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ABSTRACT

On-line adaptive algorithms are not effective enough
in tracking fast varying channels in blind and semi-
blind modes. Block methods, long disregarded be-
cause of their numerical complexity, now hold appeal.
In fact, the performance limitation now comes either
from channel non-stationarity or from the absence of
long training sequences, or both, but essentially no
longer from the computational load. In addition, block
methods are well adapted to burst-mode transmissions
(TDMA systems).

Some block algorithms are presented in this paper,
aiming at identifying communication channels blindly.
These algorithms provide analytical solutions (i.e. non
iterative) in order to be free of convergence problems.
They exploit either the knowledge of the input alpha-
bet, or the constant modulus property. The tools
involved in the blind Source Separation (flat fading
channels) and Channel Identification (frequency se-
lective channels) problems are reviewed. The under-
determined case (number of users exceeding the avail-
able diversity) is of particular interest.

This assessment is not a survey of existing tech-
niques, but a partial review of some original recent al-
gorithms, often leading to closed-form solutions, and
applicable in the presence of limited diversity.

1. INTRODUCTION

In order to increase the performance of telecommuni-
cation systems, one tries to take advantage of the di-
versity, with the help of smart arrays. In practice, this
consists of building several distinct observations, say
K, either by using actual spatially distant sensors (spa-
tial diversity), or by exploiting other forms of diversity
induced by the polarization or by the excess bandwidth.

Thus, after a preprocessing that is beyond the scope
of this report, we have at our disposal a K —dimensional

I This work has been supported in part by the Rnrt project
“Paestum”.
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observation vector, y(n), for every unit of time n, sat-
isfying the model below:

where x(n) the P—dimensional random vector contain-
ing the sources (users), assumed to be mutually statis-
tically independent, H(j) the K x P matrix taps of the
channel impulse response, and v(n) an additive noise
independent from x(n), standing for background noise
and modeling errors.

When the spatio-temporal array response H(n) is
not known, or imprecisely known (loss of calibration),
then it needs to be identified before the source vec-
tor process x(n) can be reliably estimated. Note that
there are direct equalization algorithms, for instance
prediction-based [1] or subspace-based [34], which per-
mit the estimation of the sources without prior identifi-
cation. The former are very sensitive to a misdetection
of the channel order, whereas the latter are less so; see
[10] for Cramér-Rao bounds. But the point is that the
performance is acceptable only if the diversity, K, is
sufficiently large compared to the number of sources,
P. In contrast, it will be assumed throughout that
K<P.

This paper focuses on analytical solutions, that is,
algorithms able to provide a closed-form expression of
H. Block methods indeed become more and more at-
tractive since computer power no longer appears to be
an impediment. On the other hand, adaptive algo-
rithms also benefit from of a block update, by gaining
in convergence speed and complexity [29].

Some algorithms are based on second-order (circu-
lar or non-circular) statistics only. Others resort to
High-Order Statistics (HOS), and perform tensor de-
compositions. Among the advantages of HOS-based
algorithms, is their ability to identify under-determined
mixtures (i.e. K < P). This will be discussed in sec-
tions 2.4 and 3.3.



Devising algorithms of channel identification de-
pends on the availability of a training sequence. In
other words, is part of the source process x(n) known
or not? If so, channel identification can be carried
out through semi-blind techniques. In the context
of telecommunications, this leads to increased perfor-
mances in symbol error rate [16] [24], but decreases the
throughput. Determining the best compromise remains
an open question. This paper, however, is restricted to
discussion of blind approaches.

2. BLIND SOURCE SEPARATION

Of particular interest are flat fading channels. In fact,
the search for an analytical solution seems less com-
plicated at first glance, since model (1) becomes static
and reduces to:

¥(n) = H x(n) + v(n) 2)
where H is a K x P matrix. The classic blind source
separation problem [11] does not assume spectral di-
versity, so that in model (2), time n can be considered
as a mere realization index. The goal is to identify
the channel matrix H, and possibly extract the sources
x(n), from the sole observation of y(n).

This problem is known to have a unique solution
(up to scale and permutation factors) provided that
at most one source is circular Gaussian, and K > P
[11]. However, closed-form solutions stricto sensu have
been found only for P = 2, based on the use of fourth-
order cumulants, even if efficient iterative algorithms
are now available for P > 2 [28] [7] [11] [6]. Never-
theless, there could be analytical solutions, which may
require minor additional assumptions, as will be sub-
sequently discussed.

2.1. Notation

Kronecker products. Given a d—dimensional vec-
tor u, one defines the d?—dimensional vector u® =
u ® u*, as the vector containing all the products be-
tween components of u and its complex conjugate. One
also defines the vector u?? of size (3), composed of
all distinct cross products of degree ¢, appropriately
weighted; the weight of every monomial is assigned the
value of the square root of the number of ways to build
it. As a consequence, the Hermitian norm is preserved:
[|@{_ u|| = |[u?9||. Forinstance, u®? has d(d+1)/2 en-
tries: d squares and d(d— 1)/2 cross products weighted
by V2.

Next, given a p x r matrix U, define the vector
vec{U} of size pr, obtained by stacking the columns
of U one below the other. For instance, we have
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vec{uu®} = u®. Conversely, define the inverse op-
erator Unvec{} such that Unvec{vec{U}} = U.

Tensors. A tensor of order ¢ is a table with ¢ in-
dices, enjoying the multilinearity property [33], as will
be precised in section 2.4. It is symmetric if the order
of indices does not matter. For example, matrices are
tensors of order 2.

Symmetric arrays. Symmetric matrices of size px p
have p(p + 1)/2 degrees of freedom. It is thus neces-
sary to store only p(p + 1)/2 entries; therefore, define
the operators vecs{} and Unvecs{} accordingly. We
have, for instance, vecs{uu®} = u?. More generally,
a symmetric tensor T of order ¢ and dimension p can
be stored in a vector of size (%); let vecs{T} denote
this vector, and Unvecs,{-} the corresponding inverse
operator. With these notations, Unvecs,{u®?} is a
tensor of rank 1.

Definitions of rank. A ¢—th order tensor has a
rank equal to 1 simply if it is the outer product of ¢
vectors. We define the array rank [30] of a symmetric
tensor T (or just rank in short) as the minimal number
of rank-one tensors necessary to add in order to yield
T. Note that other terminologies such as tensor rank
[17] or polynomial width [36] are also encountered.

Other definitions of rank have been proposed [30,
2, 20], and are related to matrix ranks, but are not
relevant in our framework.

2.2. Comnstant modulus sources

Van der Veen was the first to propose an analytical
algorithm to separate CM sources [39]. The principle of
his algorithm is best understood through the Noiseless
Case. Assume the observations have been spatially pre-
whitened, so that the data matrix is of size P x N and
full rank.

One attempts to extract each source with a linear
filter f as: s(n) = £Ty(n). Thus the constraint of unit
modulus can be written as:

fTy(n)y(n)"f = 1,Vn. (3)
With the notation introduced in section 2.1, this yields
f®Ty(n)® = 1, for all time samples n, 1 < n < N.
Stacking all these equations one above the other, we
get a N x P formally linear system: Y®f® = 1. It can
be shown that, in the absence of noise, and if N > P2,
the null space of Y® is of dimension P — 1. Among
the infinite number of solutions to this system, only P
have the structure requested by vectors of the form £®.
In order to calculate them, simply construct the null
space equation Nf® = 0, where N is a given N —1 x P?
matrix. Let {u(®) ... u”)} be a basis of ker{N}. Then
any of the P extractors fj® is a linear combination of



the ul?)’s; and vice-versa. Rearranging the system of

equations leads eventually to ul) = Zle )\;p)fJ@, or,

in closed form, by applying the operator Unvec{-} :
U®P = FAPIFH (4)

In conclusion, the problem amounts to jointly diago-
nalize P matrices, which recalls the Jade algorithm
proposed in [7]; the difference here is that F is not
constrained to be unitary. The numerical algorithm
proposed in [39] is iterative, and is inspired from the
QZ iteration usually dedicated to the diagonalization
of matrix pencils. Another analytical solution to this
type of problem, applicable to CM sources, has been
introduced in [26] for tensors, and is described in the
next section.

2.3. Discrete sources

In [38], the above algorithm has been specialized to real
data, that is, to BPSK sources. This algorithm cannot
handle complex constellations. Here, we shall examine
a related procedure for g—PSK modulations, where the
support of the distribution reduces to ¢ masses, c;.

In the present case, we impose the constraint
[fTy(n)]? = 1, so that:

y(n)297f%7 = 1. (5)
For ¢ = 2, this is still different from equation (3) be-
cause of the absence of complex conjugates, and be-
cause of the smaller vector dimension.

By stacking equations (5) for 1 < n < N, one obtains
a formally linear system Y©9f99 = 1. Matrix Y99 is
generically of rank P — 1 if P sources are present [26];
there are thus again infinitely many solutions. Denote
£29 the minimum norm solution, and {u?)} a basis of
the null space. Then extractors take the form: f99 =
fgfn—i—zpz_ll )\pu(”). The coefficients A, are determined
by imposing the structure on £@4. Unlike the algorithm
described in section 2.2, here one uses the property
that Unvecs,{f?9} must have a rank 1. An analytical
solution is proposed in [26].

In the presence of noise, one can attempt to sat-
isfy equations (5) in the LS sense. Actually, since
source distributions are known, a Bayesian approach
is possible. With this goal, it has been proved in [25]
that the Maximum A Posteriori (MAP) criterion is
asymptotically equivalent to the Mean Square Error
(MSE) >, Hj [fTy(n) — ¢;j|?, which is itself equal to
2o [£OTTy (n)2 —1J%.

2.4. Non circular sources, under-determined
mixtures

Mixtures in which the number of sources, P exceeds
the available diversity, K, are referred to as under-
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determined; some authors also refer to over-complete
representations [32].

Why resorting to tensors? Reasons for us-
ing higher order arrays are usually three-fold. First,
the sole use of second order statistics is often seen as
insufficient; the orthogonality constraint between the
columns of H may indeed not be in accordance with the
actual structure of the data. Second, data are often ar-
ranged in many-way arrays, for instance three-way [17]
[3]; the reduction to a 2-way array represents a loss of
information. Third, the number of factors that can be
identified is limited to the rank of the data matrix, it-
self bound by the smallest dimension. Yet, there may
very well be more factors than the smallest dimension.
Clearly, as we have seen in the previous sections, the
first two arguments do not always hold. On the con-
trary, the latter alone suffices to justify that we resort
to high order tensors [17] [12].

Cumulants. Define the following fourth order cumu-
lant tensors of observations:

Gijre = Cumdy;, yj, Yk, ye}
Gijre = Com{y;, yj, ue", ye™ }-

Then, taking the fourth order cumulants of both sides
of (2) leads to the multilinear relations, up to a noise
term:

P
Gijee = Y (p) Hip Hjp Hip Hop (6)
p=1

where v(p) Cum{z,, zp,zp, 2, and A(p)
Cum{zp, zp, zp*, 2,*}. Clearly, equations (6) and (7)
show that the observation cumulant tensors are a sum
of P rank-one tensors, whose latent vector corresponds
to a column of the mixing matrix, H.

Formally, this results recalls the eigen-decomposition
of symmetric and Hermitian matrices. But the key
difference lies in the fact that the rank of a tensor can
exceed its dimension [12], as will be soon discussed.

State of the art. Bergman [2] has been probably
the first to notice that the concept of rank is difficult
to extend from matrices to higher order arrays. Caroll
[8] provided the first canonical decomposition algorithm
of a three-way array, later referred to as CANDECOMP
model. Kruskal [30] conducted several years later a
detailed analysis of uniqueness, and relates several def-
initions of rank. The algorithm CANDELINC [9] was
devised by Caroll and others in the eighties; it allows
to compute a canonical decomposition subject to a pri-
ori linear constraints. Leurgans [31] derived sufficient



identifiability conditions for the 3-way array decompo-
sition; as opposed to Kruskal, his proof is constructive
and yields a numerical algorithm running several ma-
trix SVD’s. A solid account on decompositions of 3-way
arrays can also be found in DeLathauwer’s PhD thesis
[17].

As shown in (8), symmetric arrays of order ¢ and
dimension K can be associated bijectively to homoge-
neous polynomials of degree ¢ in K variables. Based on
this remark, decomposing a symmetric array is equiv-
alent to decomposing a homogeneous polynomial into
a sum of linear forms raised to the g—th power [15].
The advantage, compared to CANDECOMP, is that the
symmetry is not broken. As a consequence, the prob-
lem can then be connected to early works in invariant
theory [35] and multilinear algebra [22]. The first re-
sults go back to the beginning of the century with the
works of Sylvester and Wakeford [41]. Also related are
the works of Rota [23] on binary quantics, and those of
Reznick on quantics of even degree [36].

Quantics and identifiability. The first results on
identifiability stated that, in a neighborhood of a so-
lution, imposing both Hermitian symmetry and rank-
one when decomposing G ensure local identifiability
[5]. This led to an iterative algorithm, consisting of
alternate projections on both sets [5]. Other iterative
algorithms have been proposed to identify the domi-
nant rank-one tensor, for instance based on the power
method principle [19] [17], or rank-one slices [26].
Recent results in identifiability are more general and
accurate [12]. The set of symmetric arrays of order
¢ and dimension K 1is a vector space of dimension
(K‘Zq_l). Now, every symmetric array GG of order ¢ and
dimension K can be associated with a homogeneous
polynomial p of degree ¢ in K variables as follows:

K
p(z1, - rK) = E Gry kg Thy Tk, (8)
ki..kg=1

A number of results are already known, especially
concerning the rank of tensors (or the width of quantics
[36]). More precisely, for 2 < K < 8, it has been shown
that the generic value of the rank r is given by the
following table [15]:

r|K[[2]3]4][5]6]7]8]
3274758101215
9143610 15]22]30] 42

The number of free parameters that remain to be
fixed in order to ensure uniqueness (in the sense that
a finite set of equivalent solutions can be obtained) is
given by the dimension of the manifold of solutions [15]:
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| K[[2[3[4]5[6[7]8]
3[[0[2]0[5]4]0]0
14 [1[3][5[5]6]0]6

One can check out, for instance, that for K = 2, we
have indeed 1 free parameter to fix when decomposing
4-way arrays, whereas there are a finite number of solu-
tions in the case of 3-way arrays. This would encourage
us to use third order tensors. Unfortunately, cumulants
of order 3 are often null or very ill-conditioned. The
difficulty in using fourth order cumulant tensors can be
already seen to be the lack of uniqueness of the decom-
position. The idea developed by Comon in the next
section is to use jointly G and G, which both have non
unique decompositions, but whose manifolds of solu-
tions intersect in a finite set of points.

An identification algorithm. When K = 2 and
P = 3, Comon proposed an identification algorithm
based on Sylvester’s theorem [12], to apply to the poly-
nomial associated with tensor G of order ¢ = 4:

A binary quantic p(z,y) = Y.i_y7yic(i) 2’ y?~% can
be written as a sum of gth powers of r distinct linear
forms:

pla,y) =Y A (a5 2+ B 9)7,

j=1
if and only if (i) there exists a vector g of dimension
r + 1, with components g,, such that

Yo 7

Yd—r Yd—1 '7q
and (ii) the polynomial ¢(z, y) et S_ogezty Tt ad-
mits r distinct roots.

Sylvester’s theorem is not only proving the existence
of the r forms, but also gives a means to calculate them.
For odd values of ¢, we have thus a generic rank of r =
%, whereas for even values of ¢, 7 = 41, generically.
It is then clear that when ¢ is even, there are at least
two vectors satisfying (9), because the Hankel matrix
is of size Z x (£ 4 2). To be more concrete, take as
example ¢ = 4. The first Hankel matrix having more
columns than rows is of size 2 x 4, and obviously has
generically 2 vectors in its null space.

As a conclusion, when ¢ = 4, there are generically
two vectors g satisfying (9). This means that there
are infinitely many decompositions of G, all lying on a
manifold of dimension 1 in the complex space. As said
above, the idea proposed in [12] is to use another array,
namely G, to fix this indeterminacy.

DeLathauwer and Comon proposed in [18] a signif-
icant improvement of the above algorithm, decreas-
ing its numerical complexity. Identification algorithms



with 2< K < P,or 3 < P and K < P, still remain to
be devised.

Source extraction. As far as source extraction is
concerned, Cao and Liu [4] derived in detail the separa-
bility conditions, and the related underlying statistical
results. Comon and Grellier proposed an analytical ex-
traction algorithm when sources are discrete [13].

3. CHANNEL IDENTIFICATION

3.1. Discrete sources

A large number of algorithms can be found in the lit-
erature to solve the blind identification problem. How-
ever, most of them are iterative, e.g. [40]. For in-
stance, Yellin and Porat proposed a non iterative al-
gorithm, which is fully deterministic [42]. In their ap-
proach, it is assumed that during the observation time,
the source process z(n) takes several times the same
value on whole blocks of length L. This allows the es-
tablishment of simple elimination procedures. One of
the main difficulties is to test (and find) such blocks in
the measured series, y(n).

3.2. Non circular sources

Another alternative is to exploit the non-circular source
statistics, which are non-zero for discrete distributions.
More precisely, if z is ¢—PSK, then it is circular at
order ¢ — 1, which means that its moments up to order
q — 1 are zero, but E{z?} # 0.

This property has been used in [14] to blindly iden-
tify BPSK and MSK channels, with the help of second-
order non-circular moments. This results in a very par-
ticular polynomial system of degree 2 in several vari-
ables, which is solved entirely analytically. The semi-
blind context can also be approached in this way [24].

3.3. Under-determined mixtures

In [37], Tong showed that if the columns of
H(0) are not pairwise collinear, and if the matrix
[H(0)", - - ,H(L)"]" is full rank, then model (1) can
be identified with the help of output fourth-order cu-
mulants. This result is very significant, because it does
not impose that K > P, which opens the door to the
discovery of new algorithms. Efficient numerical al-
gorithms have apparently not yet been published, al-
though the proof of [37] was constructive.

4. CONCLUDING REMARKS

In the case of static mixtures, there are basically two
techniques. One leads to a joint approximate diagonal-
ization of matrices, and the other to the decomposition
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of a tensor into a sum of rank-one tensors. The two
techniques are usable and equivalent when the number
of sources, P does not exceed the diversity, K. But
when K < P, only the latter technique is valid, but
also becomes much more difficult to implement.

Deterministic approaches seem very attractive for
discrete sources, especially for ¢—PSK sources. A com-
bination of tensor techniques and deterministic ap-
proaches can be envisaged.

For static as well as dynamic under-determined mix-
tures, the identification problem appears now solvable,
but the source extraction (equalization) remains much
more difficult, even if solved in some particular cases.
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