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Abstract— Under-determined mixtures are characterized

by the fact that they have more inputs than outputs, or, with

the antenna array processing terminology, more sources

than sensors. The problem addressed is that of identifying

and inverting the mixture, which obviously does not admit

a linear inverse. Identification is carried out with the help

of tensor canonical decompositions. On the other hand, the

discrete distribution of the sources is utilized for performing

the source extraction, the under-determined mixture being

either known or unknown. The results presented in this

paper are limited to 2-dimensional mixtures of 3 sources.
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I. Introduction

It is assumed throughout the paper that N realizations
y(n) of a K−dimensional random vector, y, are observed,
and that they follow the linear statistical static model be-
low:

y(n) = Ax(n) + v(n), (1)

where x(n) are realizations of a so-called source vector, of
dimension P , A is a K ×P unknown matrix, and v(n) is a
noise, assumed to be independent of x(n). Throughout the
paper, bold lowercases will denote vectors (1−way arrays),
whereas bold uppercases will represent matrices or tensors
(entries Aij of an array A are not boldfaced, since they
are scalar quantities). Mixtures in which the diversity K
is smaller than the number of sources, P , are referred to
as under-determined. We are mainly interested in such
mixtures in this paper.

In the Blind Source Separation (BSS) framework, the
goal consists of identifying the mixture A, or estimating
the sources xi(n), or both, form the sole observation of
realizations y(n). Note that under-determined mixtures
cannot be linearly inverted, because the rank of the mixing
matrix A is bounded by K, which makes it more difficult
to extract the sources, even if the mixture were known, and
hence the challenge. As pointed out in many of the works
subsequently quoted, this problem is ill-posed, and needs
further assumptions. We shall consider the most commonly
encountered assumptions on sources, namely:

A1. Sources xi are non Gaussian and statistically mutu-
ally independent
A2. Sources xi are discrete, and take their values in a
known finite alphabet.
With the help of one of these two assumptions (both are
not necessary), the BSS problem can be solved only up to
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inherent indeterminations. It is now well known that these
indeterminations can be expressed in terms of a diagonal in-
vertible matrix, Λ, and a permutation P , so that solutions
ΛPx are as acceptable as x. In other words, one searches
for a representative of this equivalence class of solutions [1]
[2]. Because of its quite general formulation and its weak
assumptions, the BSS problem finds various applications in
numerous areas including Factor and Data Analysis, Digi-
tal Communications, Sonar, Radar, Compression, Speech,
Image processing, Econometrics, Biomedical engineering...
See [3] [4] [5] and references therein.

If the diversity is sufficiently large, that is, if K ≥ P
(over-determined mixtures), many general-purpose algo-
rithms have been proposed, both for static and dynamic
mixtures, see [2] [6] [3] [7] [8] [9] [10] [5] and references
therein. These algorithms require that at most one source
is Gaussian, and the possible discrete character of the
sources is not explicitly exploited. Fewer algorithms ded-
icated to discrete sources are available in the literature
[11] [12] [13] [14], some of them addressing the case of dy-
namic mixtures, namely [15] for SISO channels and [16] for
MIMO, among others.

When the diversity is small, then K < P (under-
determined mixtures), the problem of extracting the
sources is not trivial, even when the mixture is known.
This problem has been little addressed despite its practical
interest. The area where this problem is most known is
that of factor analysis [17] [18] [19] [20] [21] [22]. In the
terminology of factor analysis , the under-determined case
ω > K is translated into “more factors than subjects” [18]
[19]. Works done on Parallel Factor Analysis (Parafac)
of unsymmetric tensors are valid under sufficient condi-
tions on the dimensions [19] [22]. For instance, if we trans-
late the conditions to the symmetric case, we must have
2P + 2 ≤ 3K, which is not satisfied if (K, P ) = (2, 3).
These approaches will thus not be considered subsequently.

Identification of static under-determined mixtures also
finds applications in downlink mobile communications (in
the presence of flat fading or far apart multi-paths), and
feature extraction of images, among others. The earli-
est work in the signal processing area is probably the
nice identifiability paper by Cao and Liu [1], in which
no constructive algorithm was proposed. Links between
blind identification of the mixture and tensor diagonal-
ization [23] [24] [21], or linear operators acting on ma-
trix spaces [25] [21], have been established. In [25], a
constructive algorithm is described, but it requires that
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2P (P −1) ≤ K2(K −1)2; again, this sufficient condition is
not satisfied for (K, P ) = (2, 3).

Surveys on tensor decompositions can be found in [26]
[22] [4] [27]; as will be pointed out later on, decomposi-
tions of polynomials [28] [29] can be related to those of ten-
sors. Sometimes, one finds this problem in the literature
under the name of over-complete mixtures [30] [5], espe-
cially in the community of neuro-computing. Lastly, under-
determined dynamic mixtures have been little addressed
[31], and no constructive algorithm has been demonstrated
to be able to blindly identify the channel.

The links with tensors can be emphasized if cumulants
of given order are utilized. But the problem can also be
formulated with the help of characteristic functions, which
carries all the information. This formulation is more pow-
erful (it allows for instance to address non linear mixtures)
but becomes more difficult to handle [32] [8] [2] [33] [34].

Lastly, it is well known that it is theoretically possible
to identify a generic mixture of an arbitrarily large num-
ber of discrete sources in the absence of noise, regardless
of the number of sensors, if sources have a known alpha-
bet. This comes from the fact that the linear combination
of 3 independent binary sources has generically a distri-
bution concentrated on 6 masses. The construction is de-
terministic and geometrical. Asymptotic performances of
BSS based on this geometrical idea have been analyzed in
[35]. In practice, the technique is limited by the observation
length, and requires clustering. Practical algorithms have
been proposed to extract binary sources in [36] [37], but are
very time consuming. In section V, the algorithm extracts
binary sources with a very light numerical complexity.

In this paper, it is attempted to solve the identifica-
tion and extraction problems by keeping the computational
load as small as possible. Our contribution is three-fold.
In section III, the problem of identifying the mixing ma-
trix is addressed, in the case of 2 sensors and 3 sources,
and the only assumption made on sources is that their
marginal fourth-order cumulants are non-zero whereas the
cross fourth-order cumulants are null. In section IV, an ex-
traction algorithm is proposed for discrete sources (essen-
tially BPSK or MSK), and when the 2×3 mixing matrix is
known (this algorithm could then be applied after an iden-
tification stage, performed with the help of the identifica-
tion procedure described in section III for instance). Third,
another algorithm is described in section V, and performs
directly a blind extraction of discrete sources without prior
identification of the mixture. In each section, computer
simulations are reported.

II. Mathematical tools

A. Tensors and Quantics

A.1 Array terminology

The order of an array refers to the number of its ways.
The entries of an array of order d are accessed via d in-
dices, say i1..id, every index ia ranging from 1 to Ka; the
integer Ka is one of the d dimensions of the array. For

instance, a matrix is a 2-way array (order 2), and has thus
2 dimensions.

Given two arrays, A = {Aij..`} and B = {Bi′j′..`′} of
orders dA and dB respectively, the outer product A ◦ B

yields an array of order dA + dB and is simply defined as:

(A ◦ B)ij..` i′j′..`′ = Aij..` Bi′j′..`′

For example, rank-one matrices are of the form u◦v. In the
remaining, (T) will stand for transposition, (∗) for complex
conjugation, and (H) for transposition and conjugation (i.e.
Hermitian transposition).

In the present framework, arrays of order higher than
2 will be called tensors if they enjoy the multilinearity
property under changes of coordinate systems. More pre-
cisely, consider a 3rd order tensor T with entries Tijk, and
a change of coordinates defined by 3 square invertible ma-
trices, A, B and C. Then, in the new coordinate system,
the tensor T ′ can be written as a function of tensor T as:

T ′
ijk =

∑

abc

AiaBjbCkcTabc (2)

In particular, moments and cumulants of random variables
may be treated as tensors [38]. This product is sometimes
referred to as the Tucker product [27] between matrices A,
B, and C, weighted by T . Note that tensors enjoy prop-
erty (2) even if the above matrices are not invertible; only
linearity is required. Tensors are referred to as symmetric

if, for any permutation σ, T σ(ij..`) = T ij..`.

A.2 Canonical Decomposition

Assume we are given a d−way array, {Gi j..`}. This ar-
ray is decomposable [19] if it is equal to the outer product
of d vectors: G = u ◦ v ◦ · · · ◦ w. A general array is a su-
perposition of decomposable arrays, and a common prob-
lem in data analysis is precisely to determine those con-
stituting factors [19] [20]. In order to focus our attention,
let us concentrate on the fourth order case, and consider
the array {Gijk`}. The problem consists of finding a fam-
ily of vector quadruples, (t(p), u(p), v(p), w(p)), such that
G =

∑ω
p=1 t(p) ◦ u(p) ◦ v(p) ◦ w(p). Clearly, three of the

four factors can be determined only up to a constant mul-
tiplicative scalar number. It is thus legitimate to assume
that these vectors have unit norm, without restricting the
generality, so that the model to identify is eventually:

G =

ω
∑

p=1

γ(p) t(p) ◦ u(p) ◦ v(p) ◦ w(p) (3)

where γ(p) are unknown scalars, 1 ≤ p ≤ ω. We shall refer
to this equation as the Canonical Decomposition (CAND)
of G when it is obtained for the smallest possible ω. Note
that this problem deflates to the standard factor analysis in
the case of 2-way arrays [39]. In the latter case, it now well
known that the minimal value of ω allowing such a canon-
ical decomposition equals the rank of the matrix, and that
the factors can be obtained by Singular Value Decompo-
sition (SVD). However, the uniqueness is obtained to the
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price of imposing the additional constraint of orthogonality
among each of the 2 families of ω vectors. This constraint is
not mandatory at higher orders [24] [4] [21], and this is pre-
cisely what makes orders higher than 2 attractive. In fact,
orthogonality between the CAND vectors may not be in ac-
cordance with the actual structure of the data. A striking
example is that where the number of factors exceeds the
smallest dimension: it is then impossible to orthogonalize
more vectors than their dimension.

A.3 Ranks

The array rank [19] is defined as the minimal value of
ω allowing to obtain the decomposition given in (3). Note
that other terminologies such as tensor rank [21] [4] or poly-

nomial width [28], or just rank, are also encountered. This
definition will be used in sections III-A and III-C. For con-
sistency, a decomposable array enjoying the multilinearity
property (2) will be referred to as a rank−1 tensor.

Other definitions have been proposed [19] [17] [26], and
are related to matrix ranks; let us mention them for com-
pleteness. In order to extract a matrix slab from a many-
way array (possibly not symmetric, but assumed square
here for the sake of simplicity), one can for instance define
mode−k vectors, 1 ≤ k ≤ d. These vectors are obtained by
letting index ik vary, 1 ≤ ik ≤ K, the other d − 1 indices
being fixed. The mode−k rank is defined as the rank of
the set of all possible mode−k vectors (there are Kd−1 of
them).

For symmetric tensors, mode−k ranks all coincide. For
matrices, the mode−1 rank is the column rank, and the
mode−2 rank is the row rank. Mode−k rank and tensor

rank are not related to each other in a simple way, and we
just know that the former is bounded above by the lat-
ter, by construction [26]. On the other hand, there exist
close links between the High-Order SVD introduced by De-
Lathauwer [21] [26] and mode−k ranks. These ranks will
not be used in this paper.

A.4 Link between tensors and quantics

As will be now explained, symmetric tensors of order d
and dimension K can be associated bijectively to homoge-
neous polynomials of degree d in K variables [24] [4], called
quantics in the early works on invariant theory [40] [41].
Based on this remark, decomposing a symmetric tensor is
equivalent to decomposing a homogeneous polynomial into
a sum of linear forms raised to the dth power.

As a consequence, the problem can then be connected
to early works [40] [42]. The first results go back to the
beginning of the century with the works of Sylvester (see
section II-B) and Wakeford [43]. One can also mention,
among others, the works of Rota [29] on binary quantics,
and those of Reznick on quantics of even degree, especially
in the complex case [44]. Reznick introduced the concept
of width, which corresponds to the rank in the case of ma-
trices, and to our tensor rank introduced in section II-A.3.

Denote i a vector of K integer indices, sometimes called
multi-index. If a is a vector of size K, then the following

conventions are assumed:

ai =

K
∏

k=1

aikk ; (i)! =

K
∏

k=1

ik! ; |i| =

K
∑

k=1

ik (4)

As pointed out by several authors [38] [45], symmetric
tensors can be indexed in two different manners, related to
each other by a bijective mapping, h. Let i be a multi-index
of dimension d whose entries vary in {1, 2, . . .K} and are
sorted in ascending order. The mapping j = h(i) is defined
as a K−dimensional multi-index containing the number of
times every value of {1, 2, . . .K} appears in i. For instance,
take d = 3 and K = 4; then h([1, 1, 4]) = [2, 0, 0, 1]. For the
sake of simplicity, denote µ = h−1; then conversely, if j is a
K−dimensional multi-index, whose entries satisfy |j| = d,
then one can associate a unique d−dimensional multi-index
i = µ(j), with entries sorted in ascending order.

Now, every symmetric tensor G of order d and dimension
K can be associated with a homogeneous polynomial p of
degree d in K variables as follows:

p(x1, · · ·xK) =
∑

i

Gi xh(i) (5)

In the above expressions, some terms appear several
times. For instance at order d = 4 and in dimension K = 2:

p(x1, x2) = G1111x
4
1 + 4 G1112x

3
1x2 + 6 G1122x

2
1x

2
2

+4 G1222x1x
3
2 + G2222x

4
2

whereas the total number of terms is Kd = 16. For this rea-
son, a compact notation needs to be introduced, as shown
in the above writing in the particular case (K, d) = (2, 4):

p(x1, · · ·xK) =
∑

|j|=d

c(j) Gµ(j) xj (6)

where c(j) denotes the multinomial coefficient:

c(j) =
|j|!

(j)!
(7)

For instance, in the binary case, c(4, 0) = 1, c(3, 1) = 4,
and c(2, 2) = 6; notice that in the binary case, the multi-
index j is necessarily of the form (j, d − j) so that one
can denote c(j) ≡ c(j), with some abuse of notation. In
addition, c(j) = (dj ) = d!

j! (d−j)! .

With this notation, any homogeneous polynomial of the
form (5) can be written compactly without redundancy:

p(x) =
∑

|j|=d

c(j)γ(j; p) xj (8)

where by definition γ(j; p) = Gµ(j). The above notation is
widely utilized for quantics, and enjoys some useful prop-
erties [24], one of them being the apolar scalar product, as
explained in the next section.
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A.5 Linear spaces and scalar products

The set of symmetric tensors of order d and dimension
K forms a linear space of dimension [24]:

D(K; d) =

(

K + d − 1
d

)

(9)

So the linear space of homogeneous polynomials is also of
dimension D(n; d), and one can choose as basis the set of
all monomials of degree d: B(n; d) = {xj , |j| = d}.

Now the last ingredient we need is a scalar product. Let
P and Q be two symmetric tensors of order d and dimen-
sion K. Then define the Froebenius scalar product:

〈P , Q〉 =
∑

i

Pi
∗ Qi

and the induced Euclidian norm.
Next, let p and q be two homogeneous polynomials of

degree d in K variables, p(x) =
∑

|i|=d c(i) γ(i; p) xi, and

q(x) =
∑

|i|=d c(i)γ(i; q)xi. Then define their scalar prod-
uct as:

〈p, q〉 =
∑

|i|=d

c(i) γ(i, p)∗ γ(i, q) (10)

This definition corresponds to the so-called apolar scalar
product [29], divided by d!. This choice may seem strange
and arbitrary, but it is justified by the property below.
Let L(x) = aTx be a linear form. Then, Ld(x) =
∑

|j|=d c(j)aj xj , and:

〈p, Ld〉 = p(a∗)∗ (11)

To see this, simply notice that, from (10), 〈p, Ld〉 =
∑

|j|=d c(j) γ(j, p)∗ aj . This fundamental property (11)
will very useful when deriving Sylvester’s theorem in sec-
tion II-B.

Lastly, note that with these definitions, the scalar prod-
uct between two quantics coincides with that of the asso-
ciated tensors.

B. Sylvester’s theorem

A binary quantic p(x, y) =
∑d

i=0 c(i) γi x
i yd−i can be

written as a sum of dth powers of r distinct linear forms:

p(x, y) =

r
∑

j=1

λj (αj x + βj y)d, (12)

if and only if (i) there exists a vector g of dimension r + 1,
with components g`, such that







γ0 γ1 · · · γr
...

...
γd−r · · · γd−1 γd






g∗ = 0. (13)

and (ii) the polynomial q(x, y)
def
=
∑r

`=0 g` x
` yr−` admits

r distinct roots [24] [46] [47].

Proof: Let’s prove the forward assertion, and assume
(12) is true. Then, define vector g via the coefficients of
the polynomial q(x, y) :

q(x, y)
def
=

r
∏

j=1

(βj
∗ x − αj

∗ y). (14)

For any monomial m(x, y) of degree d − r, we have
〈m q, p〉 =

∑r
j=1 λj 〈m q, (αjx + βjy)d〉, by hypothesis (12)

on p. Next, from property (11), we have 〈m q, p〉 =
∑r

j=1 λj mq(αj
∗, βj

∗)∗. Yet, by construction (14) of q, this
scalar product is null since there is (at least) one factor in
q vanishing at x = αj

∗ y = βj
∗, for every j, 1 ≤ j ≤ r.

This proves that 〈m q, p〉 = 0 for any monomial of degree
d − r. In particular, it is true for the d − r + 1 monomi-
als {mµ(x, y) = xµ yd−r−µ, 0 ≤ µ ≤ d − r}. And this is
precisely what the compact relation (13) is accounting for,
since it can be seen that 〈mµq, p〉 =

∑r
`=0 g` γ`+µ. Lastly,

the roots of q(x, y) are distinct because the linear forms
(αj x + βj y) are distinct. The reverse assertion, proved
along the same lines, is the basis of the numerical algo-
rithm developed in section III-A.

C. Cumulants

C.1 Definition

Let z be a random variable of dimension K, with compo-
nents zi. Then its moment and cumulant tensors of order
d are defined as [38]:

Mz
i1i2..id = E{zi1zi2 . . . zid}

Cz
i1i2..id

= Cum{zi1 , zi2 , . . . zid}

When the moment tensors of order less than or equal
to d exist and are finite, the cumulant tensor of order
d exists and is finite. Whereas moments are the coeffi-
cients of the expansion of the first characteristic function,
Φz(u) = E{exp(<{uHz})}, about the origin (the dotless
 denotes the square root of −1, and < the real part),
cumulants are those of the second characteristic function,
Ψz(u) = log(Φz(u)). Φz(u) is everywhere continuous, and
equals 1 at the origin; consequently, Ψz(u) always exists in
a neighborhood of the origin [45] [7]. Note that for complex
random variables, it suffices to consider the joint distribu-
tion of their real and imaginary parts [7]. It turns out that
moments and cumulants enjoy the multilinearity property
(2) and may be considered as tensors [38].

One important property of cumulant tensors is the fol-
lowing: if at least two variables, or groups of variables,
among {z1, ..zK} are statistically independent, then all cu-
mulants involving these variables are null. For instance, if
all the zi are mutually independent, then:

Cz
ij..` = δ(i, j, ..`) Cz

ii..i (15)

where the Kronecker δ equals 1 when all its arguments are
equal, and is null otherwise. This property is not enjoyed
by moments, hence the interest in cumulants. The con-
verse is not true, as we shall subsequently see on a nice
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simple example in section V: dependent random variables
can have (a finite number of) null cross-cumulants. See [45]
[48] [38] [7] for further properties of cumulants.

C.2 Input-Output relations

Random variables xi, with finite cumulants, are statis-
tically independent if all their cross-cumulants vanish [38].
Denote by G the fourth order cumulant tensor of y, and
by κ(p) that of xp. Then, we should have

Cum{xi, xj , xk, x`} = κ(i) δ(i, j, k, `).

Yet, cumulants satisfy the multilinearity property [38], so
that (1) implies, if noise is Gaussian:

Gijk` =

P
∑

p=1

κ(p) Aip Ajp Akp A`p (16)

Now denoting by a(p) the pth column of A, it is easily seen
that (16) can be written as a symmetric CAND:

G =

ω
∑

p=1

κ(p) a(p) ◦ a(p) ◦ a(p) ◦ a(p) (17)

The minimal number ω of factors coincides with the num-
ber of sources, P , if all of them have a non-zero marginal
cumulant [25] [21] [4]. This shows more explicitly that
(i) Independent Component Analysis (ICA) can be seen
as a symmetric version of CAND [46], and (ii) decompo-
sition (17) completely accounts for the underlying linear
model and independence at order 4 between sources, in the
presence of Gaussian noise.

In the remainder, we shall be interested mainly in this
symmetric decomposition, with d = 4, and with moderate
values of the dimension, K. In particular, in downlink
mobile communications, it is realistic to assume that the
receiver diversity will range between K = 2 and K = 4. In
fact current equipment offers only K = 1 antenna, but it is
reasonable to assume that K = 2 is available, by exploiting
either spatial, bandwidth (oversampling), or polarization
diversities. In (17), K−dimensional vectors a(p) account
for this diversity by the fact that they are not mutually
collinear; this condition is required to meet identifiability
[1].

III. Blind identification of the mixture

A. Algorithm with 2 sensors and 3 sources

A.1 Generic rank and uniqueness

Sylvester’s theorem is not only proving the existence of
the r forms, but also gives a means to compute them. In
fact, given the set of coefficients {γi}, it is always possible
to find the vector g from (13), and then deduce the forms
from the roots of the associated polynomial q(x, y). More
precisely, if r is unknown, one starts with a d−1×2 Hankel
matrix, and one assumes r = 1. If this matrix is full column
rank, one goes to r = 2 and test the rank of the d − 2 × 3
Hankel matrix, and so forth. At some point, the number

of columns exceeds the number of rows, and the algorithm
stops. In general, this is what happens, and the generic

rank r is obtained precisely at this stage, when 2r > d.
For odd values of d, we have thus a generic rank of r =

d+1
2 , whereas for even values of d, r = d

2 + 1, generically.
It is then clear that when d is even, there are at least two
vectors satisfying (13), because the Hankel matrix is of size
d
2 × (d2 + 2). To be more concrete, take as example d = 4.
The first Hankel matrix having more columns than rows is
of size 2 × 4, and obviously has generically 2 vectors in its
null space.

As a conclusion, when d is odd, there is generically a
unique vector g satisfying (13), but there are two of them
when d is even. In the latter case, any linear combination
of the two vectors yields a Canonical Decomposition; in
other words, the dimensionality of the variety of solutions
is 1 (as shown in entry (d, K) = (4, 2) of table II). In order
to fix this indeterminacy, the idea proposed is to use an-
other tensor, which should admit a related decomposition,
as explained in the next section.

A.2 Choice of two cumulant tensors

We have seen why it is necessary to resort to orders
higher than 2. Order 3 statistics have the great advantage
that the uniqueness problem is much easier to fix, as em-
phasized earlier in this paper, leading to simpler construc-
tive algorithms (this has been already seen in Sylvester’s
theorem, and will be emphasized in section III-C). Unfor-
tunately, they often yield ill-conditioned problems, in par-
ticular when sources are symmetrically distributed about
the origin. For these reasons, only 4th order statistics will
be considered, even if the decomposition problem is much
harder.

As in (1), denote y the random variable representing the
K−sensor observation. The data we are considering here
belong to the field of complex numbers. Thus there are 3
distinct 4th order cumulants that can be defined, namely:

Gijk` = Cum{yi, yj, yk, y`}; G̃ijk` = Cum{yi, yj , y
∗
k, y

∗
`};

˜̃Gijk` = Cum{yi, yj, yk, y
∗
`}

(18)
Again because of conditioning, the third cumulant tensor
is not of appropriate use. But the two others can be fully
exploited. In fact, assume that model (1) is satisfied. Then
we have, as in (16):

Gijk` =
∑r

m=1 κm AimAjmAkmA`m;

G̃ijk` =
∑r

m=1 κ̃m AimAjmA∗
kmA∗

`m,
(19)

where κm = Cum{xm, xm, xm, xm} and κ̃m =
Cum{xm, xm, x∗

m, x∗
m} are unknown complex and real num-

bers, respectively. These relations clearly show that the
two 4-way tensors G and G̃ admit canonical decompositions
that are related to each other, because the same matrix A
enters both of them. The idea is to compute the decompo-
sition of G, up to some indeterminacies, and then to use
the second tensor, G̃, to fix it. Of course, for real mixtures
and sources, the two tensors coincide, and the algorithm
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does not work. It does not work either if G is null, which
occurs for sources that are circular at order 4, like PSK-8
for instance.

A.3 Numerical algorithm

Given a finite set of samples {y(t), 0 ≤ t ≤ T },
1. Compute the two 4th order sample cumulant tensors as
follows, {1 ≤ i, j, k, ` ≤ 2}:

µij = 1
T

∑T
t=1 yi(t)yj(t)

µ̃ij = 1
T

∑T
t=1 yi(t)yj

∗(t)

µijk` = 1
T

∑T
t=1 yi(t)yj(t)yk(t)y`(t)

µ̃ijk` = 1
T

∑T
t=1 yi(t)yj(t)yk

∗(t)y`
∗(t)

Gijk` = µijk` − µijµk` − µikµj` − µi`µjk
G̃ijk` = µ̃ijk` − µijµ

∗
k` − µ̃ikµ̃j` − µ̃i`µ̃jk

Note that in practice, because of symmetries, only a small
part of these entries need to be computed ; these details
are omitted here for the sake of clarity.
2. Construct the 2×4 Hankel matrix as in (13), with γ0 =
G1111, γ1 = G1112, γ2 = G1122, γ3 = G1222, γ4 = G2222.
3. Compute two 4-dimensional vectors of its null space, v1

and v2.
4. Associate the 4-way array G̃ with a 4th degree real poly-
nomial in 4 real variables. This polynomial lives in a 35-
dimensional linear space, and can thus be expressed onto
the basis of the 35 canonical homogeneous monomials of
degree 4 in 4 variables. Denote g̃ the corresponding 35-
dimensional vector of coordinates.
5. For θ ∈ [0, π) and ϕ ∈ [0, 2π), do:
(a) Compute g(θ, ϕ) = v1 cos θ + v2 sin θ eϕ

(b) Compute the 3 linear forms L1(x|θ, ϕ), L2(x|θ, ϕ),
L3(x|θ, ϕ), associated with g(θ, ϕ).
(c) Express |Lr(x|θ, ϕ)|4, r = {1, 2, 3} in the 35-

dimensional linear space, by three vectors u1, u2, u3.
Enddo
6. Detect the values (θo, ϕo) for which the vector g̃ is clos-
est to the linear space spanned by [u1, u2, u3]
7. Set Lr = Lr(θo, ϕo), and A = [L1, L2, L2], where the 3
forms Lr are expressed by their 2 coordinates.
At this point, some comments are useful. Steps 1, 2, 3,
5 generate admissible vectors, g. The 3 linear forms in
Step 6 are computed by rooting the polynomial defined
by coefficients g`. In fact, from (14), one obtains αj
and βj by factorizing the polynomial

∑

` g`x
`; and from

(12), these αj and βj are the coefficients of the linear
forms. Steps 4, 7, 8 measure the distance between g̃ and
the linear space spanned by the 3 linear forms raised to
the fourth power, and allow to compute coefficients λi.
The minimal distance is found by exhaustive search of
the (θ, ϕ) set, thanks to a loop. A matlab code of the
complete algorithm can be down-loaded from the URL
www.i3s.unice.fr/~comon/spie98.htm.

B. Computer results

Source samples have been generated according to a
discrete distribution with support {1, , −1, −}. Such
sources are encountered in digital communications, when

the (very common) QPSK modulation is used. They have
as fourth order cumulants κ = 1 and κ̃ = −1. The data
length T was varied from 200 to 5000 samples, and the
mixing matrix was taken to be

A =

[

0.81 + 0.39 0 0.35 + 0.35
0 0.5 − 0.86 0.86

]

A key issue is the choice of the performance measure.
In the present case, it is not trivial to measure the error
between the matrix identified by the algorithm, say Â, and
the actual mixing matrix A, since each column is computed
up to a multiplicative complex number, and up to a per-
mutation among the columns. In other words, one should
measure the norm of ||A − Â · D||, for the best matrix
D, formed of the product of a diagonal matrix and a per-
mutation (such matrices are sometimes called generalized

permutations). In order to do this, the basic tool is the
computation of a distance Υ(u, v) between two vectors u

and v, invariant up to a multiplicative complex number.
For this purpose, define

Υ(u, v) = Min
z

||u − z v||2

||u|| · ||v||

It can be seen that if u
H

v = ||u|| · ||v|| · cos θ eψ, then the
minimal distance Υ(u, v) is reached for || u

||u|| −
v

||v|| e−ψ||

and takes the value 2(1 − cos θ). The gap between two
matrices is then computed as the minimum distance over
the 6 possible permutations:

Gap(A, Â) = Min
P

r
∑

i=1

Υ(coli(A), coli(ÂP ))

The range of variation of this gap is thus [0, 6] in the present
problem where r = 3. Note that this is easy to compute be-
cause of the very small dimension. For larger dimensions,
one can avoid the exhaustive search for the best permu-
tation by assuming another gap measure, of more compli-
cated (but compact) form [2].

In figure 1 the average gap obtained over 15 independent
noiseless experiments is plotted, for finite data lengths.
The gap keeps small (compared to its maximal achievable
value of 6), even for a data length as small as T = 200.
This behavior holds excellent as long as the noise is negli-
gible. If noise is present, the performance degrades rather
fast, especially for short data length T and non Gaussian
noise. On the other hand, cumulant tensors are asymptot-
ically insensitive to Gaussian noise (for large T ), providing
some robustness to the method.
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Figure 1: Blind identification. Mean Gap obtained over 15
snapshots and data lengths ranging from 200 to 5000

samples.

C. Extension to larger dimensions

For dimensions K > 2, Sylvester’s theorem cannot ap-
ply. For instance, in its constructive proof, the fact that
d ≥ r was used; but it turns out that this property is
true only in the particular case of binary quantics, as we
shall point out in this section. Instead, one should resort
to Lasker-Wakeford theorem [43] [24], whose proof is not
constructive. Consequently, efficient blind identification al-
gorithms still remain to be devised. But there are a number
of results that are already known, especially concerning the
rank (or width according to Reznick [28]). More precisely,
for 2 ≤ n ≤ 8, it has been shown [24] that the generic value
r of the tensor rank ω is given by table I.

r K 2 3 4 5 6 7 8

3 2 4 5 8 10 12 15
d 4 3 6 10 15 22 30 42

Table I: Generic rank r of symmetric tensors as a function of
dimension K and order d.

The number of free parameters that remain to be fixed
in order to ensure uniqueness (in the sense that a finite
set of equivalent solutions can be obtained) is given by the
dimension of the manifold of solutions [24], as reported in
table II.

K 2 3 4 5 6 7 8

3 0 2 0 5 4 0 0
d 4 1 3 5 5 6 0 6

Table II: Generic dimensionality of the variety of solutions for
the CAND of symmetric tensors, as a function of dimension

K and order d.

One can check out, for instance, that for K = 2, we have
indeed 1 free parameter to fix when decomposing 4-way
arrays, whereas there are a finite number of solutions in
the case of 3-way arrays. This has already been pointed

out in section III-A.1: a second 4-way cumulant array had
been necessary in order to fix the extraneous parameter. It
is interesting to notice that the number of solutions is often
finite for 3-way arrays; on the contrary for 4-way arrays, it
occurs only for K = 7 in the above table! Before to close
this section, it is worth insisting that there is no simple
rule or formula that would yield all the values of table I:
the result of several theorems of various origins allow to
compute half of the values, but a numerical algorithm is
still required to fill table I completely [24]. Eventually,
there exist other formulations of the Sylvester theorem in
the complex case, and one could take advantage of them
for deriving new algorithms [47].

IV. Source extraction from a known mixture

In the previous section, the problem of blind identifi-
cation of the mixture A has been addressed, under the
sole assumption that sources were non Gaussian and inde-
pendent, but the recovery of the sources themselves was
left open. In this section, it is assumed that the mixing
matrix A is given, and the goal is to estimate the source
vector, x, from the observation vector, y. Because A has
more columns than rows (under-determination), it cannot
be linearly inverted.

The Maximization of the A Posteriori (MAP) distribu-
tion is quite natural for recovering discrete inputs, but
is generally iterative and requires an (almost) exhaustive
search [36] [49] [30] [37]. Actually, this idea of extract-
ing sources in the presence of lack of diversity is certainly
not new, and can be traced back to the Viterbi algorithm
[50], in which the discrete character is fully exploited, and
the most probable sequence is searched for among a set of
admissible candidates, which is adaptively reduced. As a
consequence, it is not hard to see that for sufficiently low
noise and sufficiently long observations, one can extract an
arbitrarily large number of sources from a single observa-
tion [35].

Our contribution is here different: the goal is to devise
an entirely analytical algorithm that does not resort to a
computationally heavy search. It can be used either as a
means to extract the sources, or as an initial guess for an
ascent algorithm maximizing the a posteriori distribution.

A. Algorithms

As pointed out in [15], among others, cumulant-based
criteria [2] [51] [52] obviously do not carry all the infor-
mation contained in the discrete character. On the other
hand, all discrete distributions in the complex plane
can be entirely characterized by a polynomial equation in
two variables (the real and imaginary parts). For some
discrete distributions, this equation even turns out to be a
polynomial in the complex variable [53]. For example, for
M−PSK modulated sources [54], we have that xM = 1.
There are M solutions in the complex field, and hence a
set of M allowed values. By adding to the K observation
equations (1) all the (K+M

M+1 ) homogeneous monomials of de-
gree M + 1, one gives oneself the opportunity to use the P
additional equations xMi = 1, 1 ≤ i ≤ P . The system can
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be solved thanks to these additional equations. In order to
illustrate the idea, we shall now consider the easiest case.

A.1 BPSK sources

This augmented linear system becomes especially simple
when enough linear equations can be extracted. In partic-
ular, this is the case if M = 2 and K = 2. In fact we have
then P +6 equations in P unknowns. The first 2 equations
are given by (1). The next 4 equations are given by y3

1 ,
y2
1 y2, y1 y2

2 , y3
2 . These equations involve products of the

form x3
i , x2

ixj , or xixjxk. By using the P remaining ones,
namely x2

j = 1, the latter products reduce simply to xi,
xj , and xixjxk, respectively. In other words, the system
becomes almost linear, beside the (P3 ) terms of the form
xixjxk.

Now take our example of section III, where P = 3. Then
there is a single non linear term, x1x2x3. If this term is
considered as a plain unknown, independently of the 3 oth-
ers, we end up with a linear system of 6 equations in 4
unknowns:

(

y

z

)

= C x̄, x̄ =









x1

x2

x3

x1 x2 x3









,

where z =









y3
1

y2
1 y2

y1 y2
2

y3
2









, and C =

(

A 0
B

)

Since the 4 × 4 matrix B is a known function of A, it is
given as soon as A is known (see appendix VII-A). The
above system can thus be solved for the 4 unknowns in the
Least Squares (LS) sense. In the approach proposed here,
the LS solution obtained for x1x2x3 is simply discarded, so
that the sources are given by:

x̂ = C−(1 : 3, 1 : 6)

(

y

z

)

where C−(1 : 3, 1 : 6) denotes the 3 × 6 matrix formed of
the 3 first lines of the Moore-Penrose pseudo-inverse of C.

A.2 MSK sources

It is well known that the Gaussian Minimum Shift Key-
ing (GMSK) modulation, utilized in the GSM standard,
can be approximated by a Minimum Shift Keying (MSK)
modulation [55], which in turn can be viewed as a QPSK
modulation with transition constraints [54]. This motivates
the study of the MSK source separation problem.

Similarly to the previous subsection, one can show (cf.
appendix VII-B) that any odd-degree monomial function
of the 2 observations is a linear combination of 4 sources:

εn y1(n)ky2(n)` = b1(k, `)x1(n) + b2(k, `)x2(n)

+ b3(k, `)x3(n) + b4(k, `)x4(n) (20)

where the coefficients bi are known functions of k, `, and A,
ε = −1 if k+` = 3 modulo 4, and ε = 1 if k+` = 1 modulo

4. The sources can then be recovered along the same lines
as in section IV-A.1. It is also shown in appendix VII-B
that the extraneous source x4(n) = (−1)n x1(n)x2(n)x3(n)
is an MSK source, uncorrelated with the actual ones, but
this is not used in the present section.
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Figure 2: Inversion of a known under-determined mixture:
typical results obtained with BPSK sources and a SNR of

12dB.

B. Computer results

Data have been generated according to the following
model:

y = A x +
1

ρ
w, where A =

[

2 0.1 −1
0.1 2 1

]

where xi are BPSK distributed. Parameter ρ allows to
control the noise power. The signal to Noise Ratio (SNR) is
defined here as 20 log10 ρ. It is thus a global value for the 3
sources, that implicitly depends on the matrix A, of course.
Figure 2 shows a typical example, obtained for SNR=12dB.
Note that the Signal to Interference Ratio (SIR) is of about
6dB for the first two sources, but of -6dB for the third one,
measured on the space spanned by the exact directional
vector. This yields an average SIR of about 3dB, coming
in addition to the noise corruption.

As the SNR varies from 10 to 50dB, two performance
measures have been calculated. First, one has computed a
mean standard deviation of the normalized source estima-
tion error:

σerror =

(

3
∑

i=1

variance

[

xi
σ(xi)

−
x̂i

σ(x̂i)

]

)1/2

where xi denotes the actual source value of source i, and x̂i
its estimate (before hard decision). Figure 3 (top) reports
the performances obtained. Second, after hard decision,
the Bit Error Rate (BER) has been estimated over 10, 000
samples for each value of the SNR; the errors made for each
of the 3 sources have been cumulated, so that the accuracy
is 1/30, 000 ≈ 3.10−5. The BER stays below 2 percent until
10dB (see figure 3, bottom), which is quite satisfactory.
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Figure 3: Extraction performances for a known mixture:
mean Standard Deviation (top) and Total Bit Error Rate

(bottom) for the 3 estimates.

V. Source extraction from an unknown mixture

As already pointed out, when the mixture A is unknown
and sources are discrete with known alphabet, there are
several algorithms available in the literature [14] [56] [11]
[36] [49] [37]. Contrary to the latter algorithms, the goal is
to devise a low-complexity numerical algorithm (e.g. with-
out exhaustive search or clustering). Therefore, the idea
is quite different: it is shown that the under-determined
BSS problem is equivalent to an invertible BSS in larger

dimension [57], namely:

ȳ
def
=

(

y

z

)

= C x̄ (21)

with the notation of the previous section. However, any
standard BSS algorithm may not be used, since some vir-
tual sources are introduced and are correlated to each
other.

A. Algorithms

If the mixture is unknown, the principle of building vir-
tual measurements is the same as in section IV, except that
the source extraction is not as easy because, in addition to
A, matrix B (and hence C) is unknown. The case of 2× 3
mixtures of binary or MSK sources is now analyzed in de-
tail.

A.1 BPSK sources

As previously, we have P = 4 BPSK sources (including
one virtual) in the mixture. Let x4 = x1x2x3; then, since
x1, x2, and x3 are real i.i.d. BPSK sources, so is x4. But
x4 is obviously not independent of the former sources. One
can even stress that Cum{x1, x2, x3, x4} = 1. Nevertheless,
it can be shown that E{xixj} = 0, Cum{xi, xi, xj , xj} = 0,
Cum{xi, xi, xi, xj} = 0, Cum{xi, xi, xi, xi} = −2, ∀i, j ∈
{1, 2, 3, 4}, i 6= j. This shows that all pairwise source cross-
cumulants of order 2 and 4 vanish, which is sufficient for
applying the ICA algorithm proposed in [2] [9]. In fact,
only pairwise cumulants are utilized in order to estimate
a sequence of plane rotations. As a result, in the absence
of noise, the P = 4 sources may be estimated. Denote
ˆ̄x the estimate of this augmented source vector, obtained
by the BSS algorithm. The extraction of the actual source
vector x̂ from the augmented one, ˆ̄x, is addressed in section
V-A.3.

A.2 MSK sources

As in section IV-A.2, let us turn to MSK-modulated
sources. Such sources can be split into two independent

BPSK sources: MSK signals are alternatively real and
imaginary (up to some fixed complex phase, which is part
of the inherent indetermination). In other words, when n is
odd, y(n) = Ab(n), and when n is even, y(n) =  Ab(n),
for some BPSK i.i.d. process, b(n). To simplify the nota-
tion, define y′(n) = y(n) for n odd, and y′(n) = −y(n)
for n even. Then one can rewrite the observation model as:

y′(n) = A b(n) (22)

Now with this writing, 3 BPSK sources remain to be found.
The same ICA algorithm as in section V-A.1, working with
pairwise cumulants [2], will consequently successfully sep-
arate those sources. In order to obtain an estimate of the
MSK source vector, x̂, after BSS, it will suffice to recom-
bine samples of the separator output: x̂msk(n) = b̂(n) for

n odd, and x̂(n) = b̂(n) for n even. The way b̂(n) is ob-

tained from BSS outputs ˆ̄b(n) is explained in section V-A.3
below.

A.3 Extraction of actual sources

In this section, we assume we have separated P̄ BPSK
sources, P̄ = P + (P3 ), and we denote by ˆ̄x the
P̄−dimensional estimated source vector. Among these P̄
BPSK sources, (P3 ) are virtual, for they are cubics in the P
others, by definition of x̄. In order to discriminate between
actual and extraneous sources, one computes the multiple
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coherence vector between the estimated augmented source
vector, ˆ̄x, and actual observation, y:

cp
def
=

1

σ2
p

rp
HR−1

y rp, 1 ≤ p ≤ P̄ , (23)

where σ2
p = var{ˆ̄xp}, rp = covar{y, ˆ̄xp}, and Ry =

covar{y}. Recall that the multiple coherence satisfies
0 ≤ cp ≤ 1, and that it equals 1 if and only if ˆ̄x is a
linear function of y. The consequence is that cp is close to
zero for extraneous sources, and the P actual sources have
the largest coherence (even if it does not generally reach 1,
because A is not invertible). Thus, as an estimate x̂ of the
actual source vector, it suffices to retain among the entries
of ˆ̄x those P that have the largest multiple coherence, cp.
The whole processing line is sketched in figure 4.
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Figure 4: Processing line for the algorithm of section V.

B. Computer results

B.1 BPSK sources

The most favorable mixtures have been chosen to run the
computer experiments; in fact, this is the only means to
obtain mixture independent performances, comparable to
the ultimate ones [35]. The mixture has thus the following
structure :

A =

(

a1 ia2 0
0 ia3 a4

)

where the values of ai are given by: (a1, a2, a3, a4) =
(0.9, 0.42, 0.42, 0.9). Computer experiments have been
run for data length N = 1000, and error rates have been
estimated over 5000 snapshots. The results reported in fig-
ure 5 show good performances, compared to the ultimate
BER performances plotted in dashed line.
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Figure 5: Separation performances for an unknown mixture:
Bit Error rates (BER) for the separation of 3 BPSK sources

from 2 sensors.
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Figure 6: Separation performances for an unknown mixture:
Bit Error Rates (BER) for the separation of 3 MSK sources

from 2 sensors.

B.2 MSK sources

Since MSK sources can be assumed to be alternatively
imaginary and real, and can be split into two independent
BPSK sources as in (22), it is quite clear that the most
favorable mixtures are the same as in the case of BPSK
sources [35] :

A =

(

a1 ia2 0
0 ia3 a4

)

Again, the data length is N = 1000, and BER’s are av-
eraged over 5000 trials. The results presented in figure 6
demonstrate a good behavior of our algorithm, only 2dB
above the ultimate bound given in [35].

C. Extensions

The case of QPSK sources, satisfying x4
i = 1, is more

complicated, but we sketch the procedure in this section.
In fact, a QAM4 source is a sum of two independent BPSK
sources in quadrature:

xp = εp +  ε′p

Hence, equation (1) can be rewritten as:

(

<[y]
=[y]

)

=

(

<[A] −=[A]
=[A] =[A]

)(

ε
ε′

)

As a consequence, 6 independent BPSK inputs need now
to be recovered from 4-sensor measurements.

Let us state a general result now. If we have K sen-
sor measurements, and P sources, satisfying xMi = xi.
Then raising the measurements to the Mth power yields
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(K+M−1
M ) additional equations, but introduces (P+M−1

M )
distinct source monomials, among which P are of the form
xMi = xi and P (P −1) of the form xM−1

i xj = xj . Thus, the
augmented linear system can be solved only if the necessary
condition below is satisfied:

K +
(

K+M−1
M

)

≥
(

P+M−1
M

)

− P (P − 1)

It can be shown that if P > K, this inequality is satisfied
only for M ≤ 3. One can also prove that for M = 3, the
inequality holds true only for P ≤ K + 1.

This result shows that with 6 BPSK sources, the ap-
proach followed in the previous sections cannot apply with
4-sensor measurements: by raising to the third power, one
introduces 20 equations, but also 20 new unknowns. On
the other hand, it works if we raise the sensor measure-
ments to the fifth power. In fact, in that case, one gets
(85) = 56 equations and introduces only 26 new unknowns
(20 of the form ε1ε2ε3 and 6 of the form ε1ε2ε3ε4ε5), among
the (105 ) = 252 source monomials, because ε4

p = ε2
p = 1.

The problem is generically solvable in the LS sense (un-
der the rank conditions guaranteeing identifiability). The
process of choosing the interesting 6 BPSK sources among
the 32 extracted ones remains the same as in the previ-
ous cases. However, the association of two BPSK sources
to form an actual QPSK source is somewhat more compli-
cated, but can be performed by taking advantage of the
mixture structure, as will be explained in a companion pa-
per.

VI. Concluding remarks

The BSS problem in the under-determined context has
been addressed, and three numerical algorithms have been
described. The first performs blind identification of 2 × 3
under-determined mixtures, under the assumption that
sources have non-zero kurtoses. The second extracts
sources when the mixture is known and the sources are
discrete (BPSK or MSK). The third algorithm is of very
low complexity, and directly separates independent discrete
(BPSK or MSK) sources. Spurious sources are introduced
in the procedure, but are detected and eliminated after-
wards with the help of the multiple coherence. The al-
gorithms have been illustrated by computer simulations,
mainly for 2 × 3 mixtures of binary sources. Extensions
have been discussed for four-state sources (QPSK), but the
presentation in depth is postponed to another paper.

VII. Appendix

A. Expression of B as a function of A for BPSK sources

We give below the expression of y2
i yj as a function of xp,

x1x2x3, and Ak`. It is a straightforward application of the
multilinearity property (2):

y2
i yj =









A2
i2Aj1 + A2

i1Aj1 + 2Ai1Ai2Aj2 + A2
i3Aj1 + 2Ai1Ai3Aj3

A2
i2Aj2 + A2

i1Aj2 + 2Ai1Ai2Aj1 + A2
i3Aj2 + 2Ai2Ai3Aj3

2Ai1Ai3Aj1 + 2Ai2Ai3Aj2 + A2
i2Aj3 + A2

i1Aj3 + A2
i3Aj3

2Ai2Ai3Aj1 + 2Ai1Ai2Aj3 + 2Ai1Ai3Aj2









·









x1

x2

x3

x1 x2 x3









By varying i and j in the set {1, 2}, each of the four columns
of B is readily obtained.

B. Expression of the extraneous source in the MSK case

A MSK process, x(n), can be defined as x(n) = n b(n),
up to an initial phase irrelevant in our problem, where b(n)
is BPSK, i.e. b(n)2 = 1. As a consequence, x(n)2 = (−1)n

and x(n)3 = (−1)n x(n). Consider first the case where
k+` = 3. Then the product y1(n)k y2(n)` is a linear combi-
nation of monomials of the form xi(n)3, xi(n)xj(n)2, i 6= j,
and x1(n)x2(n)x3(n). The two first terms are of the form
(−1)nxi(n). Let us look at the third. Taking the definition,
x1(n)x2(n)x3(n) = (−)nb1(n)b2(n)b3(n), where bi(n) are
BPSK. Yet, the product of BPSK’s is again a BPSK. Con-
sequently, x1(n)x2(n)x3(n) = (−)nb4(n) for some BPSK
process, b4(n), showing that x1(n)x2(n)x3(n) is also of the
form (−1)nx4(n), where x4(n) is MSK. As a conclusion,
(−1)ny1(n)k y2(n)` is a linear combination of 4 MSK pro-
cesses.

Take now a more general case where k + ` > 3. Clearly,
because xi(n)4 = 1, there are only two distinct cases to
consider, because k + ` is odd by hypothesis: k + ` = 3
and k + ` = 5 modulo 4. So let us look at k + ` = 5.
Skipping the details, we could state by a similar reason-
ing that y1(n)k y2(n)` is a linear combination of xi(n) and
x1(n)x2(n)x3(n) = x4(n), all being MSK processes.

Lastly, one can notice that the extraneous MSK process
is uncorrelated (at order 2) with the 3 others. In fact,
without restricting the generality, take E{x1(n)x4(n)}. It
is clear from above that this cross covariance is equal
to E{x1(n)2x2(n)x3(n)} = (−1)nE{x2(n)x3(n)}, which is
null because x2(n) and x3(n) are independent.

Acknowledgment. I wish to thank the anonymous re-
viewers for their careful reading and helpful remarks, which
have contributed in improving the clarity of the paper.
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