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ABSTRACT

Static linear mixtures with fewer sensors than sources
are considered. They are encountered for instance in
downlink radio communications, if the spectral effi-
ciency is attempted to be improved. The blind source
extraction problem is addressed by forming virtual sen-
sor measurements, in order to make it possible to invert
linearly the observation model. Virtual measurements
are a non linear function of actual measurements, and
the choice of this non-linearity depends on the source
distribution, assumed to be known and discrete. Two
numerical algorithms are proposed, depending on the
fact that the mixture is known (or beforehand identi-
fied) or not. Computer results are run with both BPSK
and MSK sources, and compared to the ultimate sepa-
ration performances.

1. INTRODUCTION

It is now admitted that the use of diversity based tech-
niques will become necessary in future radio communi-
cation systems. In particular, a diversity either based
on space or polarization will allow in the near future
mobile receivers to take advantage of a diversity equiva-
lent to 2 sensors. This will hopefully permit to improve
on the spectral efficiency of downlink communications.

The problem of channel identification when there
are fewer sensors than sources has been little addressed
up to now. One can mention [17] [10] in the case of dy-
namic mixtures, and [1] [2] [8] [14] [7] [9] [4] in the case
of static ones. The problem of source extraction, once
the channel 1s known or not, has been also very little
addressed when the mixture is static, whereas standard
algorithms are widely used to achieve source extraction
in the case of dynamic mixtures.

On the other hand, blind identification and inver-
sion of static mixtures of discrete sources has been ad-
dressed in [11] [18] [16] [13] among others, but under
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the assumption that the number of sources does not
exceed the number of sensors.

This paper focuses on the extraction of sources from
static mixtures with fewer sensors than sources. Con-
trary to most blind identification algorithms, the source
extraction itself requires additional assumptions on the
source statistics [4].

Two algorithms are proposed: the first one assumes
the mixture has been primarily identified, and the sec-
ond performs source extraction directly. Both algo-
rithms need the knowledge of the source distribution
(e.g. BPSK or MSK) up to a constant multiple, and
make use of polynomial functions of the observations.
Performances are compared to the ultimate ones, re-
cently investigated for static mixtures [5].

It is assumed throughout the paper that a
K —dimensional random vector y is observed, and that
it satisfies the following static linear model:

vyv=Ax+w (1)

where x is a “source” vector of dimension P with inde-
pendent components, A is an unknown mixing matrix,
and w represents additive Gaussian noise. In order
to simplify the algorithm presentation, we consider the
case of P = 3 sources and K = 2 sensors.

Static models are valid when the channels are non
dispersive (flat fading), or when source signals are nar-
row band (which means, in the case of spatial diversity,
that their bandwidth i1s small compared to the wave
celerity divided by the antenna spacing); in the latter
case, the model takes the form (1) if expressed in the
frequency domain.

The MAP estimate of the source vector is given by

()A(aA)MAP = AI'g hgixpﬂy,A(XaYaA) (2)

where pyjy a(X,¥, A) = pe(X) - pu(y — Ax). The MAP
criterion leads to an exhaustive search for the mixture
A, but restricts the search for x to the allowed con-
stellation. Even for BPSK sources, the computational



load is heavy. In addition, the technique used in [13]
cannot be directly implemented here as there are fewer
sensors than sources.

The idea proposed in this paper is to form virtual
sensors by exploiting the knowledge of the constellation
support of discrete signals. In fact, a discrete constel-
lation in the complex plane can always be fully defined
by a polynomial equation P(z) = 0.

2. ALGORITHMS FOR BPSK SOURCES

2.1. Case of known mixtures

If the mixture is known, the MAP solution can be ob-
tained within a reasonable computational cost. How-
ever, a more economic solution is sought. In absence
of noise, each observation takes the form:

yi(n) = a1 z1(n) + a2 z2(n) + aiz x3(n)

Yet, since #, are BPSK, we have that xz(n) = 1. This
allows to express any odd-degree monomial function of
the 2 observations as:

y1(n)"y2(n)* = bi(k, 0) 21(n) + ba(k, £) 22(n)
+b3(k, £) 23(n) + ba(k, £) 1 (n)za(n)zs(n) (3)

where the coefficients b; are known functions of %,
£, and of the mixing matrix A. Everything hap-
pens as if an extraneous source term had been added,
namely x1(n)za(n)zs(n) that appears as a fourth
BPSK source. This extraneous source can be seen
to be uncorrelated with the 3 previous ones, since
E{zizs232;} = 0, and E{zjzezsal} = 0, Vi €
{1,2,3}. But it is correlated at order 4, as will be
seen in a subsequent section.

An interesting way to form a virtual sensor mea-
surement consists of eliminating the extraneous source,
for instance by computing:

ys(n) = b4(0,3) y1(n)® — b4(3,0) ya(n)?

This new virtual sensor measurement is indeed a lin-
ear combination of the z,(n)’s, and the model becomes
(generically) invertible.

Another way consists of using all free monomials of
degree 3. This approach has been shown to be more
robust [4], because the overdetermined linear system
of 6 equations can be solved for the 4 unknowns in the
Least Squares (LS) sense:

y=B x (4)
y
vy
where y = | ¥?yo and x = X
! 2 T1L223
Y1 ?3)/2

Yo

and where B is a given function of A.

2.2. Case of unknown mixtures

If the mixture is unknown, the principle is the same, ex-
cept that the extraneous sources cannot be eliminated
anymore, because coefficients b; are not known. But
as previously, we have P = 4 BPSK sources (including
one virtual) in the mixture.

Two options are possible. One can either run a
deflation procedure based on the AMiSRoF algorithm
described in [13], that does not require more than sec-
ond order decorrelation between sources. But there is
also another more attractive option.

Let 24 = zixsws; then, zq1, zs, 3 being real in-
dependent BPSK sources, so is #4. But x4 is obvi-
ously not independent of the former sources. One can

even stress that Cum{aq, s, 23,24} = 1. Neverthe-
less, it can be shown that Cum{z;,z;, z;,2;} = 0,
Cum{l‘i,l‘i,l‘i,l‘j} = Oa Cum{l‘i,l‘i,l‘i,l‘i} = _2;

Vi, j € {1,2,3,4}. This shows that all pairwise source
cross cumulants vanish, which is sufficient for applying
the ICA algorithm proposed in [3] [6].

In order to discriminate between the actual sources
and the extraneous ones, one can compute the correla-
tion between estimated sources and observations y(n).
The 3 actual sources will indeed have the largest corre-
lation (because of the linear link and because of second
order decorrelation among sources). See section 4 for
computational details.

2.3. Identifiability

As any monomial function of y; and y, is a linear com-
bination of #1(n), z2(n), zs3(n) and x1(n)za(n)zs(n),
one could think that it is possible to create as many
virtual sensors as we want. But it turns out that the
number of useful virtual sensors is bounded. In fact,
the virtual measurements should be linearly indepen-
dent of each other, in order for the augmented mixing
matrix to be full rank. This identifiability issue will be
addressed more deeply 1n a forthcoming paper. But it
is clear that the submatrix of G

a b c 0
e f g 0
a?+3ab’>+3ac? 3a?b+03+3bc%  3ale+3b%2c+c® 6abe

e3+3ef?4+3eg? 3e?f+3+3F9% 3e2g+3f%g+¢° 6efy

is already generically of rank 4, because the set of ma-
trices A, such that the two last rows of the above sub-
matrix are proportional, is of null measure.



3. MSK AND QPSK SOURCES

In many Radio communication systems, in particular in
the current GSM and the future UMTS standards, the
modulation utilized is GMSK and QPSK, respectively.
It is therefore relevant to extend our procedure to these
kinds of modulation.

It is well known that the Gaussian Minimum Shift
Keying (GMSK) modulation, utilized in the GSM stan-
dard, can be approximated by a Minimum Shift Keying
(MSK) modulation [15], which in turn can be viewed
as a QPSK modulation with transition constraints (see
[12] and references therein). This motivates the study
of the MSK source separation problem.

3.1. Known mixture of MSK sources

Similarly to the case of BPSK sources, one can show
that any odd-degree monomial function of the 2 obser-
vations satisfies:

(=1 y1(n)fya(n)" = bi(k, &) z1(n) + ba(k, £) wa(n)
+ b3(k, ) 23(n) + ba(k, £) (1) &1 (n)x2(n)xs(n) (5)

where the coefficients b; are known functions of &, £,
and A.

As in the BPSK case, it can be shown that the
extraneous term (—1)" z1(n)za(n)zs(n) is an MSK
source, uncorrelated with the actual ones. The sources
can then be recovered along the same lines as for BPSK
sources.

3.2. Unknown mixture of MSK sources

MSK sources can be split into two independent BPSK
sources: MSK signals are alternatively real and imagi-
nary (up to some fixed complex phase). To simplify the
notation, one can thus rearrange the order of samples
and write the observation model as:

[YOdd - JYeven] =4A- [Xodd Xeven] (6)

where x,4q and X.,en are real BPSK sources. Now
with this writing, 3 BPSK sources remain to be found,
the first (resp. second) half corresponding to the odd
(resp. even) samples of MSK sources. The ICA al-
gorithm working with pairwise cumulants [3] [6] will
consequently successfully separate those sources.

3.3. Extraction of QAM4 sources

The case of QPSK sources is more complicated, but we
sketch the procedure in this section. In fact, a QAM4
source is a sum of two independent BPSK sources in
quadrature:

2y, =¢ep+J¢,

Hence in the case of QAM4 sources, equation (1) can

be rewritten as:

Rely] \ _ [ Re[A] —Im[A] €

Imly] /] \ Im[4] Im[A] ¢
As a consequence, 6 independent BPSK inputs need
now to be recovered from 4 sensor measurements.

Let us state a general result now. If we have K sen-
sor measurements, and P sources, satisfying z¢ = z;.
Then raising the measurements to the dth power yields
(Ktld_l) additional equations, but introduces (P+dd_1)
distinct source monomials, among which P are of the
form z¢ = x; and P(P — 1) of the form xf‘lxj = z;.
Thus, the augmented linear system can be solved only
if the necessary condition below is satisfied:

K+<A+j_1)z<P+j_l)—P(P—l)

It can be shown that if P > K, this inequality is satis-
fied only for d < 3. One can also prove that for d = 3,
the inequality holds true only for P < K + 1.

This result shows that with 6 BPSK sources, the
approach followed in the previous sections cannot apply
with 4 sensor measurements: by raising to the third
power, one introduces 20 equations, but also 20 new
unknowns. On the other hand, it works if we raise
the sensor measurements to the fifth power. In fact, in
that case, one gets (§) = 56 equations and introduces
only 26 new unknowns (20 of the form £1e5¢5 and 6
of the form e1e2e364¢5), among the (1) = 252 source
monomials, because 6;; = 612) =1.

The problem is generically solvable in the LS sense
(under the rank conditions guaranteeing identifiabil-
ity). The process of choosing the interesting 6 BPSK
sources among the 32 extracted ones remains the same
as in the previous cases. However, the association of
two BPSK sources to form an actual QPSK source is
somewhat more complicated, but can be performed by
taking advantage of the mixture structure, as will be
explained in a companion paper.

4. PERFORMANCES OF SOURCE
SEPARATION

4.1. Extraction algorithm

For the three source modulations that we have stud-
ied, it was possible to solve an equivalent problem (of
larger dimension) where BPSK sources needed to be ex-
tracted. Among these sources, the actual ones are mu-
tually independent, whereas the extraneous ones intro-
duced by monomial transforms are not. But the latter
are uncorrelated at order 2, and still have null pairwise
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Figure 1: Bit Error rates (BER) for the separation of
3 BPSK sources from 2 sensors.

cross-cumulants of order four, allowing the computa-
tion of an Independent Component Analysis (ICA) via
the algorithm proposed in [6].?

4.2. BPSK

The most favorable mixtures have been chosen to run
the computer experiments; in fact, this is the only
means to obtain mixture independent performances,
comparable to the ultimate ones [5]. The mixture has
the following structure :

A= ( ay Z:Clz 0 )
0 daz ag
where the values of a; are given by table 1. Computer
experiments have been run for data length N = 1000,
and error rates have been estimated over 5000 snap-
shots. The results reported in figure 1 show good

performances, compared to the ultimate BER perfor-
mances plotted in dashed line.

4.3. MSK

Since MSK sources can be assumed to be alternatively
imaginary and real, and can be split into two inde-
pendent BPSK sources; it is quite clear that the most
favorable mixtures are the same as in the case of BPSK

sources :
ay ia2 0
A= .
0 daz ag

found on the

2The matlab code can be URL

www.1i3s.unice.fr/~comon.

SNR aj as as aa
10 ] 0.900 | 0.4254 | 0.4254 | 0.905
12 0.900 | 0.4254 | 0.4146 | 0.910
14 0.900 | 0.4254 | 0.4146 | 0.910
16 0.910 | 0.4146 | 0.4146 | 0.910
18 0.910 | 0.4146 | 0.4146 | 0.910
20 | 0.830 | 0.5578 | 0.5578 | 0.830

Table 1: Best mixture for 2 sensors and 3 BPSK inputs
for various SNRs

Again, the data length is N = 1000, and BER’s are av-
eraged over 5000 trials. The results presented in figure
2 demonstrate a good behavior of our algorithm, only
2dB above the ultimate bound given in the previous
section.
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Figure 2: Bit Error Rates (BER) for the separation of
3 MSK sources from 2 sensors.

5. CONCLUSION

The source separation in the case of static mixtures
with fewer sensors than sources has been addressed. In
order to restore linear invertibility, the algorithms pro-
posed are based on the construction of virtual sensor
measurements, that are polynomial functions of the ac-
tual sensor records. These algorithms are closed form,
and exhibit promising performances compared to ulti-
mate bounds for both BPSK and MSK sources. The
procedure is also applicable for QAM4 sources, though
not as simple. Computer results need to be deepened
in the QAMA4 case, and have not been reported in this

paper.
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