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ABSTRACT

Blind Source Separation (BSS) is often carried out under the
assumption that sources are statistically mutually indepen-
dent, at least in the sense of cumulants of given order. How-
ever, this assumption is not mandatory, and can be replaced
by some assumption on the source distribution, even if all
sources are identically distributed. Contrast functions are
optimization criteria that satisfy some identifiability condi-
tions. In this paper, one defines a distance to any discrete
constellation, and proves that this family of criteria indeed
defines contrast functions. The advantage of such criteria is
that they are deterministic, and do not involve the estimation
of sample statistics, such as moments or cumulants, hence a
potentially shorter convergence time.
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1. THE MIMO BLIND DECONVOLUTION
PROBLEM

Blind equalization or identification schemes have been the
subject of growing interest since 1975. One of the main
advantages of blind techniques is that, by deleting pilot se-
quences, one can increase the transmission rate. But there
are other advantages, which stem from limitations of classi-
cal approaches. In fact, techniques based on pilot sequences
are difficult to use when channel responses are long, or fast
varying, compared to the length of the pilot sequence. The
presence of a carrier residual can also make the equalization
task more difficult.

Instead of basing the identification or equalization
schemes on input-output measurements (data-aided ap-
proaches), some properties about the inputs are exploited
(blind approaches), as is now explained.

1.1. Modeling.

Limiting our discussion to linear modulations, the complex
envelope of a transmitted signals(t) takes the form in base-
band [20]: s(t) =

∑
k g(t − kT ) s[k]. Note the distinc-

tion between discrete-time and continuous time processes
via brackets and parentheses:s[k] = s(kTs), whereTs is

the symbol period. After propagation through the channel
and the receive filter, the signal received on the antenna may
be written as:y(t) =

∑
k h(t−kTs) s[k] whereh is the con-

volution of the transmit filter, the channel, and the receive
filter. If the received signal is sampled at the rate1/Ts, it
can be modeled as:

y[n] =
∑

k

h[n− k] s[k] (1)

with h[k] def= Ts h(kTs). For Multiple Input Multiple Out-
put (MIMO) systems, the transmitted signals[k] and the
received signaly[k] may be considered as vector-valued
discrete-time processes; their dimension is denoted byP
andK, respectively. Note the boldface that emphasizes the
multi-dimensional character of the processes. Model (1) can
then be rewritten as:

y[n] =
∑

k

H[n− k] s[k] (2)

where the global channel impulse responseH[k] is now a
sequence ofK ×P matrices. Itsz−transform, with a slight
abuse of notation, is denoted as

Ȟ[z] def=
∑

k

Ȟ[k] z−k

In the present context, inputssj [k] are referred to assources.

1.2. Symbol rate mismatch.

The case where source symbol rates are different or un-
known is not addressed in this paper, although it is an in-
teresting issue, in surveillance or interception contexts for
instance. However, one can still say that the output appears
as a convolution, but not as adiscrete convolutionanymore.
In fact, if the sample rate is1/T ′ at the receiver, we have:
y[n] =

∑
k H(nT ′ − kTs) s[k]

1.3. Carrier offset.

Another important issue is that of carrier mismatch. If the
carrier frequency at the receiver is slightly different from the



modulating carrier, then there is acarrier residual, which
one can merely represent in baseband by a multiplicative
exponential. For a SISO channel, this can be written as:

y[n] =
∑

k

h[n− k] s[k] e k δ (3)

whereδ is a small real number, and the dotless denotes√
−1.
In the SISO case, carrier residual and blind equalization

commute. This is not enjoyed by MIMO channels; we must
first equalize the channel, and then carrier residuals can be
mitigated individually. The problem of carrier residual mit-
igation, if not treated jointly with blind equalization, can be
seen as a SISO problem. See [4] and references therein.

1.4. Assumptions and taxonomy.

The goal of blind equalization is to yield an estimate of in-
put sequencessj [k] from the sole observation of output se-
quencesyi[n].
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The transmitted sequences[n] propagates through a
channelȞ[z], is then whitened by a filteřW [z], and
is eventually deconvolved by a paraunitary equalizer
Ǔ [z] to yield outputx[n].

In order to blindly equalize convolutive models, the most
widely used assumption is thestatistical independencebe-
tween successive symbols.

Hypothesis H1 Sourcessj [k] are all i.i.d. sequences.

For MIMO models, the independence assumption between
sources is often utilized:

Hypothesis H2 Sourcessj [k] are mutually statistically in-
dependent.

These hypotheses can generally be deflated to less strong
whiteness/independence properties, because moments of fi-
nite orders are used [7]. Let us stress that the case where
sources arelinear processescan also be treated in a similar
manner as i.i.d. sources; Hypothesis H1 is thus not very re-
strictive. A particular case however raises problems, namely
that of Gaussian sources. In that case, all the information is
contained in moments up to order 2, which is not sufficient
to establish identifiability. For this reason, it is necessary to
resort to a third hypothesis, along with hypotheses H1 and
H2:

Hypothesis H3 At most one source is Gaussian.

On the other hand, there exist other frameworks in which
hypotheses are different. For instance, if sources have
different spectra, or if they are non stationary, or cyclo-
stationary, then they can be separated with the help of ap-
propriate techniques (cf. section 1.5). These three cases are
not addressed in the present paper, and yield quite differ-
ent (easier) theoretical problems. Nevertheless, the special
framework ofdiscrete sources, which is relevant in the con-
text of digital communications, is our main concern. There-
fore, we assume the following hypotheses, instead of hy-
potheses H1 to H3:

Hypothesis H4 The sourcessj [n] belong to a known finite
alphabetA characterized by thed distinct complex roots of
a polynomial of degreed, Q(z)

Hypothesis H5 Sourcessj [n] are sufficiently exciting

By sufficiently exciting, it is meant that alldP possible states
of theP−uplets appear in the data matrix. In particular, the
observation length must be at leastdP , and the source data
matrix is full row rankP .

Depending on hypotheses (independence, discrete char-
acter, SISO/MIMO,P > K or not...), a whole variety of
problems can be stated [7]. From now on, and unless other-
wise specified, we shall concentrate only on Hypotheses H4
and H5, and on the case whereP ≤ K (over-determined
mixtures). When more sources than sensors are present,
the problem becomes more complicated (under-determined
mixtures), and specific tools generally need to be utilized.
Example Assume the model is MIMO static. Theny[n] =
H s[n], wherey[n] and s[n] are realizations of random
variables. In that case, hypothesis H1 is not mandatory any-
more. The estimation of the pair(H, s[n]) from the sole ob-
servationsy[n] under hypotheses H2 and H3 is now called
Independent Component Analysis(ICA) [2] [19] [15] [14]
[5].

1.5. Bibliographical comments.

For more references on the use of the discrete character of
sources in MIMO over-determined mixtures, either static
or convolutive, see [12] [25] [23] [21] [22] [24] [17] [9]
[16] [13]. Under-determined mixtures are addressed in [5]
and references therein. For a general account on blind tech-
niques, see [14] [15] [8]. Some useful results on contrasts
can be found in [2] [18] [6].

2. CONTRASTS

When noise is present in model (2), the estimation of in-
puts can be carried out according to a Maximum Likelihood
(ML) or a Maximum A Posteriori (MAP) procedure if the
noise has a known distribution. If this is not the case, noise
must be considered as a nuisance. Contrast criteria are ded-
icated to this kind of situation.



2.1. Trivial filters.

The separating linear filter,̌F [z], if it exists, aims at de-
livering an output,x[n], which should satisfy as closely as
possible hypotheses H4 and H5. But it is clear that there
exist some filters that do not affect them. These are called
the trivial filters. For instance, it has been proved that under
hypotheses H1 to H3, that

Proposition 1 Under hypotheses H1 to H3, trivial filters
are of the formŤ [z] = P Ď[z], whereP is a permuta-
tion, andĎ[z] a diagonal filter. In addition, because of the
i.i.d. property of hypothesis H1, entries ofĎ[z] must be of
the formĎpp[z] = λp zdp , wheredp is an integer.

Consequently, it is hopeless to estimate the pair
(Ȟ[z], s[k]). One should rather try to estimate one repre-
sentative of the equivalence class of solutions. Once one
solution is found, all the others can be generated by trivial
filtering.

2.2. Definition of contrast functionals

Let H be a set of filters, and denoteH·S the set of pro-
cesses obtained by operation of filters ofH on processes of
S. DenoteT the subset ofH of trivial filters, defined in
proposition 1. An optimization criterion,Υ(H;x), is re-
ferred to as a contrast, defined onH×H·S, if it satisfies the
three properties below [3]:

P1 Invariance:The contrast should not change within the
set of acceptable solutions, which means that
∀H ∈ T ,∀x ∈ H·S, Υ(H;x) = Υ(I;x).

P2 Domination:If sources are already separated, any filter
should decrease the contrast. In other words,
∀s ∈ S,∀H ∈ H, thenΥ(H; s) ≤ Υ(I; s).

P3 Discrimination: The maximum contrast should be
reached only for filters linked to each other via triv-
ial filters:
∀s ∈ S,Υ(H; s) = Υ(I; s) ⇒ H ∈ T .

The most natural criterion to measure the statistical mu-
tual independence betweenP variableszp is the divergence
between the joint probability density and the product of the
marginal ones [2]. If we assume the Kullback-Leibler di-
vergence, we end up with the Mutual Information (MI) [2].
The MI is thus a first possible contrast function. However,
its practical use is rather difficult, especially in large dimen-
sion (e.g. convolutive mixtures), even if some iterative al-
gorithms have been devised [1]. Therefore, contrasts based
on cumulants have been often preferred.

Now under hypotheses H4 and H5, it is quite natural to
define the optimization criterion:

ΥP (x) =
∑

n

∑
i

|Q(xi(n))|2 . (4)

2.3. Finite alphabets

Under mild hypotheses, criterion (4) turns out to be a con-
trast. The interest of exploiting the discrete character lies
not only in a more accurate characterization of the desired
output (than just non Gaussian or CM), but also in the fact
that some other assumptions can be dropped. In this section,
hypotheses H4 and H5 are solely used.

For instance, sources can be correlated and non station-
ary. In fact, the approach proposed is entirely algebraic and
deterministic, so that no statistical tool is required.

Definition 2 LetA be a finite alphabet defined byQ(x) =
0, whereQ is a polynomial of degreed with d > 1 distinct
roots, and letG be the set of complex numbersγ such that
γA ⊂ A.

As a first obvious result, we have [6]:

Lemma 3 If A is finite, thenG contains only unit modulus
numbers.

Lemma 4 Trivial filters associated with hypotheses H4 and
H5 are of the formP Ď[z], where the entries of̌D[z] can
be written asĎpp[z] = γ zn, with γ ∈ G andn ∈ ZZ .

Theorem 5 LetS be the set of processes taking their values
in alphabetA, andH the set ofP ×P invertible FIR filters.
Then criterion (4) is a contrast under hypotheses 4 and 5.

Proof. Some details are skipped for reasons of space; see
[6] for a longer version. Assume that, for somec ∈ lCP , we
have thatxTc ∈ A, ∀x ∈ AP . DenoteA = {a1, . . . ad},
cT = [c1, . . . cP ], and1 the vector formed ofP ones.

First of all, from 3,
∑

i ci ∈ G and there exists a number
γ ∈ G such thatγ

∑
i ci = 1. By definingc′i = γ ci, it is

sufficient to consider the caseG = {1}.
• BecausexTc ∈ A for any vectorx containing elements

of A, it must be true in particular forxT = ap 1T. This
implies that∀ap ∈ A, ap

∑
i ci ∈ A. In other words, we

must always have ∑
i

ci ∈ G. (5)

• Next, for any pair of distinct complex numbersa and
b, define theP × P matrix B = (a − b) I + b11T. This
matrix has a determinant equal to(a−b)P−1(a+(P−1)b).
For a + (P − 1)b 6= 0, its inverse takes the formbB−1 =
[a− b]−1 [I − b11T/[a + (P − 1)b]].
• As a result, for any pair of distinct symbols ofA, a and

b, there exists a vectorα containingP symbols ofA such
thatBc = α. From above, we have in particular∑

i

ci = [a + (P − 1)b]−1
∑

i

αi (6)

Case of real symbols, withG = {1}. Denotexm =
min{x, x ∈ A} andxM = max{x, x ∈ A}. From (5),

∀a, b ∈ A, ∃αi ∈ A/ αi = ci a + (1− ci) b



Soci must be real too. It can be easily shown [6] thatci ∈
{−1, 0, 1}, ∀i, 1 ≤ i ≤ P , otherwiseA would be infinite.
If ci ∈ {0, 1}, ∀i, then again from

∑
i ci = 1, there is a

single nonzero entry inc, andc is eventually trivial. So
assume∃ci = −1, 1 ≤ i ≤ P . But thenβ = b + ci(a −
b) ∈ A for any pair(a, b) ∈ A2; in particular forci = −1,
a = xM andb = xm, the symbolβ = xm − (xM − xm)
should belong toA. And xM > xm ⇔ β < xm, which
contradicts the definition ofxm.

Complex case withG = {1}. If d = 2, the problem
is equivalent to a particular case of real alphabet, already
addressed. So assumed > 2, and choose a symbolb on the
convex hull ofA. Sinced > 2, b always has two distinct
neighbors on the convex hull. So choose one of the two
neighbors on the convex hull, denoteda, in order to also
havea + (P − 1)b 6= 0. Result (6) then applies. Since∑

i ci ∈ G, (6) yields

1
P [a + (P − 1)b] = 1

P

∑
i

αi (7)

Let us prove first thatα cannot be proportional to1. As-
sume α = ao 1 for some ao ∈ A. Then from (7),
ao = 1

P a + P−1
P b. Therefore symbolao is also on the

convex hull ofA, and is closest tob thana was. This con-
tradicts the fact thata was one of its two neighbors ofb.

So assume now that vectorα contains at least two distinct
symbols. If these symbols area andb, then we necessarily
have 1 timea and(P−1) timesb, andc is trivial, as already
seen. If all symbols ofα are real, this case is equivalent to
stage 1, and has been already treated. Thus assume there is
in α a third symbolx distinct froma andb, being not a real
linear combination ofa andb. From (6), there must be at
least another symbolx′ on the other side of the line spanned
by {a, b}. But then one of them lies outside the convex hull
of A. This contradicts the fact that bothx andx′ are inA.

2.4. PSK contrasts

The simplest case of discrete alphabet is defined by the
polynomial equationP (z) = zq − 1, for which we have

Lemma 6 DefineF as the matrix of the length−q Fourier
transform: Fk` = e2π(k−1)(`−1)/q. Then for any permu-
tation P , there exists a diagonal matrix∆ containing only
qth roots of unity such that

F P = ∆F

Theorem 7 Let S be the set of PSK−q processes, andH
the set ofP × P invertible FIR filters. Then

Υ(x) def= −
∑

i

∑
n

∣∣xq
i,n − 1

∣∣2
is a contrast if the matrix(si[n]) is full rank.

The PSK case is interesting because it allows to derive a
much simpler proof.

Proof. We prove the theorem for static mixtures:
x[n] = A s[n]. First, the contrast is obviously null for
x ∈ S, and always negative. ThusΥ(x) ≤ Υ(s). If
equality holds, this means thatxi[n]q = 1 for all (i, n).
We have a system of (polynomial) equations in unknowns
Aip. The matrix of source signals is formed ofqth roots
of unity. If it is full rank, so that there exist a sub-matrix
P ×P , S, related to the length−q Fourier transform matrix,
F , by S = P 1∆1F , whereP 1 is a permutation and∆1 is
a P × q diagonal matrix containingqth roots of unity. Let
X = A S. ThenX is invertible. But its entries satisfy
Xq

ij = 1. Thus, there exist a permutation and a diagonal
matrix of qth roots of unity such thatX = P 2∆2F . This
implies thatA = P 2∆2∆−

1 P 1
T, where∆− denotes the

pseudo-inverse of∆. From lemma 6, the latter result can
be put in the formA = P∆. We have proved thatA is
trivial.

In this case, trivial filters are of the formP Ď[z], where
Ďpp[z] are rotations in the complex plane of an angle multi-
ple of2π/q combined with a pure delay, andP are permu-
tations.

2.5. Numerical algorithms

It is easy to run gradient ascents to find the maxima ofΥ(x)
defined in theorem 7 or 5. A typical iteration to estimate a
vector of equalizer taps is for instance:

v = f(k) + η g(k); f(k + 1) = v/||v|| (8)

whereg(k) denotes the gradient of the optimization crite-
rion J(f) calculated atf(k), andη the step size. Standard
gradient implementations, especially with a fixed step, per-
form poorly because of the shape of the criterion, which
contains many saddle points. The way the step size is ad-
justed (e.g. quasi-Newton) does not improve anything with
this respect: if the algorithm is initialized near a saddle
point, the iterations can stay a long time in its neighbor-
hood, and suddenly burst out far away from the attraction
basin, and take again a long time to come back. Yet, a sig-
nificant improvement can be brought to this.

In fact, if the criterionJ(f), implicitly defined byΥ(x),
is a rational function in thefi’s, then so isJ(f(k)+η g(k)).
As a consequence, all its stationary points can be explicitly
computed, as roots of a polynomial in a single variable, and
theabsoluteminimum/maximum easily found. This kind of
algorithm may often give the possibility to leave the attrac-
tion basin of a local minimum, if any. The algorithm can
obviously be implemented either off-line or on-line.

In the present case, there is even another alternative since
algebraic solutions can be computed, as reported in [11]
[10], among others.



Other approaches, that are not based on contrast maxi-
mization, exist in the literature, including [25] [21] [23] [22]
[24] [17].

3. CONCLUDING REMARKS

The family of optimization criteria we have defined allow to
carry out a MIMO channel Blind Equalization when inputs
are discrete, in a deterministic manner. Since no moments
are computed, a faster convergence may be expected. In
addition, these criteria enjoy contrast properties, insuring
the minimal identifiability conditions.

Algebraic block solutions become more and more attrac-
tive, especially in TDMA transmissions, because of the in-
creased computational power. Therefore, off-line as well as
on-line iterative algorithms are proposed. Computer exper-
iments are currently being performed.
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