
noiseless case, solutions and are exact, identical,
and equal to the dominant left singular vector of rank-1 matrix

; an iterative search is not necessary.
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In the case of an FIR channel, no exact solution to (22) and
(23) exists, even in the absence of noise. Still, the systems can
be solved separately in the LS sense, and their respective so-
lutions combined by the SVD-based procedure just described.
The combined solution can initialize an iterative search aiming
to refine the approximate closed-form result.

C. Semi-Blind Iterative Solutions

As in the fully blind case, cost function (21) can be iteratively
minimized using a steepest-descent gradient-based algorithm in
which the optimal step size can be algebraically computed at
each iteration. The equalizer impulse response is updated as

(24)

where . Cri-
terion (18) still remains valid for checking convergence. Due
to the relationship between the CP and the MMSE cost func-
tions, gradient can readily be computed by setting

and substituting for in (16). By virtue of the
same relationship, the step size that minimizes function
along direction can be found among the roots of
the composite polynomial ,
where and are obtained as in (20) from the appro-
priate values of and . Note that for , the above iter-
ative procedure reduces to the algebraic optimal step-size ver-
sion of the well-known LMS algorithm for supervised MMSE
equalization.

VII. EXPERIMENTAL RESULTS

This section reports some computer simulations to evaluate
the performance of the CP-based methods elaborated in this
paper.

Blind ACPA solutions. The first experiment compares the per-
formance of the closed-form blind equalization methods of Sec-
tion IV. The methods compared are the unstructured direct LS
solution to (5) (“LS, no struct”); the structuring method of [24]
from the top nonoverlapping sections of the LS solution (“LS,
top”); idem, from the bottom sections (“LS, bottom”); the MRC
of the top and bottom parts as explained in Section IV-C (“LS,
top+bottom”); idem, from the whole basis of solutions (“basis,
top+bottom”); and the subspace method of Section IV-B (“basis,
subspace”). After estimating the symmetric Kronecker vector-
izations, the respective equalizer vectors are obtained through
the SVD-based rank-1 tensor approximation described at the
end of Section IV-B. The performance of the supervised MMSE
receiver is also computed as a reference. In the first simulation
setup, a QPSK signal excites a simple AR-1 channel

(25)

with pole at , well approximated by an order-50
FIR truncation. ISI is perfectly removed by the equalizer

, which presents a dominant leading tap. The
equalizer minimum length is , but an overestimated
length of is chosen, yielding possible ZF
solutions, which are just delayed versions of each other [as in
(6)]. Additive white complex circular Gaussian noise is present
at the channel output, with signal-to-noise ratio (SNR) given
by . Blocks of symbol periods are
observed, and performance parameters are averaged over

Fig. 1. Closed-form blind equalization based on the CP criterion for several
structuring methods. ChannelH (z), QPSK input (q = 4),N = 100 symbol
periods, 1000 MC runs.

independent Monte Carlo (MC) runs, with . Fig. 1
plots the symbol error rate (SER) obtained by the different
analytic methods as a function of the SNR. The performance
of direct LS solution makes apparent the need for structuring.
Using the bottom part of the LS solution exhibits similarly
poor results, with a rather low noise tolerance. By contrast, the
other methods present a superior performance, just 2 to 3 dB
above the MMSE bound. Interestingly, taking the top part of
the LS solution proves best for moderate SNR values in this
scenario. This superiority depends, however, on the equalizer
tap configuration, as demonstrated in the next example.

We repeat the above experiment, but moving the AR channel
pole to , and taking a stable causal implementation of the
channel transfer function

(26)

by shifting the truncated impulse response. The min-
imum-length equalizer now becomes , with
dominant trailing tap. Fig. 2 shows the closed-form blind
equalization results. The performance of the LS-top method
considerably degrades, being very similar to that of the
LS-bottom method in the previous experiment. The perfor-
mance of the subspace structuring method remains almost the
same as in the simulation of Fig. 1, thus showing its robustness
to the relative weights of the equalizer coefficients.

Fig. 3 evaluates the sample size requirements of the closed-
form solutions under the general conditions of the first experi-
ment and SNR dB. Satisfactory equalization from a basis
of the solution space is achieved even below the limit imposed
by (12) for this simulation example, . The subspace ap-
proach provides the most efficient results for short observation
windows.

CPA Solutions—Basins of Attraction. The next experiments
assess the CP-based iterative methods, both in blind (Section V)
and semi-blind (Section VI-C) operation. We observe a burst
of symbols with SNR dB at the output of
channel excited by a BPSK input. The contour lines (in
the equalizer parameter space) of the logarithm of the blind CP
criterion (2) calculated from the data are plotted in Fig. 4(a).
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Fig. 2. Closed-form blind equalization based on the CP criterion for several
structuring methods. ChannelH (z), QPSK input (q = 4),N = 100 symbol
periods, 1000 MC runs.

Fig. 3. Closed-form blind equalization based on the CP criterion for several
structuring methods. Channel H (z), QPSK input (q = 4), SNR = 15 dB, �
MC runs, with �N 10 .

The solid lines display the trajectories of the equalizer taps up-
dated with the CPA (17), from 16 different initial configura-
tions (marked with “ ”) and in termination cri-
terion (18); convergence points are marked with “ .” A step
size was chosen for fastest convergence without
compromising stability. The plot also represents the delay-zero
and delay-one MMSE solutions
and , which provide an output MSE of

8.66 and 4.98 dB, respectively. From most of the initial
points, the algorithm converges to the desired solutions, close
to the optimal-delay MMSE equalizer. However, the algorithm
gets sometimes stuck at suboptimal stable extrema located at

[0.01,0.58], near the suboptimal-delay MMSE equalizer. The
basins of attraction of these undesired equilibria are not negli-
gible and may have a significant negative impact on equalization
performance. The suboptimal convergence points of the CPA
correspond to the theoretical values obtained in [6, Sec. III.D]
for the CM criterion [0,0.65]. Indeed, as already pointed out

Fig. 4. Blind CP cost function contour lines (dashed) and CPA equalizer tap
trajectories (solid lines). (a) Constant step size. (b) Optimal step size. Channel
H (z), BPSK input (q = 2), N = 200 symbol periods, SNR = 10 dB.
“+”: initial point; “�”: final point; “�”: optimal-delay MMSE solution; “ ”:
suboptimal-delay MMSE solution.

TABLE I
AVERAGE NUMBER OF ITERATIONS FOR CONVERGENCE IN THE

EXPERIMENTS OF FIGS. 4 AND 5

in Section III-B, the CM and CP criteria coincide for and
real-valued source and filters. The CPA requires, on average,
about 500 iterations to converge (Table I).

Under identical conditions and the same observed data, the
tap trajectories for the OS-CPA (Section V-B) are obtained as in
Fig. 4(b). Not only are undesired solutions avoided, but conver-
gence is notably accelerated relative to the previous case: Just
over ten iterations suffice (Table I).

Using pilot symbols and a confidence parameter
, the contour lines of the semi-blind CP criterion (21)

follow the shape displayed in Fig. 5(a). The introduction of
training data alters the CP cost function by emphasizing the min-
imum near the MMSE solution while naturally vanishing the
previously acceptable equilibrium across the origin. The use of
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Fig. 5. Semi-blind CP cost function contour lines (dashed) and CPA equalizer
tap trajectories (solid line). (a) Constant step size,. (b) Optimal step size.
Channel H (z), BPSK input (q = 2), N = 200 symbol periods, N = 10
pilot symbols, SNR = 10 dB, � = 0:5. “+”: initial point; “�”: final point;
“�”: optimum-delay MMSE solution.

the optimal step size (Section VI-C) still leads to good equaliza-
tion solutions [see Fig. 5(b)] and, again, remarkably speeds up
convergence (Table I).

Nonminimum Phase Channel. We now evaluate performance
on the nonminimum phase channel of [8], which is given by

(27)

This order-6 FIR channel can be well equalized with a length-3
FIR filter , but we choose . From a data block
of symbols and using several structuring procedures,
the blind closed-form CP methods display the SER performance
shown in the dashed lines of Fig. 6. The closed-form solutions
are then used to initialize the OS-CPA described in Section V-B,
yielding the solid curves in Fig. 6. The gradient iterations refine
the analytical estimates, approaching the MMSE bound.

The performance of the semi-blind CP methods is summa-
rized in Fig. 7 for the same simulation setting with

Fig. 6. Blind CP equalization. The OS-CPA is initialized with the
corresponding ACPA solution. Channel H (z), QPSK input (q = 4),
N = 100 symbol periods, 200 MC runs.

Fig. 7. Semi-blind CP equalization in the simulation of Fig. 6 with N = 10
pilot symbols and � = 0:5. The OS-CPA is initialized with the corresponding
ACPA solution.

pilot symbols and . Analytical estimates are first
obtained by combining the blind and pilot-based solutions
as in Section VI-B (dashed lines) and then used to initialize
the semi-blind OS-CPA of Section VI-C (solid lines). De-
pending on the window length employed to calculate the
MMSE solution, two MMSE curves are obtained as a reference
(dash-dotted lines): using just the pilot sequence, as would
occur in a conventional receiver, and using the whole data block
(MMSE bound). The benefits of the semi-blind approach are
noteworthy. First, the performance of the analytic solutions is
considerably enhanced compared with blind operation. Second,
the semi-blind OS-CPA shows identical performance irrespec-
tive of initialization, following quite closely the MMSE bound.
The exploitation of “blind symbols” in addition to the training
period improves the conventional receiver, and nearly reaches
the MMSE bound while considerably increasing the effective
data throughput. In addition, the convergence rate is improved
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Fig. 8. Average number of iterations for the three initializations of the OS-CPA
in the experiments of Figs. 6 and 7.

Fig. 9. Impact of the training window length on the performance of the
semi-blind CP methods. Channel H (z), QPSK input (q = 4), N = 100
symbol periods, SNR = 10 dB, � = 0:5, 500 MC runs.

relative to the fully-blind case, particularly at low SNR, as
depicted in Fig. 8.

Influence of Pilot-Sequence Length. Next, we evaluate the CP
criterion performance as a function of the proportion of data
block symbols used for training. In the previous scenario

, two blind ACPA methods are combined with the MMSE
solution to generate respective closed-form estimates: the di-
rect LS solution (without structuring) and the subspace-based
structuring procedure from a basis of solutions. The OS-CPA
is initialized with the center-tap filter and the analytical sub-
space-based estimate. Results are displayed in Figs. 9 and 10.
The MMSE term does not seem to offset the performance degra-
dation of the subspace-based structuring as less data are con-
sidered in the blind part of the criterion [cf. (12)]. As a result,
the semi-blind method is gradually diverted from a satisfactory
equalization solution, reverting to the MMSE bound when all
symbols are used for training. Similarly, a peak in SER and con-
vergence time is shown by the iterative methods at around 90%

Fig. 10. Average number of iterations for the two initializations of the OS-CPA
in the experiment of Fig. 9.

Fig. 11. Impact of confidence parameter � on the performance of the
semi-blind CP methods. Channel H (z), QPSK input (q = 4), N = 100
symbol periods, N = 10 pilot symbols, SNR = 10 dB, 500 MC runs.

of training, as if the few symbols in the blind part of the crite-
rion hindered the convergence to the MMSE solution imposed
by the pilot symbols. Nevertheless, both performance indices
naturally drop to the MMSE limit when the whole observed
block is employed for training. The performance and conver-
gence speed of the semi-blind OS-CPA seem independent of
initialization, although the subspace approach slightly improves
the center-tap initial filter for short training sequences. Note that
the performance of a given conventional receiver with up to
30% of pilot symbols can be attained by operating in semi-blind
mode with a shorter training preamble and, hence, a higher spec-
tral efficiency.

Influence of Parameter . The performance of the semi-blind
CP methods as a function of confidence parameter is illus-
trated in Figs. 11 and 12, obtained in the above scenario with

pilot symbols. Equalization results gradually improve
as more weight is laid on the known data. Performance then
suffers as the blind part of the criterion is neglected and equal-
ization relies on just a few pilot symbols; thus, we observe an
increase in SER up to the conventional MMSE receiver level
as approaches one. Accordingly, this severe increase is not
observed in larger training windows. Over a wide range of
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Fig. 12. Average number of iterations for the two initializations of the OS-CPA
in the experiment of Fig. 11.

Fig. 13. Semi-blind equalization with the CP and CM criteria. The analytic
solutions are obtained using the top structuring method. ChannelH (z), QPSK
input (q = 4), QPSK co-channel interferer, N = 200 symbol periods, N =
20 pilot symbols, 100 MC runs.

(roughly in the interval [0.3,0.9]), the influence of initializa-
tion on the performance and convergence speed of the semi-
blind OS-CPA seems unimportant, and for practically any

, the semi-blind iterative methods improve the conven-
tional equalizer. Fig. 12 also shows that a value of the confi-
dence parameter exists , for which the cost-function
surface is best adapted to the operation of the optimal step-size
gradient-descent algorithm; therefore, convergence is achieved
in the lowest number of iterations. This optimal value of will
generally depend on the specific system conditions, sample size,
and SNR.

Comparison with CM Criterion. A final experiment makes an
brief illustrative comparison between the CP and CM criteria
in semi-blind operation (10% training). A co-channel interferer
with the same modulation as the desired signal (QPSK) and a
given signal-to-interference ratio (SIR) is added at the output
of channel . The respective top-structuring analytic so-
lutions are first obtained and then used as initial points for the
optimal-step size iterations. Figs. 13 and 14 show that although

Fig. 14. Average number of iterations in the experiment of Fig. 13.

the ACPA solution is poorer than ACMAs in this particular sce-
nario, the OS-CPA improves its CM counterpart with half the
number of iterations.

VIII. SUMMARY AND CONCLUSIONS

The present work has focused on the CP criterion for blind
linear equalization of digital communication channels excited
by PSK signals. When exact FIR ZF solutions exist (as in all-
pole SISO channels), the global minima can be reached in closed
form. These noniterative solutions are unaffected by the exis-
tence of nonequalizing local extrema in the cost-function sur-
face. Through an appropriate transformation, the nonlinear cri-
terion can be linearized; then, the structure of the solution must
be restored. The algebraic treatment is similar to ACMA’s, but
the analytic solutions to the CP criterion (ACPA) do not need to
be specialized to handle binary modulations. Obtaining a basis
of the solution space allows the design of more refined struc-
ture-forcing methods to recover the minimum-length equalizer
from the solutions to the linearized problem. In simulations, the
proposed subspace-based approach has effectively proven to be
more robust than simpler structuring methods. Algebraically,
the subspace method solves a particular instance of the rank-1
tensor combination problem. In simulations, the blind analytic
solutions show a restricted tolerance to noise, especially for long
equalizers. The key issue limiting performance is probably the
SVD-based rank-1 tensor approximation procedure described
in Sections IV-B and VI-B for extracting the equalizer vector
from the estimated symmetric tensor. The use of more elaborate
rank-1 tensor approximation methods (such as those of [26] and
references therein) should relieve this limitation.

When the algebraic solution is only an approximation (e.g.,
when no exact FIR ZF equalizer exists) or when it is too costly
to compute, iterative techniques are necessary to seek the global
minima of the criterion; an iterative method can also be used to
refine a good algebraic guess. An exact line search gradient-de-
scent block algorithm has been proposed in which the optimal
step size is computed algebraically at each iteration. This algo-
rithm (OS-CPA) shows a very fast convergence and is able to
avoid local extrema.

The CP criterion is easily modified to include training infor-
mation. Indeed, the conventional supervised MMSE principle
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can be seen as a special case of CP equalization. With just a few
pilot symbols, the analytic solutions’ noise tolerance is amelio-
rated. The semi-blind OS-CPA performs near the MMSE bound
at a fraction of the bandwidth cost and is very robust to the equal-
izer-filter initialization.

In short, the CP criterion has been endowed with a number of
strategies aiming to reduce the impact of local minima and slow
convergence in iterative blind equalizers:

1) judicious initialization with analytical solutions;
2) block iterative operation;
3) global line minimization with algebraically-computed op-

timal step size;
4) incorporation of training data.

These strategies are not exclusive to the CP principle but can
also benefit other equalization criteria.

Further lines of inquiry could include the theoretical study
of suboptimal extrema in the CP criterion; the robust automatic
detection of the number of ZF solutions and extraction of the
optimum-delay equalizer [33]; the optimal choice of pilot-con-
fidence parameter (e.g., based on an asymptotic analysis of
variance); the evaluation and mitigation of the carrier residual
effects on CP equalizers [25], [31]; and a thorough theoretical
and experimental comparison of the CP principle with other
equalization schemes, such as the CM criterion.

APPENDIX

PROOFS OF SECTION IV-A

•
can be expressed as the sum of all terms of

tensor or, equivalently, of vector . This
sum is the same as .

• Problem (5) is equivalent to problem (4).
We need to prove that the set of solutions of the

form is linearly independent if and only if (iff) the
set is linearly independent. This can be done along the
lines of [9, Proof of Lemma 3] by considering the matrix un-
folding of , which is de-
fined as . This
matrix can be expressed as the rank-1 product , with

. Now,
vectors are linearly independent iff
implies , for all . That linear combination
vanishes iff is the null tensor or, equivalently,

the zero matrix. Due to the structure of matrices
, this latter condition necessarily implies that be zero

iff rank , i.e., form a linearly independent
set.

• Problem (8) is equivalent to problem (9) with scale con-
straint (10) and (11).

We only need to show that and expres-
sions (10) and (11) are equivalent. Vector is given by the
product of the first row of , say , and matrix . Since

, it follows that the rest of the rows of
are orthogonal to vector . In addition, is unitary, so that

must be parallel to ; specifically, . Then,
. The scale constraint

becomes , which reduces to
when .

• If dim ker and
dim ker .

Since dim ker rank and rank
, it follows that dim ker . Hence, a neces-

sary condition for dim ker is that or, in
terms of the observed sample size, . The so-
lutions to (5) can be written as , where

is the minimum-norm solution, and is a basis
of ker . It is simple to check that ker , so
that form a linearly independent set. Since

, we have that iff and
. Thus, ker and dim ker

. Since is a solution to (5) and (8), in particular,
. This adds another linearly independent vector

to the null space of so that dim ker . To prove that
the basis of ker is complete, assume that another linearly in-
dependent ker exists. It follows that
and , for certain constant . If ,
ker . If , vector is a solution to (5). In
both cases, lies in the span of the basis of ker previ-
ously found, which contradicts the assumption and proves that
dim ker .

PROOF OF SECTION V-B

• Optimal step-size polynomial.
, with ,

where . This latter polynomial in
can be expanded as , where

. Since

, the first-order necessary condi-
tion reduces to finding the zeros of .
It remains to prove that such a polynomial accepts the ex-
pansion of (20). Now,

, with and .
As , the coefficients of the

th-degree polynomial are given by the con-
volution , which
produces

(28)

Similarly, the coefficients of the th-degree polynomial
are simply . The
combination of these two sets of coefficients and the expectation
operator leads to expansion (20).
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