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A Contrast for Independent Component Analysis
with Priors on the Source Kurtosis Signs
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Abstract—A contrast function for Independent Component
Analysis (ICA) is presented incorporating the prior knowledge
on the sub-Gaussian or super-Gaussian character of the sources
as described by their kurtosis signs. The contrast is related
to the maximum likelihood principle, reduces the permutation
indeterminacy typical of ICA, and proves particularly useful in
the direct extraction of a source signal with distinct kurtosis
sign. In addition, its numerical maximization can be performed
cost-effectively by a Jacobi-like pairwise iteration. Extensions to
standardized cumulants of orders other than four are also given.

Index Terms—Blind Source Separation, contrast functions,
higher-order statistics, Independent Component Analysis,
kurtosis, performance analysis, standardized cumulants.

EDICS: SAS-ICAB (Independent Component Analysis and
Blind Source Separation).

I. I NTRODUCTION

I NDEPENDENT Component Analysis (ICA) aims at max-
imizing the statistical independence between the entries of

multivariate data. ICA is the fundamental technique for Blind
Source Separation (BSS) in linear mixtures when the sources
are assumed mutually independent [1]. The plausibility of
the assumption in a wide variety of applications has rapidly
made of ICA a reference tool in biomedical engineering,
communications and image processing, among many other
domains [2], [3], [4].

In the real-valued case, ICA assumes the following linear
model for the observed data vectorx ∈ IRm:

x = Hs (1)

where s ∈ IRn contains the independent components or
sources andH ∈ IRm×n represents the mixing matrix, with
m ≥ n. The sources are recovered by maximizing a so-
called contrast function measuring the statistical independence
between the separator output components [1]. Seminal con-
trasts such as ‘COM1’ and ‘COM2’ originated from cumulant-
based approximations (usually at order four) of information-
theoretical principles such as maximum likelihood (ML), mu-
tual information and marginal entropy [1], [5]. The hypothesis
that the kurtosis (normalized fourth-order marginal cumulant)
of all the sources has the same sign allows the definition of

V. Zarzoso and P. Comon are with the Laboratoire I3S, University of Nice -
Sophia Antipolis, CNRS, 2000 route des Lucioles, BP 121, 06903 Sophia
Antipolis Cedex, France. e-mail:{zarzoso, pcomon }@i3s.unice.fr .

R. Phlypo is with the Department of Electrical and Information Systems
(ELIS), Ghent University, Institute for Broadband Technology (IBBT), IB-
iTech Block Heymans, De Pintelaan 185, B-9000 Ghent, Belgium. e-mail:
ronald.phlypo@ugent.be .

Manuscript submitted Sep. 25, 2007; revised Dec. 13, 2007.

computationally simpler contrasts [5], [6], but is unable to
reduce the ambiguity in the ordering of the recovered sources,
or permutation indeterminacy, typical in BSS.

The power of the blind approach lies in its robustness to
modelling errors, a feature achieved by making as few as-
sumptions about the problem as possible. However, additional
information is often available in practice such as the non-
Gaussian character of the sources: that of a digital modulation
signal depends on the relative probability of its symbols; the
atrial activity signal of an atrial fibrillation electrocardiogram
is usually sub-Gaussian or quasi-Gaussian; etc. Separation
performance can be considerably improved by capitalizing on
this information.

The present contribution puts forward a contrast function
that takes into account the prior knowledge about the non-
Gaussian character of the sources. The new contrast has
optimality properties in the ML sense, is efficiently maximized
by Jacobi-like iterations, and alleviates (indeed may totally re-
solve) the permutation indeterminacy left by blind processing.
This latter feature, illustrated in Sec. IV through simulations,
has been successfully put into practice, without mathematical
proof, on real signals issued from electrocardiography [7], [8].

II. A C ONTRAST BASED ON SOURCEKURTOSISSIGNS

Let us first recall the concept of contrast function. The
standardization or whitening (second-order processing) of
observation (1) yields another vectorz = Qs, where Q
is a unitary matrix. The sources can then be recovered by
applying a unitary transform̂Q, resulting in the separator
outputy = Q̂Tz = Gs, whereG = Q̂TQ. A function Ψ(y)
of the separator-output distribution is an orthogonal contrast
for ICA if Ψ(s) ≥ Ψ(Gs), for any orthogonal matrixG
(domination), with equality if and only ifG is a trivial filter

G = PD (2)

where P is a permutation andD a non-singular diagonal
matrix (discrimination). Consequently, contrast maximization
restores the independent sources at the separator output up to
a possible permutation and scaling.

Let κi denote theith-source kurtosis andεi its sign,εi =
sign(κi), 1 ≤ i ≤ n. We assume in the sequel thatp sources
have positive kurtosis,εi = 1, 1 ≤ i ≤ p, and(n− p) sources
have negative kurtosis,εi = −1, p < i ≤ n. Symbol µi

represents the kurtosis of the separator’sith output. Proofs
for the mathematical results that follow can be found in the
Appendix.



SPL-04728-2007.R1 2

Proposition 1: Criterion

Ψp(y) =
n∑

i=1

εiµi (3)

is a contrast function under the above assumptions.

Remark:The maximum likelihood recovery of the source
signals under the whitening constraint is achieved by maxi-
mizing the function:

ΨML(y) =
n∑

i=1

κiµi. (4)

This contrast is obtained from an approximation of the
Kullback-Leibler divergence based on the Edgeworth expan-
sion of the separator-output probability density function (pdf)
truncated at fourth order [6]. If only the source kurtosis signs
are known, contrast (4) naturally reduces to (3). Hence, the
latter is expected to inherit the optimality features of the
approximate ML estimate while reducing the prior information
required. The reduced amount of information helps to keep
the desirable features of a blind formulation and is capable
of partially solving the permutation ambiguity, as shown by
Proposition 2 below.

Remark: Reference [9] addresses the so-called one-bit
matching conjecture, whereby the sources can be separated if
there exists a one-to-one correspondence between the kurtosis
signs of the sources and those resulting from the truncated
Gram-Charlier expansion of their pdf’s. A function obtained
in [9] bears certain resemblance to contrast (3) but the proof of
the conjecture is cumbersome and valid only when the source
skewness (standardized third-order cumulant) is null. We prove
in the Appendix that function (3) is a contrast for all orders
r ≥ 3, of which Proposition 1 is just a particular case for
r = 4.

Proposition 2: Trivial filters associated with contrast (3) are
of the form (2), where

P =
(

P1 0
0 P2

)
. (5)

P1 andP2 being permutation matrices of sizep×p and(n−
p)×(n−p), respectively, andD made up of unit-norm diagonal
entries.

Remark:Sources with positive kurtosis are extracted sep-
arately from sources with negative kurtosis by contrast (3),
provided that parameterp is known. In particular, a source of
interest can be recovered without permutation ambiguity if its
kurtosis sign is different from all the others’. The Appendix
shows that contrast (3) enjoys this source ordering property
for standardized cumulants of even orderr ≥ 4.

III. C ONTRAST OPTIMIZATION

The Jacobi-like pairwise iteration technique originally pro-
posed in [1] can also be used to optimize contrast func-
tion (3). The function is maximized for each signal pair in
turn over several sweeps until convergence. Let us assume
that we are processing pairz12 = [z1, z2]T, the result being

readily adapted to other pairs by a simple change of indices.
The corresponding two-signal separator output is given by
y12 = Q̂Tz12, where Q̂ is a Givens rotation that can be
parameterized as

Q̂(θ) =
1√

1 + t2

(
1 −t
t 1

)
(6)

with t = tan θ. The associated pairwise contrast isΨ(y12) =
ε1µ1 + ε2µ2. By virtue of the multilinearity property of
cumulants, this function can easily be expressed in terms of
the unknownt and the 4th-order cumulants ofz12, denoted
as cij = Cumij(z1, z2), with (i + j) = 4 (using Kendall’s
notation). The stationary points ofΨ(y12) are then found to
be the solutions to the quartic equation:

a3t
4+2(a2−2a4)t3+3(a1−a3)t2+2(2a0−a2)t−a1 = 0 (7)

where a0 = (ε1c40 + ε2c04), a1 = 4(ε1c31 − ε2c13), a2 =
6(ε1 + ε2)c22, a3 = 4(ε1c13 − ε2c31), and a4 = (ε1c04 +
ε2c40). The above quartic can be solved by radicals (Ferrari’s
formula) at a cost that can be considered negligible compared
to the cumulant computation. The solutions can also be simply
expressed in terms of the extended ML (EML) estimator of
[10] if ε1 = ε2 or the alternative EML (AEML) estimator
of [11] if ε1 6= ε2. Typically, aboutO(

√
n) sweeps over all

signal pairs are required for convergence, as suggested in [1].
However, as a by-product of Proposition 2, the extraction of a
source of interest with distinct (e.g., positive) kurtosis sign can
be carried out by sweeping the contrast over pairsz1j only,
with ε1 = 1, εj = −1, for 2 ≤ j ≤ n. After convergence, the
desired source will appear at the first entry of the separator
output vector.

IV. N UMERICAL EXPERIMENTS

The contrast is tested on synthetic random unitary mixtures
of n = 10 binary signals composed of 1000 samples. Sources
kurtosis values of eitherκ = 2 (super-Gaussian) orκ = −2
(sub-Gaussian) are obtained by setting the probability of the
two states in the binary distribution accordingly [12]. The error

E =
1

2n (n− 1)

 n∑
i=1

 n∑
j=1

|Gij |
max

k
|Gik|

− 1


+

n∑
j=1

 n∑
i=1

|Gij |
max

k
|Gkj |

− 1

 (8)

is used as a separation performance criterion [13], [4]. The
error is always positive, and zero if and only if matrixG
is a trivial filter of the form (2). Error values are averaged
over 250 independent realizations of the sources and the
mixing matrix. Three contrasts are considered: ‘COM2’ [1]
(4 marker); ‘COM1+’ and ‘COM1−’, which correspond to
the contrast of [5] assuming that all sources have positive and
negative kurtosis, respectively (+ and× markers, resp.); and
function (3), which we refer to as ‘kurtosis sign priors (KSP)’
contrast (◦ marker). For each tested contrast, we carry out
5(1 + b

√
nc) sweeps over all signal pairs.
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Fig. 1. Source separation performance of ICA contrasts as a function of the
number of positive-kurtosis sourcesp. The KSP method employs the correct
value ofp.
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Fig. 2. Source separation performance of ICA contrasts as a function of the
estimated number of positive-kurtosis sourcesp̂. The correct value isp = 5.

Fig. 1 shows the performance variation as a function of
the numberp of sources with positive kurtosis, wherep is
assumed to be perfectly known a priori. As expected, COM1+
and COM1− fail to perform the separation except when all
sources have the same kurtosis sign. KSP outperforms the
other contrasts.

The robustness of contrast (3) to a mismatch in the prior
information is analyzed in Fig. 2, wherêp sources are assumed
to have positive kurtosis while, actually,p = 5. KSP’s
separation performance degrades as the available knowledge
becomes less accurate.

Finally, we setp = 1 and aim at the single source with
positive kurtosis through the extraction procedure described at
the end of Sec. III. Fig. 3 plots the average interference-to-
signal ratio (ISR) for the estimation of the first source, defined
as

ISR = 1− |G11|2∑n
j=1 |G1j |2

as a function of the sweep number. This result illustrates the
ability of the KSP contrast (3) to extract a source of known
kurtosis sign from a mixture where all other sources have the
opposite sign, without having to separate the whole mixture
and resolve the permutation ambiguity after separation.
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Fig. 3. Source extraction performance of the KSP contrast (3) for different
mixture sizes.

V. CONCLUSIONS

An orthogonal contrast for ICA has been proposed which
takes into account the non-Gaussian character of the source
signals as measured by the sign of their fourth-order marginal
cumulants (kurtosis). The contrast is linked to an approximate
ML principle, and is able to separate the independent sources
into two groups, depending on their kurtosis sign, thus partially
solving the permutation ambiguity usually associated with
ICA. The iterative pairwise maximization of the proposed
contrast can be carried out at low complexity by closed-form
solutions. As opposed to alternative fully blind techniques, the
new contrast is particularly suited to the direct extraction of
a source with known kurtosis sign distinct from the others’.
The principle extends to higher-order cumulants other than
kurtosis, as proved in the Appendix.

APPENDIX A

Proof of Proposition 1: The following proof generalizes
the result of Proposition 1 torth-order cumulants, withr ≥ 3.
Accordingly, in the sequelκi andµi denote the standardized
rth-order cumulant of sourcesi and outputyi, respectively,
whereasεi = sign(κi).

By the multilinearity property of cumulants, we haveµi =
n∑

j=1

Gr
ijκj , whereGij = [G]ij . Hence:

Ψp(y) =
n∑

i=1

εi

n∑
j=1

Gr
ijκj .

The triangular inequality yields

Ψp(y) ≤
n∑

i=1

n∑
j=1

|Gij |r|κj | ≤
n∑

i=1

n∑
j=1

|Gij |2|κj |

where the right-hand side term stems from the fact thatr ≥ 3
and the orthonormality of matrixG, which can be expressed
as

∑
i |Gij |2 = 1. Invoking again this property, we obtain

Ψp(y) ≤
n∑

j=1

|κj | =
n∑

j=1

εjκj = Ψp(s).
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This proves the domination. Now if the equalityΨp(y) =
Ψp(s) holds, we must have

n∑
i=1

n∑
j=1

[
|Gij |2 − |Gij |r

]
|κj | = 0.

Yet all the terms in the sums are positive and thus they must
all vanish. In other words,|Gij |2 − |Gij |r = 0,∀i, j, with
r ≥ 3, which can occur only if|Gij | ∈ {0, 1}. BecauseG
is orthonormal, it must then have only one nonzero element
in every row and column. Hence,G is of the form (2), with
Di = [D]ii = ±1. This proves the discrimination property.
FunctionΨp(y) is thus a contrast for ICA.

Proof of Proposition 2: This proof extends the validity
of Proposition 2 to any even orderr ≥ 4. As seen above,
equalityΨp(y) = Ψp(s) holds if and only if

n∑
i=1

εi

n∑
j=1

Gr
ijκj =

n∑
j=1

εjκj .

BecauseDj = ±1 andP is a permutation, we have thatGr
ij =

Pij , with Pij = [P]ij , asr is even. Also,ε2
i = 1 andεjκj =

|κj |, so that

n∑
j=1

[
1−

n∑
i=1

εiPijεj

]
|κj | = 0 .

Yet, since all the terms in the sum are positive, they must
individually vanish, yielding the relation

n∑
i=1

εiPijεj = 1, ∀j.

Now, by splitting the sum into two parts, we are able to replace
εi by its value, yielding

∑p
i=1 Pijεj−

∑n
i=p+1 Pijεj = 1. Let

us distinguish between the casesj ≤ p and j > p, and take
into account the fact that, for any permutation,

∑n
i=1 Pij = 1.

Then: {
1− 2

∑n
i=p+1 Pij = 1 ∀j ≤ p

1− 2
∑p

i=1 Pij = 1 ∀j > p .

The first equality yields, for anyj ≤ p,
∑n

i=p+1 Pij = 0. That
is, by positivity, Pij = 0. Thus, the(n − p) × p bottom left
block of P is null. Analogously, we see that for anyj > p,∑p

i=1 Pij = 0, and thus thep× (n− p) top right block ofP
must also be null. Consequently, the permutation matrix takes
indeed the form (5).
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